SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ala Aho P.) "

Sökning: WFRF:(Ala Aho P.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bertrand, G., et al. (författare)
  • Environmental tracers and indicators bringing together groundwater, surface water and groundwater-dependent ecosystems : importance of scale in choosing relevant tools
  • 2014
  • Ingår i: Environmental Earth Sciences. - : Springer Science and Business Media LLC. - 1866-6280 .- 1866-6299. ; 72:3, s. 813-827
  • Tidskriftsartikel (refereegranskat)abstract
    • Groundwater-surface water (GW-SW) interactions cover a broad range of hydrogeological and biological processes and are controlled by natural and anthropogenic factors at various spatio-temporal scales, from watershed to hyporheic/hypolentic zone. Understanding these processes is vital in the protection of groundwater-dependent ecosystems (GDEs) increasingly required in water resources legislation across the world. The use of environmental tracers and indicators that are relevant simultaneously for groundwater, surface water and biocenoses-biotope interactions constitutes a powerful tool to succeed in the management task. However, tracer type must be chosen according to the scale of interest and tracer use thus requires a good conceptual understanding of the processes to be evaluated. This paper reviews various GW-SW interaction processes and their drivers and, based on available knowledge, systemises application of conservative tracers and semi-conservative and reactive environmental indicators at different spatial scales. Biocenoses-biotopes relationships are viewed as a possible transition tool between scales. Relation between principal application of the environmental tracers and indicators, examples and guidelines are further proposed for examining GW-SW interactions from a hydrogeological and biological point of view by demonstrating the usability of the tracers/indicators and providing recommendations for the scientific community and decision makers.
  •  
2.
  • Jyväsjärvi, J., et al. (författare)
  • Climate-induced warming imposes a threat to north European spring ecosystems
  • 2015
  • Ingår i: Global Change Biology. - : Blackwell Publishing. - 1354-1013 .- 1365-2486. ; 21:12, s. 4561-4569
  • Tidskriftsartikel (refereegranskat)abstract
    • Interest in climate change effects on groundwater has increased dramatically during the last decade. The mechanisms of climate-related groundwater depletion have been thoroughly reviewed, but the influence of global warming on groundwater-dependent ecosystems (GDEs) remains poorly known. Here we report long-term water temperature trends in 66 northern European cold-water springs. A vast majority of the springs (82%) exhibited a significant increase in water temperature during 1968-2012. Mean spring water temperatures were closely related to regional air temperature and global radiative forcing of the corresponding year. Based on three alternative climate scenarios representing low (RCP2.6), intermediate (RCP6) and high-emission scenarios (RCP8.5), we estimate that increase in mean spring water temperature in the region is likely to range from 0.67 °C (RCP2.6) to 5.94 °C (RCP8.5) by 2086. According to the worst-case scenario, water temperature of these originally cold-water ecosystems (regional mean in the late 1970s: 4.7 °C) may exceed 12 °C by the end of this century. We used bryophyte and macroinvertebrate species data from Finnish springs and spring-fed streams to assess ecological impacts of the predicted warming. An increase in spring water temperature by several degrees will likely have substantial biodiversity impacts, causing regional extinction of native, cold-stenothermal spring specialists, whereas species diversity of headwater generalists is likely to increase. Even a slight (by 1 °C) increase in water temperature may eliminate endemic spring species, thus altering bryophyte and macroinvertebrate assemblages of spring-fed streams. Climate change-induced warming of northern regions may thus alter species composition of the spring biota and cause regional homogenization of biodiversity in headwater ecosystems.
  •  
3.
  • Ala-aho, P., et al. (författare)
  • Permafrost and lakes control river isotope composition across a boreal Arctic transect in the Western Siberian lowlands
  • 2018
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 13:3, s. =20-=20
  • Tidskriftsartikel (refereegranskat)abstract
    • The Western Siberian Lowlands (WSL) store large quantities of organic carbon that will be exposed and mobilized by the thawing of permafrost. The fate of mobilized carbon, however, is not well understood, partly because of inadequate knowledge of hydrological controls in the region which has a vast low-relief surface area, extensive lake and wetland coverage and gradually increasing permafrost influence. We used stable water isotopes to improve our understanding of dominant landscape controls on the hydrology of the WSL. We sampled rivers along a 1700 km South-North transect from permafrost-free to continuous permafrost repeatedly over three years, and derived isotope proxies for catchment hydrological responsiveness and connectivity. We found correlations between the isotope proxies and catchment characteristics, suggesting that lakes and wetlands are intimately connected to rivers, and that permafrost increases the responsiveness of the catchment to rainfall and snowmelt events, reducing catchment mean transit times. Our work provides rare isotope-based field evidence that permafrost and lakes/wetlands influence hydrological pathways across a wide range of spatial scales (10-105 km2) and permafrost coverage (0%-70%). This has important implications, because both permafrost extent and lake/wetland coverage are affected by permafrost thaw in the changing climate. Changes in these hydrological landscape controls are likely to alter carbon export and emission via inland waters, which may be of global significance.
  •  
4.
  • Ala-aho, P., et al. (författare)
  • Using stable isotopes to assess surface water source dynamics and hydrological connectivity in a high-latitude wetland and permafrost influenced landscape
  • 2018
  • Ingår i: Journal of Hydrology. - : Elsevier. - 0022-1694 .- 1879-2707. ; 556, s. 279-293
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change is expected to alter hydrological and biogeochemical processes in high-latitude inland waters. A critical question for understanding contemporary and future responses to environmental change is how the spatio-temporal dynamics of runoff generation processes will be affected. We sampled stable water isotopes in soils, lakes and rivers on an unprecedented spatio-temporal scale along a 1700 km transect over three years in the Western Siberia Lowlands. Our findings suggest that snowmelt mixes with, and displaces, large volumes of water stored in the organic soils and lakes to generate runoff during the thaw season. Furthermore, we saw a persistent hydrological connection between water bodies and the landscape across permafrost regions. Our findings help to bridge the understanding between small and large scale hydrological studies in high-latitude systems. These isotope data provide a means to conceptualise hydrological connectivity in permafrost and wetland influenced regions, which is needed for an improved understanding of future biogeochemical changes.
  •  
5.
  • Marttila, H., et al. (författare)
  • Nordic hydrological frontier in the 21st century
  • 2022
  • Ingår i: Hydrology Research. - : IWA Publishing. - 1998-9563 .- 2224-7955 .- 0029-1277. ; 53:5, s. 700-715
  • Tidskriftsartikel (refereegranskat)abstract
    • The 21st century has brought new challenges and opportunities and has also increased demands on the Nordic hydrological community. Our hydrological science focus and approaches need rethinking and adaptation to the changing requirements of society in response to climate change and human interventions, in search of more comprehensive and cross-disciplinary solutions. This commentary highlights new possibilities and suggests vital steps forward for the scientific discipline within Nordic hydrological research. By providing a common direction, we hope to increase awareness, accelerate progress in the hydrological community, and emphasize the importance of hydrological knowledge for serving other fields of science and society at large. We hope that our vision and the opportunities we identify will raise awareness of the scientific discipline and assist in the long-term development of the Nordic hydrological frontier in the 21st century.
  •  
6.
  • Serikova, Svetlana, et al. (författare)
  • High riverine CO2 emissions at the permafrost boundary of Western Siberia
  • 2018
  • Ingår i: Nature Geoscience. - : Nature Publishing Group. - 1752-0894 .- 1752-0908. ; 11:11, s. 825-
  • Tidskriftsartikel (refereegranskat)abstract
    • The fate of the vast stocks of organic carbon stored in permafrost of the Western Siberian Lowland, the world's largest peat-land, is uncertain. Specifically, the amount of greenhouse gas emissions from rivers in the region is unknown. Here we present estimates of annual CO2 emissions from 58 rivers across all permafrost zones of the Western Siberian Lowland, between 56 and 67 degrees N. We find that emissions peak at the permafrost boundary, and decrease where permafrost is more prevalent and in colder climatic conditions. River CO2 emissions were high, and on average two times greater than downstream carbon export. We suggest that high emissions and emission/export ratios are a result of warm temperatures and the long transit times of river water. We show that rivers in the Western Siberian Lowland play an important role in the carbon cycle by degassing terrestrial carbon before its transport to the Arctic Ocean, and suggest that changes in both temperature and precipitation are important for understanding and predicting high-latitude river CO2 emissions in a changing climate.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy