SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Agashe Deepa) "

Sökning: WFRF:(Agashe Deepa)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wennersten, Lena, 1960- (författare)
  • Population-level consequences of variation
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Consequences of within population variation have recently attracted an increased interest in evolutionary ecology research. Theoretical models suggest important population-level consequences, but many of these predictions still remain to be tested. These issues are important for a deepened understanding of population performances and persistence, especially in a world characterized by rapid fragmentation of natural habitats and other environmental changes.I review theoretical models of consequences from intra population genetic and phenotypic variation. I find that more variable populations are predicted to be characterized by broader resource use, reduced intraspecific competition, reduced vulnerability to environmental changes, more stable population dynamics, higher invasive potential, enhanced colonization and establishment success, larger distribution ranges, higher evolvability, higher productivity, faster population growth rate, decreased extinction risk, and higher speciation rate, compared with less variable populations.To test some of these predictions I performed experiments and compared how different degree of colour polymorphism influences predation risk and establishment success in small groups. My comparisons of predation risk in mono- and polymorphic artificial prey populations showed that the risk of being eaten by birds does not only depend on the coloration of the individual prey item itself, but also on the coloration of the other members of the group. Two experiments on establishment success in small founder groups ofTetrix subulata pygmy grasshoppers with different degree of colour morph diversity show that establishment success increases with higher degree of diversity, both under controlled conditions in outdoor enclosures and in the wild. These findings may be important for re-stocking of declining populations or re-introductions of locally extinct populations in conservation biology projects.I report on remarkably rapid evolutionary shifts in colour morph frequencies in response to the changed environmental conditions in replicated natural populations of pygmy grasshoppers in fire ravaged areas. This finding1illustrates the high adaptive potential in a polymorphic species, and indicates the importance of preserved within-species diversity for evolutionary rescue.Finally, I review if theoretical predictions are supported by other published empirical tests and find strong support for the predictions that more variable groups benefit from reduced vulnerability to environmental changes, reduced population fluctuations and extinction risk, larger distribution ranges, and higher colonization or establishment success.In conclusion, my thesis illustrates how within-population variation influences ecological and evolutionary performances of populations both in the short and long term. As such, it emphasizes the need for conservation of biodiversity also within populations.
  •  
2.
  • Wortel, Meike T., et al. (författare)
  • Towards evolutionary predictions : current promises and challenges
  • 2023
  • Ingår i: Evolutionary Applications. - : John Wiley & Sons. - 1752-4571. ; 16:1, s. 3-21
  • Forskningsöversikt (refereegranskat)abstract
    • Evolution has traditionally been a historical and descriptive science, and predicting future evolutionary processes has long been considered impossible. However, evolutionary predictions are increasingly being developed and used in medicine, agriculture, biotechnology and conservation biology. Evolutionary predictions may be used for different purposes, such as to prepare for the future, to try and change the course of evolution or to determine how well we understand evolutionary processes. Similarly, the exact aspect of the evolved population that we want to predict may also differ. For example, we could try to predict which genotype will dominate, the fitness of the population or the extinction probability of a population. In addition, there are many uses of evolutionary predictions that may not always be recognized as such. The main goal of this review is to increase awareness of methods and data in different research fields by showing the breadth of situations in which evolutionary predictions are made. We describe how diverse evolutionary predictions share a common structure described by the predictive scope, time scale and precision. Then, by using examples ranging from SARS-CoV2 and influenza to CRISPR-based gene drives and sustainable product formation in biotechnology, we discuss the methods for predicting evolution, the factors that affect predictability and how predictions can be used to prevent evolution in undesirable directions or to promote beneficial evolution (i.e. evolutionary control). We hope that this review will stimulate collaboration between fields by establishing a common language for evolutionary predictions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy