SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ahmed Kazi Matin) "

Sökning: WFRF:(Ahmed Kazi Matin)

  • Resultat 1-21 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lozano, Rafael, et al. (författare)
  • Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • Ingår i: The Lancet. - : Elsevier. - 1474-547X .- 0140-6736. ; 392:10159, s. 2091-2138
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Efforts to establish the 2015 baseline and monitor early implementation of the UN Sustainable Development Goals (SDGs) highlight both great potential for and threats to improving health by 2030. To fully deliver on the SDG aim of “leaving no one behind”, it is increasingly important to examine the health-related SDGs beyond national-level estimates. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017), we measured progress on 41 of 52 health-related SDG indicators and estimated the health-related SDG index for 195 countries and territories for the period 1990–2017, projected indicators to 2030, and analysed global attainment. Methods: We measured progress on 41 health-related SDG indicators from 1990 to 2017, an increase of four indicators since GBD 2016 (new indicators were health worker density, sexual violence by non-intimate partners, population census status, and prevalence of physical and sexual violence [reported separately]). We also improved the measurement of several previously reported indicators. We constructed national-level estimates and, for a subset of health-related SDGs, examined indicator-level differences by sex and Socio-demographic Index (SDI) quintile. We also did subnational assessments of performance for selected countries. To construct the health-related SDG index, we transformed the value for each indicator on a scale of 0–100, with 0 as the 2·5th percentile and 100 as the 97·5th percentile of 1000 draws calculated from 1990 to 2030, and took the geometric mean of the scaled indicators by target. To generate projections through 2030, we used a forecasting framework that drew estimates from the broader GBD study and used weighted averages of indicator-specific and country-specific annualised rates of change from 1990 to 2017 to inform future estimates. We assessed attainment of indicators with defined targets in two ways: first, using mean values projected for 2030, and then using the probability of attainment in 2030 calculated from 1000 draws. We also did a global attainment analysis of the feasibility of attaining SDG targets on the basis of past trends. Using 2015 global averages of indicators with defined SDG targets, we calculated the global annualised rates of change required from 2015 to 2030 to meet these targets, and then identified in what percentiles the required global annualised rates of change fell in the distribution of country-level rates of change from 1990 to 2015. We took the mean of these global percentile values across indicators and applied the past rate of change at this mean global percentile to all health-related SDG indicators, irrespective of target definition, to estimate the equivalent 2030 global average value and percentage change from 2015 to 2030 for each indicator. Findings: The global median health-related SDG index in 2017 was 59·4 (IQR 35·4–67·3), ranging from a low of 11·6 (95% uncertainty interval 9·6–14·0) to a high of 84·9 (83·1–86·7). SDG index values in countries assessed at the subnational level varied substantially, particularly in China and India, although scores in Japan and the UK were more homogeneous. Indicators also varied by SDI quintile and sex, with males having worse outcomes than females for non-communicable disease (NCD) mortality, alcohol use, and smoking, among others. Most countries were projected to have a higher health-related SDG index in 2030 than in 2017, while country-level probabilities of attainment by 2030 varied widely by indicator. Under-5 mortality, neonatal mortality, maternal mortality ratio, and malaria indicators had the most countries with at least 95% probability of target attainment. Other indicators, including NCD mortality and suicide mortality, had no countries projected to meet corresponding SDG targets on the basis of projected mean values for 2030 but showed some probability of attainment by 2030. For some indicators, including child malnutrition, several infectious diseases, and most violence measures, the annualised rates of change required to meet SDG targets far exceeded the pace of progress achieved by any country in the recent past. We found that applying the mean global annualised rate of change to indicators without defined targets would equate to about 19% and 22% reductions in global smoking and alcohol consumption, respectively; a 47% decline in adolescent birth rates; and a more than 85% increase in health worker density per 1000 population by 2030. Interpretation: The GBD study offers a unique, robust platform for monitoring the health-related SDGs across demographic and geographic dimensions. Our findings underscore the importance of increased collection and analysis of disaggregated data and highlight where more deliberate design or targeting of interventions could accelerate progress in attaining the SDGs. Current projections show that many health-related SDG indicators, NCDs, NCD-related risks, and violence-related indicators will require a concerted shift away from what might have driven past gains—curative interventions in the case of NCDs—towards multisectoral, prevention-oriented policy action and investments to achieve SDG aims. Notably, several targets, if they are to be met by 2030, demand a pace of progress that no country has achieved in the recent past. The future is fundamentally uncertain, and no model can fully predict what breakthroughs or events might alter the course of the SDGs. What is clear is that our actions—or inaction—today will ultimately dictate how close the world, collectively, can get to leaving no one behind by 2030.
  •  
2.
  • Bhattacharya, Prosun, 1962-, et al. (författare)
  • Prevalence of SARS-CoV-2 in Communities Through Wastewater Surveillance—a Potential Approach for Estimation of Disease Burden
  • 2021
  • Ingår i: Current Pollution Reports. - : Springer Nature. - 2198-6592. ; 7:2, s. 160-166
  • Tidskriftsartikel (refereegranskat)abstract
    • The episodic outbreak of COVID-19 due to SARS-CoV-2 is severely affecting the economy, and the global count of infected patients is increasing. The actual number of patients had been underestimated due to limited facilities for testing as well as asymptomatic nature of the expression of COVID-19 on individual basis. Tragically, for emerging economies with high population density, the situation has been more complex due to insufficient testing facilities for diagnosis of the disease. However, the recent reports about persistent shedding of viral RNA of SARS-CoV-2 in the human feces have created a possibility to track the prevalence and trends of the disease in communities, known as wastewater-based epidemiology (WBE). In this article, we highlight the current limitations and future prospects for WBE to manage pandemics.
  •  
3.
  •  
4.
  • Alam, M.S., et al. (författare)
  • Controls of sedimentary facies on arsenic mobilization in shallow aquifers of the Matlab North Upazila, southeastern Bangladesh
  • 2013
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Groundwater extracted from shallow (<100 m bgl) Holocene alluvial aquifers, is the primary source of drinking water in Matlab North Upazila, Southeast Bangladesh. The distribution of lithofacies and its relation to hydrochemistry in such heterogeneous deposits are of fundamental importance for the analysis of groundwater quality. Aquifer sediment samples were collected from 48 locations throughout the study area. Lithofacies distribution was characterized using grain size and sediment colors. Channel fills (sandy) and over bank (silt-clay) deposits the two main lithofacies groups, were identified. These sandy deposits represent an active meandering river or channel fills sediment sequence, which are usually capped by silts and clays of an over bank sediment sequence. All the collected sediments samples were generalized and subdivided based on four distinct color variations, such as Black, White, Off-white, and Red according to Munsell color chart and water-well drillers’ perception.Mineral compositions showed variability with the sediment color and grain size. Red and off-white sediments contain fewer amounts of metastable minerals (hornblende, actinolite, kyanite and pyroxenes etc.) than that of black sediments, whereas black sediments contain higher amount of biotite. The relatively high content of biotite and other dark colored ferromagnesian minerals are responsible for the black and grayish color of these sediments. Ferruginous coating on silicates, particularly on quartz grains, gives the red and off-white coloration. Based on the available information regarding sediment colors of aquifers in which tubewell screens were placed, 44 domestic hand pumped tubewells (HTWs) were selected for water sampling. The groundwater abstracted from black sediments of shallow aquifer showed higher concentrations in DOC (median: 5.81 mg/L), dissolved NH4+ (median: 3.47 mg/L), PO43- (median: 1.36 mg/L), Fe (median: 4.87 mg/L), As (median: 252.53 μg/L) and relatively low Mn (median: 0.54 mg/L) and SO42-(median: 0.59 mg/L) concentrations, whereas groundwater abstracted from off-white and red sediments of shallow aquifer showed lower concentrations in DOC (median: 1.95 and 1.71 mg/L, respectively), dissolved NH4+ (median: 0), PO43- (median: 0.14 and 0.04 mg/L, respectively), Fe (median: 2.25 and 0.63 mg/L, respectively), As (median: 17.36 and 15.05 μg/L, respectively) and relatively high Mn+2 (median: 1.12 and 1.15 mg/L, respectively) and SO42- (median: 0.79 and 0.78 mg/L, respectively) concentrations. The water samples collected from black sediments (median Eh: 211 mV) indicated most reducing environment, followed by white (median Eh: 227 mV), whereas off-white and red sediments (median Eh: 268 and 274 mV) signified less reducing environment. The study supports that the sediment colors in shallow aquifer can be a reliable indicator of high and low-As concentrations and can be a useful tool for local drillers to target arsenic safe aquifers.
  •  
5.
  • Annaduzzaman, Md., et al. (författare)
  • Tubewell platform color : A low-cost and rapid screening tool for arsenic and manganese in drinking water
  • 2013
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Presence of high level of geogenic arsenic (As) in groundwater is one of the major and adverse drinking water quality problem all over the world, especially in Southeast Asia, where groundwater is the prominent drinking water source. Bangladesh is already considered as one of the most As affected territories, where As contamination in the groundwater is key environmental disasters. Recently besides As, presence of high level of manganese (Mn) in drinking water has also got attention due to its neurological effect on children. It becomes very essential to formulate a reliable safe drinking water management policy to reduce the health threat caused by drinking As and Mn contained groundwater. The development of a simple low cost technique for the determination of As and Mn in drinking water wells is an important step to formulate this policy. The aim of this study was to evaluate the potentiality of tubewell platform color as low-cost, quick and convenient screening tool for As and Mn in drinking water wells (n=272) in a highly arsenic affected area on Matlab, Southeastern Bangladesh.The result shows strong correlation between the development of red color stain on tubewell platform and As enrichment in the corresponding tubewell water compared to WHO drinking water guideline (10 μg/L) as well as Bangladesh drinking water standard (BDWS) (50 μg/L), with certainty values of 98.7% and 98.3% respectively. The sensitivity and efficiency of red colored platforms to screen high As water in tubewells are 98% and 97% respectively at 10 μg/L, whereas at cut-off level of 50μg/L both sensitivity and efficiency values are 98%. This study suggests that red colored platform could be potentially used for primary identification of tubewells with elevated level of As and thus could prioritise sustainable As mitigation management in developing countries. Due to lack of tubewells with black colored platform in the study area, the use of platform color concept for screening of Mn enriched water in the wells have not been tested significantly, which requires further study.Acknowledgements: This study was carried out with support from the Liuuaeus-Palme Academic Exchange Programme supported by International Programs Office (IPK) and the KTH led joint collaborative action research project on Sustainable Arsenic Mitigation- SASMIT (Sid Contribution 750000854).
  •  
6.
  • Bhattacharya, Prosun, 1962-, et al. (författare)
  • Arsenic in Groundwater of Bangladesh : Options for Safe Drinking Water
  • 2010
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • The study was undertaken in order to find and scientifically validate the options for arsenic safewater in Bangladesh. The study has been carried out in a geological province where most of theshallow wells have arsenic above the allowable limit for drinking water according to Bangladeshstandard. The original study plan has been modified as newer information on arsenic mobilisationand mitigation was available. Accordingly the emphasis on dug well and arsenic removal filter hadbeen shifted to other options such as geologically targeted aquifers. Also at the same time therehas been collaboration with number of other projects been carried out in and around the studyarea. Eventually the main focus of the research was shifted to capacity development in order toenhance the local capability for finding safer sources drinking water in the study area and othersimilar environments in the country.
  •  
7.
  • Bhattacharya, Prosun, et al. (författare)
  • Temporal and seasonal variability of arsenic in drinking water wells in Matlab, southeastern Bangladesh : A preliminary evaluation on the basis of a 4 year study
  • 2011
  • Ingår i: Journal of Environmental Science and Health. Part A. - : Informa UK Limited. - 1093-4529 .- 1532-4117. ; 46:11, s. 1177-1184
  • Tidskriftsartikel (refereegranskat)abstract
    • Temporal and seasonal variability of As concentrations in groundwater were evaluated in As-affected areas of Matlab, southeastern Bangladesh. Groundwater samples from 61 randomly selected tubewells were analyzed for As concentrations over a period of three years and four months (from July 2002 to November 2005) and monitored seasonally (three times a year). The mean As concentrations in the sampled tubewells decreased from 153 to 123 mu g/L during July 2002 to November 2005. Such changes were pronounced in tubewells with As concentration >50 mu g/L than those with As concentrations <50 mu g/L. Similarly, individual wells revealed temporal variability, for example some wells indicated a decreasing trend, while some other wells indicated stable As concentration during the monitoring period. The mean As concentrations were significantly higher in Matlab North compared with Matlab South. The spatial variations in the mean As concentrations may be due to the differences in local geological conditions and groundwater flow patterns. The variations in mean As concentrations were also observed in shallow (<40 m) and deep (>40 m) wells. However, to adequately evaluate temporal and seasonal variability of As concentration, it is imperative to monitor As concentrations in tubewells over a longer period of time. Such long-term monitoring will provide important information for the assessment of human health risk and the sustainability of safe drinking water supplies.
  •  
8.
  • Hasan, Md. Aziz, 1960-, et al. (författare)
  • Geochemistry and mineralogy of shallow alluvial aquifers in Daudkandi upazila in the Meghna flood plain, Bangladesh
  • 2009
  • Ingår i: Environmental Geology. - : Springer Science and Business Media LLC. - 0943-0105 .- 1432-0495. ; 57:3, s. 499-511
  • Tidskriftsartikel (refereegranskat)abstract
    • The shallow alluvial aquifers of the delta plains and flood plains of Bangladesh, comprises about 70% of total land area are mostly affected by elevated concentrations of arsenic (As) in groundwater exposing a population of more than 35 million to As toxicity. Geochemical studies of shallow alluvial aquifer in the Meghna flood plain show that the uppermost yellowish grey sediment is low in As (1.03 mg/kg) compared to the lower dark grey to black sediment (5.24 mg/kg) rich in mica and organic matter. Sequential extraction data show that solid phase As bound to poorly crystalline and amorphous metal (Fe, Mn, Al)-oxyhydroxides is dominant in the grey to dark grey sediment and reaches its maximum level (3.05 mg/kg) in the mica rich layers. Amount of As bound to sulphides and organic matter also peaks in the dark grey to black sediment. Vertical distributions of major elements determined by X-ray fluorescence (XRF) show that iron (Fe2O3), aluminum (Al2O3) and manganese (MnO) follow the general trend of distribution of As in the sediments. Concentrations of As, Mn, Fe, HCO3 (-), SO4 (2-) and NO3 (-) in groundwater reflect the redox status of the aquifer and are consistent with solid phase geochemistry. Mineralogical analysis by X-ray diffraction (XRD) and scanning electron microscopy (SEM) fitted with energy dispersive X-ray spectrometer (EDS) revealed dominance of crystalline iron oxides and hydroxides like magnetite, hematite and goethite in the oxidised yellowish grey sediment. Amorphous Fe-oxyhydroxides identified as grain coating in the mica and organic matter rich sediment suggests weathering of biotite is playing a critical role as the source of Fe(III)-oxyhydroxides which in turn act as sink for As. Presence of authigenic pyrite in the dark grey sediment indicates active reduction in the aquifer.
  •  
9.
  • Hasan, M. Aziz, et al. (författare)
  • Geological controls on groundwater chemistry and arsenic mobilization : Hydrogeochemical study along an E-W transect in the Meghna basin, Bangladesh
  • 2009
  • Ingår i: Journal of Hydrology. - : Elsevier BV. - 0022-1694 .- 1879-2707. ; 378:1-2, s. 105-118
  • Tidskriftsartikel (refereegranskat)abstract
    • Hydrogeochemical investigations along an E-W transect in the middle Meghna basin show groundwater chemistry and redox condition vary considerably with the change in geology. Groundwater in the Holocene shallow (< 150 m bgl) alluvial aquifer in western part of the transect is affected by high arsenic concentration (As > 10 mu g/l) and salinity. On the other hand, groundwater from the Pliocene Dupi Tila sandy aquifer in the eastern part is fresh and low in As (< 10 mu g/l). The Holocene shallow aquifers are high in dissolved As. HCO3-, Fe and dissolved organic carbon (DOC), but generally low in SO2- and NO3-. High HCO3- concentrations (250-716 mg/l) together with high DOC concentrations (1.4-21.7 mg/l) in these aquifers reflect active sources of degradable natural organic matter that drives the biogeochemical process. There is generally de-coupling of As from other redox-sensitive elements. In contrast, the Pliocene aquifers are low in As, HCO3- and DOC. Molar ratio of HCO3-/H4SiO4 suggests that silicate weathering is dominant in the deeper Holocene aquifers and in the Pliocene aquifers. Molar ratios of Cl-/HCO3- and Na+/Cl- suggest mixing of relict seawater with the fresh water as the origin of groundwater salinity. Speciation calculations show that saturation indices for siderite and rhodochrosite vary significantly between the Holocene and Pliocene aquifers. Stable isotopes (delta H-2 and delta O-18) in groundwater indicate rapid infiltration without significant effects of evaporation. The isotopic data also indicates groundwater recharge from monsoonal precipitation with some impact of altitude effect at the base of the Tripura Hills in the east. The results of the study clearly indicate geological control (i.e. change in lithofacies) on groundwater chemistry and distribution of redox-sensitive elements such as As along the transect.
  •  
10.
  •  
11.
  • Hossain, Mohammed, 1960-, et al. (författare)
  • A potential source of low-manganese, arsenic-safe drinking water from Intermediate Deep Aquifers (IDA), Bangladesh
  • 2023
  • Ingår i: GROUNDWATER FOR SUSTAINABLE DEVELOPMENT. - : Elsevier BV. - 2352-801X. ; 21
  • Tidskriftsartikel (refereegranskat)abstract
    • Elevated manganese (Mn) concentration in many drinking water tubewells in Bangladesh has made access to safe drinking water more critical despite providing arsenic (As) safe water to millions of people after decades of efforts to achieve latter. This study evaluates the potential of the Intermediate Deep Aquifer (IDA) in the Matlab area of Bangladesh as a source of As-safe and low-Mn groundwater. Based on observations from depth-specific piezometer nests, drinking water tubewells were installed at a targeted depth of 120 m in the Matlab region, an As-hot spot in the country. Water chemistry analysis of 243 Intermediate Deep Tubewells (IDTW) provided promising results which support the strategy of exploiting the IDA as a safe source for drinking water tubewells. Arsenic, manganese and other trace elements, along with the major ions, were analyzed by high-precision ICP-OES and ion chromatography. The Bangladesh drinking water standard for As (50 mu g/L) was exceeded only in 3 wells (1%) while 99% (n = 240) of the wells were found to be safe. More than 91% (n = 222) were within the WHO guideline value of 10 mu g/L. For Mn, 89% (n = 217) of the wells showed the concentration within or below the former WHO guideline value of 0.4 mg/L with a mean and median value of 0.18 and 0.07 mg/L respectively. Similar high permeability sand units at this depth range, if available could be targeted by the local tubewell drillers for tapping water at half the cost of deep tubewell installation, which will be quite encouraging for the local community, considering their affordability for installation of As-safe and low-Mn drinking water tubewells. This study's results could also be important for other relevant stakeholders, including the policy makers, implementing agencies and the water sector development partners, as well as water supply projects elsewhere in the world with similar hydrogeological settings.
  •  
12.
  •  
13.
  •  
14.
  • Hossain, Mohammed, et al. (författare)
  • Sediment color tool for targeting arsenic-safe aquifers for the installation of shallow drinking water tubewells
  • 2014
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 493, s. 615-625
  • Tidskriftsartikel (refereegranskat)abstract
    • In rural Bangladesh, drinking water supply mostly comes from shallow hand tubewells installed manually by the local drillers, the main driving force in tubewell installation. This study was aimed at developing a sediment color tool on the basis of local driller's perception of sediment color, arsenic (As) concentration of tubewell waters and respective color of aquifer sediments. Laboratory analysis of 521 groundwater samples collected from 144 wells during 2009 to 2011 indicate that As concentrations in groundwater were generally higher in the black colored sediments with an average of 239 mu g/L. All 39 wells producing water from red sediments provide safe water following the Bangladesh drinking water standard for As (50 mu g/L) where mean and median values were less than the WHO guideline value of 10 mu g/L. Observations for off-white sediments were also quite similar. White sediments were rare and seemed to be less important for well installations at shallow depths. A total of 2240 sediment samples were collected at intervals of 1.5 m down to depths of 100 m at 15 locations spread over a 410 km(2) area in Matlab, Bangladesh and compared with the Munsell Color Chart with the purpose of direct comparison of sediment color in a consistent manner. All samples were assigned with Munsell Color and Munsell Code, which eventually led to identify 60 color shade varieties which were narrowed to four colors (black, white, off-white and red) as perceived and used by the local drillers. During the process of color grouping, participatory approach was considered taking the opinions of local drillers, technicians, and geologists into account. This simplified sediment color tool can be used conveniently during shallow tubewell installation and thus shows the potential for educating local drillers to target safe aquifers on the basis of the color characteristics of the sediments.
  •  
15.
  • Hossain, Mohammad, et al. (författare)
  • Strategic approach for up-scaling safe water access considering hydrogeological suitability and social mapping in Matlab, southeastern Bangladesh
  • 2013
  • Konferensbidrag (refereegranskat)abstract
    • In recent years, there has been a significant progress in understanding the source and mobilization process, sediment-water interactions, and distributions of arsenic in groundwater environment in Bangladesh. However, the impacts of arsenic mitigation are still very limited. A social survey conducted during 2009-2011 in 96 villages in Matlab revealed that only 18% of total tubewells provide As-safe water. The safe water access also varied between 0 and 90 percent in the region due to lack of knowledge about the local geology and unplanned tubewell development. SASMIT, an initiative of KTH-International Groundwater Arsenic Research Group has developed a method for safe tubewell installation considering hydrogeological suitability, safe water access and other relevant social and demographic information into account.Piezometers installed at 15 locations over an area of 410 km2, using local boring techniques allowed to delineate the hydrostratigraphy, characterize the aquifers in terms of sediment characteristics, water chemistry and hydraulic head distribution, which ultimately led to the identification of the suitable aquifers for tapping safe water. The piezometer locations with safe drinking water quality were then targeted for safe well installation based on the determination of safe buffer distances in a cluster of a few villages (mouzas). Social mapping of all the villages within the mauzas were done using GIS to evaluate the availability of safe water options for a cluster of households (bari). For safe well installations, priority was given to regions with safe water access, greater number of beneficiaries especially in poor households, and easy access to the site from a cluster of households. Through this approach, it was thus possible to make 95% of the newly installed wells As-safe thus scaled up the safe water access upto 40% in some mauzas. Thus the as a strategy to improve safe water access, the SASMIT study recommends investigating the hydrogeological suitability through installation of few piezometers with a minimum effort and based on the results the implementation plan can be made using GIS based social mappings for relatively uniform distribution and to maximize the safe water access.
  •  
16.
  • Kibria, M.G., et al. (författare)
  • Arsenic mitigation by developing a tool based on gray and brown sediment solid phase characterization
  • 2013
  • Konferensbidrag (refereegranskat)abstract
    • Arsenic (As) poses the greatest hazard towards drinking water quality in Bangladesh. Tubewell drinking water is one of the main sources for household based water options in rural Bangladesh. Our study area is in Matlab Upazila, in Bangladesh. The local drillers in this area are the only ones who have been utilized by the community to identify safe aquifer depths. The overall objective of this and the SASMIT project is to develop a community based initiative for sustainable As mitigation by developing a sediment color based tool for the local drillers prioritizing on the hydrogeological and geochemical investigations as to (a) why red/brown to off-white sediments produces As-safe water but contains high Mn; (b) as to why light gray sediment produce low As and Mn free water; and (c) why dark gray sediments produce high As bearing water. Shallow tubewells excepting those installed within off-white sediments are mostly contaminated with high As. High Mn in many wells is also an additional problem in some shallow aquifer depths. In our field studies we find the wells installed within light grey medium sand the As concentration was found below 50μg/L and Mn is within WHO guideline value of 0.4 mg/L.This study focuses on the adsorption behavior of oxidized reddish-red-brown sediments from Matlab region, and their capacity to attenuate As. Sediment extractions indicate a relatively low amount of As in the oxidized sediments. Reductive dissolution of Fe(III)-oxyhydroxides and release of its adsorbed As is considered to be the principal mechanism responsible for mobilization of As. Groundwater abstracted from oxidized reddish sediments, in contrast to reducing grayish sediments, contains significantly lower amount of dissolved As and can be a source of safe water. This study describes the lithofacies, mineralogy and results of adsorption experiments on the sediments within ~85m depth and establishes a relationship between aqueous and solid phase geochemistry along these intermediate depths of the aquifer.Core samples have been analyzed by petrographic microscopy, microtopography and distribution of elements within sediment grains by FESEM-EDX and clay and bulk mineralogy by XRD. Synchrotron aided μXANES and μXRD studies conducted for solid state As speciation (As3+ and As5+) in different depth core samples. The projected outcome is to incorporate detailed sediment characteristics of the different aquifers including all possible color variations available in the exploited intermediate depths within Matlab. This study would have a wider implication towards a broader scale regional remediation project that incorporates the enquiry of efficiency of sediment color as a simple and easy tool for identifying safe aquifers in major As risk prone areas. Knowing sediments more accurately would also enrich and strengthen the field based tools for identifying As-safe and As-Mn safe aquifers for tubewell installation.
  •  
17.
  • Maity, Jyoti Prakash, et al. (författare)
  • Arsenic-enriched groundwaters of India, Bangladesh and Taiwan-Comparison of hydrochemical characteristics and mobility constraints
  • 2011
  • Ingår i: Journal of Environmental Science and Health. Part A. - : Informa UK Limited. - 1093-4529 .- 1532-4117. ; 46:11, s. 1163-1176
  • Tidskriftsartikel (refereegranskat)abstract
    • Arsenic (As) enrichment in groundwater has become a major global environmental disaster. Groundwater samples were collected from 64 sites located in the districts of 24-Parganas (S), and Nadia in West Bengal, India (Bhagirathi sub-basin), and 51 sites located in the districts of Comilla, Noakhali, Magura, Brahman baria, Laxmipur, Munshiganj, Faridpur and Jhenaida in Bangladesh (Padma-Meghna sub-basin). Groundwater samples were also collected from two As-affected areas (Chianan and Lanyang plains) of Taiwan (n = 26). The concentrations of major solutes in groundwater of the Padma-Meghna sub-basin are more variable than the Bhagirathi sub-basin, suggesting variations in the depositional and hydrological settings. Arsenic concentrations in groundwaters of the studied areas showed large variations, with mean As concentrations of 125 mu g/L (range: 0.20 to 1,301 mu g/L) in Bhagirathi sub-basin, 145 mu g/L (range: 0.20 to 891 mu g/L) in Padma-Meghna sub-basin, 209 mu g/L (range: 1.3 to 575 mu g/L) in Chianan plain, and 102 mu g/L (range: 2.5 to 348 mu g/L) in Lanyang plain groundwater. The concentrations of Fe, and Mn are also highly variable, and are mostly above the WHO-recommended guideline values and local (Indian and Bangladeshi) drinking water standard. Piper plot shows that groundwaters of both Bhagirathi and Padma-Meghna sub-basins are of Ca-HCO(3) type. The Chianan plain groundwaters are of Na-Cl type, suggesting seawater intrusion, whereas Lanyang plain groundwaters are mostly of Na-HCO(3) type. The study shows that reductive dissolution of Fe(III)-oxyhydroxides is the dominant geochemical process releasing As from sediment to groundwater in all studied areas.
  •  
18.
  • Mukherjee, Abhijit, et al. (författare)
  • Hydrogeochemical comparison and effects of overlapping redox zones on groundwater arsenic near the Western (Bhagirathi sub-basin, India) and Eastern (Meghna sub-basin, Bangladesh) margins of the Bengal Basin
  • 2008
  • Ingår i: Journal of Contaminant Hydrology. - : Elsevier BV. - 0169-7722 .- 1873-6009. ; 99:1-4, s. 31-48
  • Tidskriftsartikel (refereegranskat)abstract
    • Although arsenic (As) contamination of groundwater in the Bengal Basin has received wide attention over the past decade, comparative studies of hydrogeochemistry in geologically different sub-basins within the basin have been lacking. Groundwater samples were collected from sub-basins in the western margin (River Bhagirathi sub-basin, Nadia, India; 90 samples) and eastern margin (River Meghna sub-basin; Brahmanbaria, Bangladesh; 35 samples) of the Bengal Basin. Groundwater in the western site (Nadia) has mostly Ca-HCO3 water while that in the eastern site (Brahmanbaria) is much more variable consisting of at least six different facies. The two sites show differences in major and minor solute trends indicating varying pathways of hydrogeochemical evolution However, both sites have similar reducing, postoxic environments, (p(e): +5 to -2) with high concentrations of dissolved organic carbon, indicating dominantly metal-reducing processes and similarity in As mobilization mechanism. The trends of SO42- various redox-sensitive solutes (e.g. As, CH4, Fe, Mn, NO3-, NH4+, SO42-) indicate overlapping redox zones, leading to partial redox equilibrium conditions where As, once liberated from source minerals, would tend to remain in solution because of the complex interplay among the electron acceptors.
  •  
19.
  •  
20.
  • von Brömssen, Mattias, et al. (författare)
  • Geochemical characterisation of shallow aquifer sediments of Matlab Upazila, Southeastern Bangladesh - Implications for targeting low-As aquifers
  • 2008
  • Ingår i: Journal of Contaminant Hydrology. - : Elsevier BV. - 0169-7722 .- 1873-6009. ; 99:1-4, s. 137-149
  • Tidskriftsartikel (refereegranskat)abstract
    • High arsenic (As) concentrations in groundwater pose a serious threat to the health of millions of people in Bangladesh. Reductive dissolution of Fe(Ill)-oxyhydroxides and release of its adsorbed As is considered to be the principal mechanism responsible for mobilisation ofAs. The distribution ofAs is extremely heterogeneous both laterally and vertically. Groundwater abstracted from oxidised reddish sediments, in contrast to greyish reducing sediments, contains significantly lower amount of dissolved arsenic and can be a source of safe water. In order to study the sustainability of that mitigation option, this study describes the lithofacies and genesis of the sediments within 60 m depth and establishes a relationship between aqueous and solid phase geochemistry. Oxalate extractable Fe and Mn contents are higher in the reduced unit than in the oxidised unit, where Fe and Mn are present in more crystalline mineral phases. Equilibrium modelling of saturation indices suggest that the concentrations of dissolved Fe, Mn and PO43--tot in groundwater is influenced by 4 secondary mineral phases in addition to redox processes. Simulating As-[I] adsorption on hydroferric oxides using the Diffuse Layer Model and analytical data gave realistic concentrations of dissolved and adsorbed As-[I] for the reducing aquifer and we speculate that the presence of high PO43--tot in combination with reductive dissolution results in the high-As groundwater. The study confirms high mobility of As in reducing aquifers with typically dark colour of sediments found in previous studies and thus validates the approach for location of wells used by local drillers based on sediment colour. A more systematic and standardised colour description and similar studies at more locations are necessary for wider application of the approach.
  •  
21.
  • von Brömssen, Martin, et al. (författare)
  • Hydrogeological investigation for assessment of the sustainability of low-arsenic aquifers as a safe drinking water source in regions with high-arsenic groundwater in Matlab, southeastern Bangladesh
  • 2014
  • Ingår i: Journal of Hydrology. - : Elsevier BV. - 0022-1694 .- 1879-2707. ; 518:C, s. 373-392
  • Tidskriftsartikel (refereegranskat)abstract
    • Exploitation of groundwater from shallow, high prolific Holocene sedimentary aquifers has been a main element for achieving safe drinking water and food security in Bangladesh. However, the presence of elevated levels of geogenic arsenic (As) in these aquifers has undermined this success. Except for targeting safe aquifers through installations of tubewells to greater depth, no mitigation option has been successfully implemented on a larger scale. The objective of this study has been to characterise the hydrostratigraphy, groundwater flow patterns, the hydraulic properties to assess the sustainability of the low-arsenic aquifers at Matlab, in south-eastern Bangladesh, one of the worst arsenic-affected areas of Bangladesh. Combining groundwater modelling with monitoring hydraulic heads in multi-level piezometer tests, 14C-dating of groundwater, conventional hydraulic testing and assessment of groundwater abstraction rate proved to be a useful strategy. A model comprising of three aquifers covering the top 250 m of the model domain showed to best fit the evaluation criteria for calibration. Matlab is a recharge area, even though it is adjacent to the great Meghna River. Irrigation wells are placed in clusters and account for most of the groundwater abstraction. Even though the hydraulic heads are affected locally by seasonal pumping, the aquifer system is fully recharged during and after the monsoon period. Groundwater simulations demonstrated the presence of deep regional and horizontal flow systems with recharge areas in the eastern, hilly part of Bangladesh and shallow small local flow systems driven by local topography. Based on modelling and 14C groundwater data, it can be concluded that the natural local flow systems reach a depth of 30 m b.g.l. in the study area. A downwardvertical gradient of roughly 0.01 down to 200 m b.g.l. was observed and reproduced bycalibrated models. The vertical gradient is mainly the result of the aquifer system and-properties rather than abstraction rate, which is too limited at depth to make an imprint. Although irrigation wells substantially change local flow pattern, targeting low-As aquifers seems to be a suitable mitigation option for providing people with safe drinkingwater. However, installing new irrigation- or high capacity production wells at the same depth is strongly discouraged as these substantially change the groundwater flow pattern. The results from the present study and other similar studies can further contribute to develop a rational management and mitigation policy for the future use of the groundwater resources for drinking water supplies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-21 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy