SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Alam Shahidul) "

Sökning: WFRF:(Alam Shahidul)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alam, Md. Maksudul, et al. (författare)
  • A Putative Leucine-Rich Repeat Receptor-Like Kinase of Jute Involved in Stress Response
  • 2010
  • Ingår i: Plant Molecular Biology Reporter. - : Springer Science and Business Media LLC. - 0735-9640 .- 1572-9818. ; 28:3, s. 394-402
  • Tidskriftsartikel (refereegranskat)abstract
    • A putative leucine-rich repeat receptor-like protein kinase (LRR-RLK) gene together with its 5' and 3' untranslated regions of jute (Corchorus olitorius L.) has been identified and sequenced. The gene is 3,371 bp long containing two exons and one intron. The coding sequence of the gene is 2,879 bp long encoding a peptide of 957 amino acids. The predicted protein contains several domains and motifs characteristic of a transmembrane protein kinase. It is complete with domains for an N-terminal leucine-rich repeat and a protein kinase core, an active site for serine/threonine protein kinase, an ATP binding conserved site and a transmembrane region. Expression of the gene is induced by low temperature, high salt concentration, dehydration, abscisic acid treatment, and fungal infection, suggesting the involvement of the gene in multiple stress response pathways in jute (C. olitorius L.). A possible mechanism of the role of the gene in signal transduction and environmental stress response is discussed. To date, LRR-RLK is the only jute gene which has been completely sequenced and characterized.
  •  
2.
  • Meitzner, Rico, et al. (författare)
  • Impact of P3HT materials properties and layer architecture on OPV device stability
  • 2019
  • Ingår i: Solar Energy Materials and Solar Cells. - : Elsevier BV. - 0927-0248. ; 202
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a cooperative study conducted between different laboratories to investigate organic solar cell degradation with respect to P3HT material properties and different solar cell architectures. Various batches of P3HT were collected from different suppliers reflecting commercial availability as well as properties variability. Among the materials properties explicitly considered were the molar mass, dispersity, regio-regularity, impurities by trace metals and intrinsic doping evaluated from radical concentrations. Each of the participating laboratories contributing test devices applied their own layer stack, i.e. their own device architecture and layout. This variation was appreciated as another parameter for evaluation. Even though a large amount of devices failed due to extrinsic degradation effects, indeed, some materials properties were found to be more important than others for obtaining long lifetimes and high stability of P3HT-based polymer solar cells.
  •  
3.
  • Xu, Han, et al. (författare)
  • Dissecting the structure-stability relationship of Y-series electron acceptors for real-world solar cell applications
  • 2023
  • Ingår i: Joule. - 2542-4351. ; 7:9, s. 2135-2151
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite striking progress toward improving the photovoltaic (PV) performance of organic solar cells (OSCs) with recent Y-series non-fullerene acceptors (Y-NFAs), knowledge about their outdoor performance under real-world conditions and photodegradation mechanisms remains elusive, which is urgently needed to close the lab-to-fab gap of OSCs. Herein, for the first time, we study the structure-outdoor-stability relationship of Y-NFAs. We show that Y-NFAs with long internal side-chains exhibit high energy barriers for photoisomerization, and fluorinated end-groups can enhance the structural confinement to inhibit the photodegradation pathway and thereby improve device stability. Furthermore, the performance loss of Y-NFA-based OSCs under illumination is mainly driven by increased trap-assisted recombination over time. The structure-stability correlation and demonstration of outdoor performance of these state-of-the-art Y-NFA cells provided in this study highlight molecular engineering of device stability control to minimize power output losses in real-world climates.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy