SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ahl David) "

Sökning: WFRF:(Ahl David)

  • Resultat 1-19 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Ahl, David, et al. (författare)
  • Lactobacillus reuteri increases mucus thickness and ameliorates dextran sulphate sodium-induced colitis in mice
  • 2016
  • Ingår i: Acta Physiologica. - : Wiley. - 1748-1708 .- 1748-1716. ; 217:4, s. 300-310
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: The aim of this study was to investigate whether two Lactobacillus reuteri strains (rat-derived R2LC and human-derived ATCC PTA 4659 (4659)) could protect mice against colitis, as well as delineate the mechanisms behind this protection.Methods: Mice were given L.reuteri R2LC or 4659 by gavage once daily for 14days, and colitis was induced by addition of 3% DSS (dextran sulphate sodium) to drinking water for the last 7days of this period. The severity of disease was assessed through clinical observations, histological evaluation and ELISA measurements of myeloperoxidase (MPO) and pro-inflammatory cytokines from colonic samples. Mucus thickness was measured invivo with micropipettes, and tight junction protein expression was assessed using immunohistochemistry.Results: Colitis severity was significantly reduced by L.reuteri R2LC or 4659 when evaluated both clinically and histologically. The inflammation markers MPO, IL-1, IL-6 and mKC (mouse keratinocyte chemoattractant) were increased by DSS and significantly reduced by the L.reuteri strains. The firmly adherent mucus thickness was reduced by DSS, but significantly increased by L.reuteri in both control and DSS-treated mice. Expression of the tight junction proteins occludin and ZO-1 was significantly increased in the bottom of the colonic crypts by L.reuteri R2LC.Conclusion: These results demonstrate that each of the two different L. reuteri strains, one human-derived and one-rat-derived, protects against colitis in mice. Mechanisms behind this protection could at least partly be explained by the increased mucus thickness as well as a tightened epithelium in the stem cell area of the crypts.
  •  
3.
  • Ahl, David, et al. (författare)
  • Turning Up the Heat : Local Temperature Control During in vivo Imaging of Immune Cells
  • 2019
  • Ingår i: Frontiers in Immunology. - : FRONTIERS MEDIA SA. - 1664-3224. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Intravital imaging is an invaluable tool for studying the expanding range of immune cell functions. Only in vivo can the complex and dynamic behavior of leukocytes and their interactions with their natural microenvironment be observed and quantified. While the capabilities of high-speed, high-resolution confocal and multiphoton microscopes are well-documented and steadily improving, other crucial hardware required for intravital imaging is often developed in-house and less commonly published in detail. In this report, we describe a low-cost, multipurpose, and tissue-stabilizing in vivo imaging platform that enables sensing and regulation of local tissue temperature. The effect of tissue temperature on local blood flow and leukocyte migration is demonstrated in muscle and skin. Two different models of vacuum windows are described in this report, however, the design of the vacuum window can easily be adapted to fit different organs and tissues.
  •  
4.
  • Asad, Shno, et al. (författare)
  • Click chemistry-based bioconjugation of iron oxide nanoparticles
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Superparamagnetic iron oxide nanoparticles (SPIONs) exhibit unique properties for diverse biomedical applications, including drug delivery and diagnostic imaging. Actively targeted SPIONs enhance delivery to diseased sites, reducing side effects and enhancing treatment efficacy. However, development of reproducible functionalization protocols is challenged by the erratic behavior of nanoparticles in suspensions, such as agglomeration and sedimentation. In this study, we develop and systematically optimize a functionalization method to attach the Fc-region of antibodies onto silica coated SPIONs via click chemistry, ensuring controlled ligand orientation on the particle surface. The synthesis and successive modifications of silica coated SPIONs with organic moieties is presented resulting in the final click conjugation with anti-ICAM1 antibodies. These antibodies target ICAM1, upregulated on epithelial cell surfaces during gastrointestinal inflammation. Thermogravimetric analysis and infrared spectroscopy confirm successful SPION functionalization after each modification step. Cell viability assessment indicates no adverse effects of bioconjugated particles. Quantitative elemental analysis reveals significantly higher iron concentration in inflammation-induced Caco-2 cells exposed to ICAM1-modified particles compared to non-conjugated counterparts. Furthermore, laser scanning confocal microscopy of these cells suggests surface interaction and internalization of bioconjugated SPIONs, underscoring their potential for targeted imaging and therapy in inflammatory diseases.
  •  
5.
  • Asad, Shno, et al. (författare)
  • Proteomics-Informed Identification of Luminal Targets For In Situ Diagnosis of Inflammatory Bowel Disease
  • 2021
  • Ingår i: Journal of Pharmaceutical Sciences. - : Elsevier. - 0022-3549 .- 1520-6017. ; 110:1, s. 239-250
  • Tidskriftsartikel (refereegranskat)abstract
    • Inflammatory bowel disease (IBD) is a chronic condition resulting in impaired intestinal homeostasis. Current practices for diagnosis of IBD are challenged by invasive, demanding procedures. We hypothesized that proteomics analysis could provide a powerful tool for identifying clinical biomarkers for non-invasive IBD diagnosis. Here, the global intestinal proteomes from commonly used in vitro and in vivo models of IBD were analyzed to identify apical and luminal proteins that can be targeted by orally delivered diagnostic agents. Global proteomics analysis revealed upregulated plasma membrane proteins in intestinal segments of proximal- and distal colon from dextran sulfate sodium-treated mice and also in inflamed human intestinal Caco-2 cells pretreated with pro-inflammatory agents. The upregulated colon proteins in mice were compared to the proteome of the healthy ileum, to ensure targeting of diagnostic agents to the inflamed colon. Promising target proteins for future investigations of non-invasive diagnosis of IBD were found in both systems and included Tgm2/TGM2, Icam1/ICAM1, Ceacam1/CEACAM1, and Anxa1/ANXA1. Ultimately, these findings will guide the selection of appropriate antibodies for surface functionalization of imaging agents aimed to target inflammatory biomarkers in situ.
  •  
6.
  • Geiser, Petra, et al. (författare)
  • Salmonella enterica Serovar Typhimurium Exploits Cycling through Epithelial Cells To Colonize Human and Murine Enteroids
  • 2021
  • Ingår i: mBio. - : American Society for Microbiology. - 2161-2129 .- 2150-7511. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Enterobacterial pathogens infect the gut by a multistep process, resulting in colonization of both the lumen and the mucosal epithelium. Due to experimental constraints, it remains challenging to address how luminal and epithelium-lodged pathogen populations cross-feed each other in vivo. Enteroids are cultured three-dimensional miniature intestinal organs with a single layer of primary intestinal epithelial cells (IECs) surrounding a central lumen. They offer new opportunities to study enterobacterial infection under near-physiological conditions, at a temporal and spatial resolution not attainable in animal models, but remain poorly explored in this context. We employed microinjection, time-lapse microscopy, bacterial genetics, and barcoded consortium infections to describe the complete infection cycle of Salmonella enterica serovar Typhimurium in both human and murine enteroids. Flagellar motility and type III secretion system 1 (TTSS-1) promoted Salmonella Typhimurium targeting of the intraepithelial compartment and breaching of the epithelial barrier. Strikingly, however, TTSS-1 also potently boosted colonization of the enteroid lumen. By tracing the infection over time, we identified a cycle(s) of TTSS-1-driven IEC invasion, intraepithelial replication, and reemergence through infected IEC expulsion as a key mechanism for Salmonella Typhimurium luminal colonization. These findings suggest a positive feed-forward loop, through which IEC invasion by planktonic bacteria fuels further luminal population expansion, thereby ensuring efficient colonization of both the intraepithelial and luminal niches.IMPORTANCE Pathogenic gut bacteria are common causes of intestinal disease. Enteroids—cultured three-dimensional replicas of the mammalian gut—offer an emerging model system to study disease mechanisms under conditions that recapitulate key features of the intestinal tract. In this study, we describe the full life cycle of the prototype gut pathogen Salmonella enterica serovar Typhimurium within human and mouse enteroids. We map the consecutive steps and define the bacterial virulence factors that drive colonization of luminal and epithelial compartments, as well as breaching of the epithelial barrier. Strikingly, our work reveals how bacterial colonization of the epithelium potently fuels expansion also in the luminal compartment, through a mechanism involving the death and expulsion of bacterium-infected epithelial cells. These findings have repercussions for our understanding of the Salmonella infection cycle. Moreover, our work provides a comprehensive foundation for the use of microinjected enteroids to model gut bacterial diseases.
  •  
7.
  • Jädert, Cecilia, et al. (författare)
  • Decreased leukocyte recruitment by inorganic nitrate and nitrite in microvascular inflammation and NSAID-induced intestinal injury
  • 2012
  • Ingår i: Free Radical Biology & Medicine. - : Elsevier BV. - 0891-5849 .- 1873-4596. ; 52:3, s. 683-692
  • Tidskriftsartikel (refereegranskat)abstract
    • Nitric oxide (NO) generated by vascular NO synthases can exert anti-inflammatory effects, partly through its ability to decrease leukocyte recruitment. Inorganic nitrate and nitrite, from endogenous or dietary sources, have emerged as alternative substrates for NO formation in mammals. Bioactivation of nitrate is believed to require initial reduction to nitrite by oral commensal bacteria. Here we investigated the effects of inorganic nitrate and nitrite on leukocyte recruitment in microvascular inflammation and in NSAID-induced small-intestinal injury. We show that leukocyte emigration in response to the proinflammatory chemokine MIP-2 is reduced by 70% after 7 days of dietary nitrate supplementation as well as by acute intravenous nitrite administration. Nitrite also reduced leukocyte adhesion to a similar extent and this effect was inhibited by the soluble guanylyl cyclase inhibitor ODQ whereas the effect on emigrated leukocytes was not altered by this treatment. Further studies in INF-alpha-stimulated endothelial cells revealed that nitrite dose-dependently reduced the expression of ICAM-1. In rats and mice subjected to a challenge with diclofenac, dietary nitrate prevented the increase in myeloperoxidase and P-selectin levels in small-intestinal tissue. Antiseptic mouthwash, which eliminates oral nitrate reduction, markedly blunted the protective effect of dietary nitrate on P-selectin levels. Despite attenuation of the acute immune response, the overall ability to clear an infection with Staphylococcus aureus was not suppressed by dietary nitrate as revealed by noninvasive IVIS imaging. We conclude that dietary nitrate markedly reduces leukocyte recruitment to inflammation in a process involving attenuation of P-selectin and ICAM-1 upregulation. Bioactivation of dietary nitrate requires intermediate formation of nitrite by oral nitrate-reducing bacteria and then probably further reduction to NO and other bioactive nitrogen oxides in the tissues.
  •  
8.
  • Karimi, Shokoufeh, et al. (författare)
  • In Vivo and In Vitro Detection of Luminescent and Fluorescent Lactobacillus reuteri and Application of Red Fluorescent mCherry for Assessing Plasmid Persistence
  • 2016
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 11:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Lactobacillus reuteri is a symbiont that inhabits the gastrointestinal (GI) tract of mammals, and several strains are used as probiotics. After introduction of probiotic strains in a complex ecosystem like the GI tract, keeping track of them is a challenge. The main objectives of this study were to introduce reporter proteins that would enable in vivo and in vitro detection of L. reuteri and increase knowledge about its interactions with the host. We describe for the first time cloning of codon-optimized reporter genes encoding click beetle red luciferase (CBRluc) and red fluorescent protein mCherry in L. reuteri strains ATCC PTA 6475 and R2LC. The plasmid persistence of mCherry-expressing lactobacilli was evaluated by both flow cytometry (FCM) and conventional plate count (PC), and the plasmid loss rates measured by FCM were lower overall than those determined by PC. Neutralization of pH and longer induction duration significantly improved the mCherry signal. The persistency, dose-dependent signal intensity and localization of the recombinant bacteria in the GI tract of mice were studied with an in vivo imaging system (IVIS), which allowed us to detect fluorescence from 6475-CBRluc-mCherry given at a dose of 1x10(10) CFU and luminescence signals at doses ranging from 1x10(5) to 1x10(10) CFU. Both 6475-CBRluc-mCherry and R2LC-CBRluc were localized in the colon 1 and 2 h after ingestion, but the majority of the latter were still found in the stomach, possibly reflecting niche specificity for R2LC. Finally, an in vitro experiment showed that mCherry-producing R2LC adhered efficiently to the intra cellular junctions of cultured IPEC-J2 cells. In conclusion, the two reporter genes CBRluc and mCherry were shown to be suitable markers for biophotonic imaging (BPI) of L. reuteri and may provide useful tools for future studies of in vivo and in vitro interactions between the bacteria and the host.
  •  
9.
  • Kober, Olivia, et al. (författare)
  • γδ T-cell-deficient mice show alterations in mucin expression, glycosylation and goblet cells but maintain an intact mucus layer.
  • 2014
  • Ingår i: American Journal of Physiology - Gastrointestinal and Liver Physiology. - : American Physiological Society. - 0193-1857 .- 1522-1547. ; 306:7, s. G582-G593
  • Tidskriftsartikel (refereegranskat)abstract
    • Intestinal homeostasis is maintained by a hierarchy of immune defences acting in concert to minimize contact between luminal microorganisms and the intestinal epithelial cell surface. The intestinal mucus layer, covering the gastrointestinal (GI) tract epithelial cells, contributes to mucosal homeostasis by limiting bacterial invasion. In this study, we used γδ T-cell-deficient (TCRδ(-/-)) mice to examine whether and how γδ T-cells modulate the properties of the intestinal mucus layer. Increased susceptibility of TCRδ(-/-) mice to dextran sodium sulphate (DSS)-induced colitis is associated with a reduced number of goblet cells. Alterations in the number of goblet cells and crypt lengths were observed in the small intestine (SI) and colon of TCRδ(-/-) mice compared to C57BL/6 wt mice. Addition of keratinocyte growth factor (KGF) to small intestinal organoid cultures from TCRδ(-/-) mice showed a marked increase in crypt growth, and both goblet cell number and redistribution along the crypts. There was no apparent difference in the thickness or organisation of the mucus layer between TCRδ(-/-) and wt mice, as measured in vivo. However, γδ T-cell deficiency led to reduced sialylated mucins in association with increased gene expression of gel-secreting Muc2 and membrane-bound mucins, including Muc13 and Muc17. Collectively, these data provide evidence that γδ T cells play an important role in maintenance of mucosal homeostasis by regulating mucin expression and promoting goblet cell function in the small intestine.
  •  
10.
  • Li, Hao, 1984-, et al. (författare)
  • Effects of Lactobacillus johnsonii and Lactobacillus reuteri on gut barrier function and heat shock proteins in intestinal porcine epithelial cells
  • 2015
  • Ingår i: Physiological Reports. - : WILEY. - 2051-817X. ; 3:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Heat shock proteins (HSPs) are a set of highly conserved proteins that can serve as intestinal gate keepers in gut homeostasis. Here, effects of a probiotic, Lactobacillus rhamnosus GG (LGG), and two novel porcine isolates, Lactobacillus johnsonii strain P47-HY and Lactobacillus reuteri strain P43-HUV, on cyto-protective HSP expression and gut barrier function, were investigated in a porcine IPEC-J2 intestinal epithelial cell line model. The IPEC-J2 cells polarized on a permeable filter exhibited villus-like cell phenotype with development of apical microvilli. Western blot analysis detected HSP expression in IPEC-J2 and revealed that L. johnsonii and L. reuteri strains were able to significantly induce HSP27, despite high basal expression in IPEC-J2, whereas LGG did not. For HSP72, only the supernatant of L. reuteri induced the expression, which was comparable to the heat shock treatment, which indicated that HSP72 expression was more stimulus specific. The protective effect of lactobacilli was further studied in IPEC-J2 under an enterotoxigenic Escherichia coli (ETEC) challenge. ETEC caused intestinal barrier destruction, as reflected by loss of cell-cell contact, reduced IPEC-J2 cell viability and transepithelial electrical resistance, and disruption of tight junction protein zonula occludens-1. In contrast, the L. reuteri treatment substantially counteracted these detrimental effects and preserved the barrier function. L. johnsonii and LGG also achieved barrier protection, partly by directly inhibiting ETEC attachment. Together, the results indicate that specific strains of Lactobacillus can enhance gut barrier function through cytoprotective HSP induction and fortify the cell protection against ETEC challenge through tight junction protein modulation and direct interaction with pathogens.
  •  
11.
  • Liu, Haoyu, et al. (författare)
  • Dietary Fiber in Bilberry Ameliorates Pre-Obesity Events in Rats by Regulating Lipid Depot, Cecal Short-Chain Fatty Acid Formation and Microbiota Composition
  • 2019
  • Ingår i: Nutrients. - : MDPI. - 2072-6643. ; 11:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity is linked to non-alcoholic fatty liver disease and risk factors associated to metabolic syndrome. Bilberry (Vaccinium myrtillus) that contains easily fermentable fiber may strengthen the intestinal barrier function, attenuate inflammation and modulate gut microbiota composition, thereby prevent obesity development. In the current study, liver lipid metabolism, fat depot, cecal and serum short-chain fatty acids (SCFAs) and gut microbiome were evaluated in rats fed bilberries in a high-fat (HFD + BB) or low-fat (LFD + BB) setting for 8 weeks and compared with diets containing equal amount of fiber resistant to fermentation (cellulose, HFD and LFD). HFD fed rats did not obtain an obese phenotype but underwent pre-obesity events including increased liver index, lipid accumulation and increased serum cholesterol levels. This was linked to shifts of cecal bacterial community and reduction of major SCFAs. Bilberry inclusion improved liver metabolism and serum lipid levels. Bilberry inclusion under either LFD or HFD, maintained microbiota homeostasis, stimulated interscapular-brown adipose tissue depot associated with increased mRNA expression of uncoupling protein-1; enhanced SCFAs in the cecum and circulation; and promoted butyric acid and butyrate-producing bacteria. These findings suggest that bilberry may serve as a preventative dietary measure to optimize microbiome and associated lipid metabolism during or prior to HFD.
  •  
12.
  • Liu, Haoyu, et al. (författare)
  • Distinct B cell subsets in Peyer's patches convey probiotic effects by Limosilactobacillus reuteri
  • 2021
  • Ingår i: Microbiome. - : Springer Nature. - 2049-2618. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Intestinal Peyer's patches (PPs) form unique niches for bacteria-immune cell interactions that direct host immunity and shape the microbiome. Here we investigate how peroral administration of probiotic bacterium Limosilactobacillus reuteri R2LC affects B lymphocytes and IgA induction in the PPs, as well as the downstream consequences on intestinal microbiota and susceptibility to inflammation.Results: The B cells of PPs were separated by size to circumvent activation-dependent cell identification biases due to dynamic expression of markers, which resulted in two phenotypically, transcriptionally, and spatially distinct subsets: small IgD(+)/GL7(-)/S1PR1(+)/Bcl6, CCR6-expressing pre-germinal center (GC)-like B cells with innate-like functions located subepithelially, and large GL7(+)/S1PR1(-)/Ki67(+)/Bcl6, CD69-expressing B cells with strong metabolic activity found in the GC. Peroral L. reuteri administration expanded both B cell subsets and enhanced the innate-like properties of pre-GC-like B cells while retaining them in the sub-epithelial compartment by increased sphingosine-1-phosphate/S1PR1 signaling. Furthermore, L. reuteri promoted GC-like B cell differentiation, which involved expansion of the GC area and autocrine TGF beta-1 activation. Consequently, PD-1-T follicular helper cell-dependent IgA induction and production was increased by L. reuteri, which shifted the intestinal microbiome and protected against dextran-sulfate-sodium induced colitis and dysbiosis.Conclusions: The Peyer's patches sense, enhance and transmit probiotic signals by increasing the numbers and effector functions of distinct B cell subsets, resulting in increased IgA production, altered intestinal microbiota, and protection against inflammation.
  •  
13.
  • Liu, Haoyu, et al. (författare)
  • High-Fat Diet Enriched with Bilberry Modifies Colonic Mucus Dynamics and Restores Marked Alterations of Gut Microbiome in Rats
  • 2019
  • Ingår i: Molecular Nutrition & Food Research. - : WILEY. - 1613-4125 .- 1613-4133. ; 63:20
  • Tidskriftsartikel (refereegranskat)abstract
    • Scope Emerging evidence suggests that high-fat diet (HFD) is associated with gut microbiome dysbiosis and related disorders. Bilberry is a prebiotic food component with known health benefits. Herein, the dynamics of the colonic mucus layer and microbiome during HFD and bilberry supplementation are addressed. Methods and results The effects on colonic mucus thickness in vivo and gut microbiota composition (Illumina sequencing, quantitative real-time PCR) are investigated in young rats fed a low-fat diet or HFD with or without bilberries for 8 weeks (n = 8). HFD induced significant local colonic effects, despite no observed weight gain or systemic inflammation, as HFD causes epithelial upregulation of inducible nitric oxide synthase, which is counteracted by bilberry. The firmly adherent mucus layer becomes thicker and the mRNA levels of Muc2 and Tff3 are increased by HFD with or without bilberry. In parallel, HFD reduced the colonic abundance of mucolytic bacterial species Akkermansia muciniphila and Bacteroides spp. Finally, bilberry prevents HFD-induced microbiota dysbiosis, including expansion of pathobionts, for example, Enterobacteriaceae. Conclusion HFD expand firmly adherent mucus thickness and reduce mucus-foraging bacteria populations in the colon prior to obesity. Enriching HFD with bilberry protects against intestinal inflammation and marked microbiota encroachment.
  •  
14.
  •  
15.
  • Pang, Yanhong, et al. (författare)
  • Extracellular membrane vesicles from Limosilactobacillus reuteri strengthen the intestinal epithelial integrity, modulate cytokine responses and antagonize activation of TRPV1
  • 2022
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media S.A.. - 1664-302X. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Bacterial extracellular membrane vesicles (MV) are potent mediators of microbe-host signals, and they are not only important in host-pathogen interactions but also for the interactions between mutualistic bacteria and their hosts. Studies of MV derived from probiotics could enhance the understanding of these universal signal entities, and here we have studied MV derived from Limosilactobacillus reuteri DSM 17938 and BG-R46. The production of MV increased with cultivation time and after oxygen stress. Mass spectrometry-based proteomics analyses revealed that the MV carried a large number of bacterial cell surface proteins, several predicted to be involved in host-bacteria interactions. A 5 '-nucleotidase, which catalyze the conversion of AMP into the signal molecule adenosine, was one of these and analysis of enzymatic activity showed that L. reuteri BG-R46 derived MV exhibited the highest activity. We also detected the TLR2 activator lipoteichoic acid on the MV. In models for host interactions, we first observed that L. reuteri MV were internalized by Caco-2/HT29-MTX epithelial cells, and in a dose-dependent manner decreased the leakage caused by enterotoxigenic Escherichia coli by up to 65%. Furthermore, the MV upregulated IL-1 beta and IL-6 from peripheral blood mononuclear cells (PBMC), but also dampened IFN-gamma and TNF-alpha responses in PBMC challenged with Staphylococcus aureus. Finally, we showed that MV from the L. reuteri strains have an antagonistic effect on the pain receptor transient receptor potential vanilloid 1 in a model with primary dorsal root ganglion cells from rats. In summary, we have shown that these mobile nanometer scale MV reproduce several biological effects of L. reuteri cells and that the production parameters and selection of strain have an impact on the activity of the MV. This could potentially provide key information for development of innovative and more efficient probiotic products.
  •  
16.
  • Pettersson, Ulrika Sofia, et al. (författare)
  • Increased Recruitment but Impaired Function of Leukocytes during Inflammation in Mouse Models of Type 1 and Type 2 Diabetes
  • 2011
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 6:7, s. e22480-
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundPatients suffering from diabetes show defective bacterial clearance. This study investigates the effects of elevated plasma glucose levels during diabetes on leukocyte recruitment and function in established models of inflammation.Methodology/Principal FindingsDiabetes was induced in C57Bl/6 mice by intravenous alloxan (causing severe hyperglycemia), or by high fat diet (moderate hyperglycemia). Leukocyte recruitment was studied in anaesthetized mice using intravital microscopy of exposed cremaster muscles, where numbers of rolling, adherent and emigrated leukocytes were quantified before and during exposure to the inflammatory chemokine MIP-2 (0.5 nM). During basal conditions, prior to addition of chemokine, the adherent and emigrated leukocytes were increased in both alloxan- (62±18% and 85±21%, respectively) and high fat diet-induced (77±25% and 86±17%, respectively) diabetes compared to control mice. MIP-2 induced leukocyte emigration in all groups, albeit significantly more cells emigrated in alloxan-treated mice (15.3±1.0) compared to control (8.0±1.1) mice. Bacterial clearance was followed for 10 days after subcutaneous injection of bioluminescent S. aureus using non-invasive IVIS imaging, and the inflammatory response was assessed by Myeloperoxidase-ELISA and confocal imaging. The phagocytic ability of leukocytes was assessed using LPS-coated fluorescent beads and flow cytometry. Despite efficient leukocyte recruitment, alloxan-treated mice demonstrated an impaired ability to clear bacterial infection, which we found correlated to a 50% decreased phagocytic ability of leukocytes in diabetic mice.Conclusions/SignificanceThese results indicate that reduced ability to clear bacterial infections observed during experimentally induced diabetes is not due to reduced leukocyte recruitment since sustained hyperglycemia results in increased levels of adherent and emigrated leukocytes in mouse models of type 1 and type 2 diabetes. Instead, decreased phagocytic ability observed for leukocytes isolated from diabetic mice might account for the impaired bacterial clearance.
  •  
17.
  • Schreiber, Olof, et al. (författare)
  • iNOS-Dependent Increase in Colonic Mucus Thickness in DSS-Colitic Rats
  • 2013
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:8, s. e71843-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: To investigate colonic mucus thickness in vivo in health and during experimental inflammatory bowel disease. Methods: Colitis was induced with 5% DSS in drinking water for 8 days prior to experiment, when the descending colonic mucosa of anesthetized rats was studied using intravital microscopy. Mucus thickness was measured with micropipettes attached to a micromanipulator. To assess the contributions of NOS and prostaglandins in the regulation of colonic mucus thickness, the non-selective NOS-inhibitor L-NNA (10 mg/kg bolus followed by 3 mg/kg/h), the selective iNOS-inhibitor L-NIL (10 mg/kg bolus followed by 3 mg/kg/h) and the non-selective COX-inhibitor diclofenac (5 mg/kg) were administered intravenously prior to experiment. To further investigate the role of iNOS in the regulation of colonic mucus thickness, iNOS -/- mice were used. Results: Colitic rats had a thicker firmly adherent mucus layer following 8 days of DSS treatment than untreated rats (88 +/- 2 mu m vs 76 +/- 1 mu m). During induction of colitis, the thickness of the colonic mucus layer initially decreased but was from day 3 significantly thicker than in untreated rats. Diclofenac reduced the mucus thickness similarly in colitic and untreated rats (-16 +/- 5 mu m vs -14 +/- 2 mu m). While L-NNA had no effect on colonic mucus thickness in DSS or untreated controls (+3 +/- 2 mm vs +3 +/- 1 mu m), L-NIL reduced the mucus thickness significantly more in colitic rats than in controls (-33 +/- 4 mu m vs -10 +/- 3 mu m). The importance of iNOS in regulating the colonic mucus thickness was confirmed in iNOS-/- mice, which had thinner colonic mucus than wild-type mice (35 +/- 3 mu m vs 50 +/- 2 mu m, respectively). Furthermore, immunohistochemistry revealed increased levels of iNOS in the colonic surface epithelium following DSS treatment. Conclusion: Both prostaglandins and nitric oxide regulate basal colonic mucus thickness. During onset of colitis, the thickness of the mucus layer is initially reduced followed by an iNOS mediated increase.
  •  
18.
  • Sedin, John, 1982-, et al. (författare)
  • High Resolution Intravital Imaging of the Renal Immune Response to Injury and Infection in Mice
  • 2019
  • Ingår i: Frontiers in Immunology. - : Frontiers Media S.A.. - 1664-3224. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • We developed an experimental set up that enables longitudinal studies of immune cell behavior in situ in the challenged as well as unchallenged kidney of anesthetized mice over several hours. Using highly controlled vacuum to stabilize the kidney, the superficial renal cortex could continuously be visualized with minimal disruption of the local microenvironment. No visible changes in blood flow or neutrophils and macrophages numbers were observed after several hours of visualizing the unchallenged kidney, indicating a stable tissue preparation without apparent tissue damage. Applying this set up to monocyte/macrophage (CX(3)CR1(GFP/+)) reporter mice, we observed the extensive network of stellate-shaped CX(3)CR1 positive cells (previously identified as renal mononuclear phagocytes). The extended dendrites of the CX(3)CR1 positive cells were found to bridge multiple capillaries and tubules and were constantly moving. Light induced sterile tissue injury resulted in rapid neutrophil accumulation to the site of injury. Similarly, microinfusion of uropathogenic Escherichia coli into a single nephron induced a rapid and massive recruitment of neutrophils to the site of infection, in addition to active bacterial clearance by neutrophils. In contrast, the kidney resident mononuclear phagocytes were observed to not increase in numbers or migrate toward the site of injury or infection. In conclusion, this model allows for longitudinal imaging of responses to localized kidney challenges in the mouse.
  •  
19.
  • Vågesjö, Evelina, et al. (författare)
  • Perivascular macrophages regulate blood flow following tissue damage
  • 2021
  • Ingår i: Circulation Research. - : Lippincott Williams & Wilkins. - 0009-7330 .- 1524-4571. ; 128:11, s. 1694-1707
  • Tidskriftsartikel (refereegranskat)abstract
    • Rationale: Ischemic injuries remain a leading cause of mortality and morbidity worldwide, and restoration of functional blood perfusion is vital to limit tissue damage and support healing.Objective: To reveal a novel role of macrophages in reestablishment of functional tissue perfusion following ischemic injury that can be targeted to improve tissue restoration.Methods and Results: Using intravital microscopy of ischemic hindlimb muscle in mice, and confocal microscopy of human tissues from amputated legs, we found that macrophages accumulated perivascularly in ischemic muscles, where they expressed high levels of iNOS (inducible nitric oxide [NO] synthase). Genetic depletion of iNOS specifically in macrophages (Cx3cr1-CreERT2;Nos2(fl/fl) or LysM-Cre;Nos2(fl/fl)) did not affect vascular architecture but highly compromised blood flow regulation in ischemic but not healthy muscle, which resulted in aggravated ischemic damage. Thus, the ability to upregulate blood flow was shifted from eNOS (endothelial)-dependence in healthy muscles to completely rely on macrophage-derived iNOS during ischemia. Macrophages in ischemic muscles expressed high levels of CXCR4 (C-X-C chemokine receptor type 4) and CCR2 (C-C chemokine receptor type 2), and local overexpression by DNA plasmids encoding the corresponding chemokines CXCL12 (stromal-derived factor 1) or CCL2 (chemokine [C-C motif] ligand 2) increased macrophage numbers, while CXCL12 but not CCL2 induced their perivascular positioning. As a result, CXCL12-overexpression increased the number of perfused blood vessels in the ischemic muscles, improved functional muscle perfusion in a macrophage-iNOS-dependent manner, and ultimately restored limb function.Conclusions: This study establishes a new function for macrophages during tissue repair, as they regulate blood flow through the release of iNOS-produced NO. Further, we demonstrate that macrophages can be therapeutically targeted to improve blood flow regulation and functional recovery of ischemic tissues.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-19 av 19
Typ av publikation
tidskriftsartikel (17)
annan publikation (1)
konferensbidrag (1)
Typ av innehåll
refereegranskat (17)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Ahl, David (18)
Holm, Lena (10)
Phillipson, Mia, 197 ... (9)
Roos, Stefan (6)
Phillipson, Mia (6)
Liu, Haoyu (5)
visa fler...
Bertilsson, Stefan (3)
Sedin, John, 1982- (3)
Seignez, Cedric (3)
Christoffersson, Gus ... (3)
Jonsson, Hans (3)
Teleki, Alexandra (2)
Schreiber, Olof (2)
Nyman, Margareta (2)
Asad, Shno (2)
Korsgren, Olle (1)
Erdelyi, Mate, 1975 (1)
Sundbom, Magnus (1)
Lundh, Torbjörn (1)
Lindberg, Jan Erik (1)
Essand, Magnus (1)
Li, Hao, 1984- (1)
Wallen, H (1)
Ahl, Linda Marie, 19 ... (1)
Helenius, Ola, 1970 (1)
Thålin, C (1)
Eriksson, Olle (1)
Schwan, Emil (1)
Kreuger, Johan, 1972 ... (1)
Artursson, Per (1)
Rundqvist, H (1)
Persson, A. Erik G. (1)
Webb, Dominic-Luc (1)
Hellström, Per M., 1 ... (1)
Al-Saffar, Anas Kh. ... (1)
Richter-Dahlfors, Ag ... (1)
Bergström, Christel ... (1)
Jansson, Leif (1)
Sandler, Stellan (1)
Suárez-López, Yael d ... (1)
Melican, Keira (1)
Dicksved, Johan (1)
Pin, Carmen (1)
Wegler, Christine (1)
Sverremark-Ekström, ... (1)
Herrera Hidalgo, Car ... (1)
Sellin, Mikael E. (1)
Carding, Simon R. (1)
Pang, Yanhong (1)
Vågesjö, Evelina (1)
visa färre...
Lärosäte
Uppsala universitet (18)
Sveriges Lantbruksuniversitet (6)
Karolinska Institutet (3)
Lunds universitet (2)
Göteborgs universitet (1)
Stockholms universitet (1)
Språk
Engelska (19)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (12)
Naturvetenskap (8)
Teknik (1)
Lantbruksvetenskap (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy