SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Addinsall AB) "

Sökning: WFRF:(Addinsall AB)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Addinsall, AB, et al. (författare)
  • Impaired exercise performance is independent of inflammation and cellular stress following genetic reduction or deletion of selenoprotein S
  • 2020
  • Ingår i: American journal of physiology. Regulatory, integrative and comparative physiology. - : American Physiological Society. - 1522-1490 .- 0363-6119. ; 318:5, s. R981-R996
  • Tidskriftsartikel (refereegranskat)abstract
    • Selenoprotein S (Seps1) can be protective against oxidative, endoplasmic reticulum (ER), and inflammatory stress. Seps1 global knockout mice are less active, possess compromised fast muscle ex vivo strength, and, depending on context, heightened inflammation. Oxidative, ER, and inflammatory stress modulates contractile function; hence, our aim was to investigate the effects of Seps1 gene dose on exercise performance. Seps1−/− knockout, Seps1−/+ heterozygous, and wild-type mice were randomized to 3 days of incremental, high-intensity treadmill running or a sedentary control group. On day 4, the in situ contractile function of fast tibialis anterior (TA) muscles was determined. Seps1 reduction or deletion compromised exercise capacity, decreasing distance run. TA strength was also reduced. In sedentary Seps1−/− knockout mice, TA fatigability was greater than wild-type mice, and this was ameliorated with exercise. Whereas, in Seps1+/− heterozygous mice, exercise compromised TA endurance. These impairments in exercise capacity and TA contractile function were not associated with increased inflammation or a dysregulated redox state. Seps1 is highly expressed in muscle fibers and blood vessels. Interestingly, Nos1 and Vegfa mRNA transcripts were decreased in TA muscles from Seps1−/− knockout and Seps1−/+ heterozygous mice. Impaired exercise performance with Seps1 reduction or deletion cannot be attributed to heightened cellular stress, but it may potentially be mediated, in part, by the effects of Seps1 on the microvasculature.
  •  
3.
  •  
4.
  • Addinsall, AB, et al. (författare)
  • Treatment of Dystrophic mdx Mice with an ADAMTS-5 Specific Monoclonal Antibody Increases the Ex Vivo Strength of Isolated Fast Twitch Hindlimb Muscles
  • 2020
  • Ingår i: Biomolecules. - : MDPI AG. - 2218-273X. ; 10:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Aberrant extracellular matrix synthesis and remodeling contributes to muscle degeneration and weakness in Duchenne muscular dystrophy (DMD). ADAMTS-5, a secreted metalloproteinase with catalytic activity against versican, is implicated in myogenesis and inflammation. Here, using the mdx mouse model of DMD, we report increased ADAMTS-5 expression in dystrophic hindlimb muscles, localized to regions of regeneration and inflammation. To investigate the pathophysiological significance of this, 4-week-old mdx mice were treated with an ADAMTS-5 monoclonal antibody (mAb) or IgG2c (IgG) isotype control for 3 weeks. ADAMTS-5 mAb treatment did not reduce versican processing, as protein levels of the cleaved versikine fragment did not differ between hindlimb muscles from ADAMTS-5 mAb or IgG treated mdx mice. Nonetheless, ADAMTS-5 blockade improved ex vivo strength of isolated fast extensor digitorum longus, but not slow soleus, muscles. The underpinning mechanism may include modulation of regenerative myogenesis, as ADAMTS-5 blockade reduced the number of recently repaired desmin positive myofibers without affecting the number of desmin positive muscle progenitor cells. Treatment with the ADAMTS-5 mAb did not significantly affect markers of muscle damage, inflammation, nor fiber size. Altogether, the positive effects of ADAMTS-5 blockade in dystrophic muscles are fiber-type-specific and independent of versican processing.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • McRae, NL, et al. (författare)
  • Genetic reduction of the extracellular matrix protein versican attenuates inflammatory cell infiltration and improves contractile function in dystrophic mdx diaphragm muscles
  • 2020
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1, s. 11080-
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a persistent, aberrant accumulation of V0/V1 versican in skeletal muscles from patients with Duchenne muscular dystrophy and in diaphragm muscles from mdx mice. Versican is a provisional matrix protein implicated in fibrosis and inflammation in various disease states, yet its role in the pathogenesis of muscular dystrophy is not known. Here, female mdx and male hdf mice (haploinsufficient for the versican allele) were bred. In the resulting F1 mdx-hdf male pups, V0/V1 versican expression in diaphragm muscles was decreased by 50% compared to mdx littermates at 20–26 weeks of age. In mdx-hdf mice, spontaneous physical activity increased by 17% and there was a concomitant decrease in total energy expenditure and whole-body glucose oxidation. Versican reduction improved the ex vivo strength and endurance of diaphragm muscle strips. These changes in diaphragm contractile properties in mdx-hdf mice were associated with decreased monocyte and macrophage infiltration and a reduction in the proportion of fibres expressing the slow type I myosin heavy chain isoform. Given the high metabolic cost of inflammation in dystrophy, an attenuated inflammatory response may contribute to the effects of versican reduction on whole-body metabolism. Altogether, versican reduction ameliorates the dystrophic pathology of mdx-hdf mice as evidenced by improved diaphragm contractile function and increased physical activity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy