SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Albèr Cathrine) "

Sökning: WFRF:(Albèr Cathrine)

  • Resultat 1-12 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Albèr, Cathrine, et al. (författare)
  • Effects of water activity and low molecular weight humectants on skin permeability and hydration dynamics : a double-blind, randomized and controlled study
  • 2014
  • Ingår i: International Journal of Cosmetic Science. - : John Wiley & Sons. - 0142-5463 .- 1468-2494. ; 36:5, s. 412-418
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVES: The mammalian skin is a barrier that effectively separates the water-rich interior of the body from the normally dryer exterior. Changes in the external conditions, for example ambient humidity, have been shown to affect the skin barrier properties. The prime objective of this study was to evaluate the effect of water activity of a topical formulation on skin hydration and permeability. A second objective was to gain more understanding on how two commonly used humectants, urea and glycerol, affect skin barrier function in vivo. METHODS: Simple aqueous formulations were applied under occlusion to the volar forearm of healthy volunteers. Following 4-h exposure, skin water loss (by transepidermal water loss measurements), skin hydration (by Corneometry) and skin permeability (by time to vasodilation due to benzyl nicotinate exposure) were monitored. RESULTS: The results demonstrate that a relatively small change in the water activity of a topical formulation is sufficient to induce considerable effects on stratum corneum hydration and permeability to exogenous substances. Exposing the skin to high water activity leads to increased skin hydration and also increased permeability. Furthermore, urea and glycerol promote skin hydration and permeability even at reduced water activity of the applied formulation. CONCLUSION: These results highlight the importance of considering the water activity in topically applied formulations and the potential benefit of using humectants. The results may impact formulation optimization in how to facilitate skin hydration and to modify skin permeability by temporarily open and close the skin barrier.
  •  
3.
  • Albèr, Cathrine, et al. (författare)
  • Effects of water gradients and use of urea on skin ultrastructure evaluated by confocal Raman microspectroscopy
  • 2013
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier. - 0005-2736 .- 1879-2642 .- 0006-3002. ; 1828:11, s. 2470-2478
  • Tidskriftsartikel (refereegranskat)abstract
    • The rather thin outermost layer of the mammalian skin, stratum corneum (SC), is a complex biomembrane which separates the water rich inside of the body from the dry outside. The skin surface can be exposed to rather extreme variations in ambient conditions (e.g. water activity, temperature and pH), with potential effects on the barrier function. Increased understanding of how the barrier is affected by such changes is highly relevant for regulation of transdermal uptake of exogenous chemicals. In the present study we investigate the effect of hydration and the use of a well-known humectant, urea, on skin barrier ultrastructure by means of confocal Raman microspectroscopy. We also perform dynamic vapor sorption (DVS) microbalance measurements to examine the water uptake capacity of SC pretreated with urea. Based on novel Raman images, constructed from 2D spectral maps, we can distinguish large water inclusions within the skin membrane exceeding the size of fully hydrated corneocytes. We show that these inclusions contain water with spectral properties similar to that of bulk water. The results furthermore show that the ambient water activity has an important impact on the formation of these water inclusions as well as on the hydration profile across the membrane. Urea significantly increases the water uptake when present in skin, as compared to skin without urea, and it promotes formation of larger water inclusions in the tissue. The results confirm that urea can be used as a humectant to increase skin hydration.
  •  
4.
  • Albèr, Cathrine (författare)
  • Humectants and skin : effects of hydration from molecule to man
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Humectants belong to a group of hydrophilic compounds frequently used in skin care products with the aim to diminish the clinical symptom of skin dryness. The biochemical and biophysical mechanisms by which humectants interact with the skin barrier are far from fully understood. Increased understanding of such mechanisms can enhance the possibilities to tailor skin care products for various skin abnormalities.The work presented in this thesis centres on one high (hyaluronan) and two low (urea and glycerol) molecular weight humectants and their interactions with water, as well as their effect on the barrier properties of the outermost layer of the skin, i.e. the stratum corneum (SC). We explore the effect of hydration on thermodynamic properties of humectants, in particular hyaluronan, by using isothermal sorption calorimetry, differential scanning calorimetry and small- and wide-angle X-ray scattering. By combining data from several methods, a binary phase diagram of the hyaluronan - water system was constructed.We also investigate the effect of hydration and presence of humectants on the SC permeability in vitro by using an experimental set-up that allows for control of the boundary conditions in terms of water activity. In contrast to low molecular weight humectants, like urea and glycerol, it was concluded that hyaluronan (17 kDa) does not penetrate the skin barrier due to size exclusion. Addition of urea, glycerol or hyaluronan to aqueous formulations inevitably lowers the water activity of the formulation, which in tum affects the SC permeability when being applied. Moreover, it was shown that skin permeability of a model drug metronidazole decreases upon addition of hyaluronan to the formulation, while high skin permeability was maintained with addition of urea or glycerol. In addition, skin membrane electrical resistance, which normally increases at dehydrating skin conditions, remained low in presence of urea and glycerol.Excised skin hydrated at different hydration levels were examined with confocal Raman microspectroscopy. Large water inclusions were observed in fully hydrated SC after 24h exposure to a buffer solution. Addition of urea was shown to promote the formation of these inclusions. Urea and glycerol were also shown to improve the hydration capacity of isolated comeocytes.Similar approach as used in vitro was employed in vivo to explore the effect of hydration and humectants on skin permeability. It was shown that the water activity of the applied formulations have a marked effect on the barrier properties and urea and glycerol was shown to improve skin hydration even at reduced water activity of the applied formulation.
  •  
5.
  •  
6.
  • Albèr, Cathrine, et al. (författare)
  • Hydration of Hyaluronan : Effects on Structural and Thermodynamic Properties
  • 2015
  • Ingår i: Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1520-6106 .- 1520-5207. ; 119:11, s. 4211-4219
  • Tidskriftsartikel (refereegranskat)abstract
    • Hyaluronan (HA) is a frequently occurring biopolymer with a large variety of functions in nature. During the past 60 years, there have been numerous reports on structural and dynamic behavior of HA in water. Nevertheless, studies covering a wider concentration range are still lacking. In this work, we use isothermal scanning sorption calorimetry for the first time to investigate hydration-induced transitions in HA (sodium hyaluronate, 17 kDa). From this method, we obtain the sorption isotherm and the enthalpy and the entropy of hydration. Thermotropic events are evaluated by differential scanning calorimetry (DSC), and structure analysis is performed with X-ray scattering (SWAXS) and light and scanning electron microscopy. During isothermal hydration, HA exhibits a glass transition, followed by crystallization and subsequent dissolution of HA crystals and formation of a one-phase solution. Structural analysis reveals that the crystal may be indexed on an orthorhombic unit cell with space group P212121. Crystallization of HA was found to occur either through endothermic or exothermic processes, depending on the temperature and water content. We propose a mechanism of crystallization that explains this phenomenon based on the interplay between the hydrophobic effect and strengthening of hydrogen bonds during formation of crystals. The combined results were used to construct a binary phase diagram for the HA–water system.
  •  
7.
  • Albèr, Cathrine, et al. (författare)
  • Spatial imaging and evaluation of humectants impact on stratum corneum hydration with confocal Raman microscpectroscopy
  • 2012
  • Ingår i: International Journal of Cosmetic Science. - : John Wiley & Sons. - 0142-5463 .- 1468-2494. ; :34, s. 359-359
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Objective: Confocal Raman microspectroscopy (CRM) enables non-invasive depth-scanning of biological tissues. The technique has been used to obtain information about the molecular composition of the skin, tracking of externally applied compounds and to determine molecular concentration profiles. The objective of this study is to use CRM in order to evaluate the changes in stratum corneum hydration when applying polyethylene glycol and the humectants urea and glycerol, and thereby also varying the external chemical potential of water. In the present study we also utilize the advantages of CRM to create novel spatial high- resolution Raman images of stratum corneum. Methodology: Excised porcine skin membranes (500 nm in thickness) were equilibrated from the surface with phosphate buffered saline (PBS) together with different types of humectants using Franz cells. The Raman measurements were performed with a WITec alpha300 system (Ulm, Germany) equipped with a 532 nm laser. The change in stratum corneum hydration after treatment with different humectants was determined from the relative intensity of the water and protein spectra. Raman images were created along a cross section by integrating the Raman intensities for specific vibrational modes. Results and conclusions: The results show that the hydration profiles of stratum corneum correlates well with the gradient in water chemical potential created by the applied humectants, i.e. low molecular weight humectants enable increased hydration of stratum corneum compared to a high molecular weight, non-penetrating polyethylene glycol. In addition the novel results from the Raman imaging experiments illustrates that it is possible to distinguish between water rich domains and the extracellular lipid rich domains along a cross section of the intact skin membrane.
  •  
8.
  • Cao, Zhen, et al. (författare)
  • Enhancement of HFE-7200 pool boiling heat transfer on copper surfaces with nanoparticle coatings
  • 2018
  • Ingår i: Proceeding: International Heat Transfer Conference 16. - 2377-424X. ; , s. 1341-1347
  • Konferensbidrag (refereegranskat)abstract
    • Saturated pool boiling heat transfer of HFE-7200 is investigated experimentally on copper surfaces with nanoparticle coatings at atmospheric pressure. The coatings are generated by an electrophoretic deposition method. Two modified surfaces are prepared with Cu-Zinc nanoparticles of 0.3 mg and 0.6 mg, respectively. During the deposition, ethanol works as the solvent while the electrical potential and deposition time are controlled as 9.5 V and 30 min, respectively. The experimental results show heat transfer is considerably enhanced by the nanoparticle coatings. The surface with 0.6 mg nanoparticles (EDS-2) performs better than the surface with 0.3 mg nanoparticles (EDS-1), and a maximum 140% heat transfer enhancement is achieved on the surface EDS-2 compared with the SS. However, the critical heat flux is not enhanced by the coatings but even slightly decreased. A high speed visualization is employed to capture bubble behavior. It is found that bubbles on EDS-1 and EDS-2 have smaller sizes and higher departure frequency than those on the SS before reaching the critical heat flux. However, at critical heat fluxes, a vapor blanket appears on all surfaces.
  •  
9.
  • Cao, Zhen, et al. (författare)
  • Enhancement of HFE-7200 pool boiling heat transfer on copper surfaces with nanoparticle coatings
  • 2018
  • Ingår i: International Heat Transfer Conference 16. - Connecticut : Begell House. - 9781567004748 - 9781567004731 ; , s. -1347
  • Konferensbidrag (refereegranskat)abstract
    • Saturated pool boiling heat transfer of HFE-7200 is investigated experimentally on copper surfaces with nanoparticle coatings at atmospheric pressure. The coatings are generated by an electrophoretic deposition method. Two modified surfaces are prepared with Cu-Zinc nanoparticles of 0.3 mg and 0.6 mg, respectively. During the deposition, ethanol works as the solvent while the electrical potential and deposition time are controlled as 9.5 V and 30 min, respectively. The experimental results show heat transfer is considerably enhanced by the nanoparticle coatings. The surface with 0.6 mg nanoparticles (EDS-2) performs better than the surface with 0.3 mg nanoparticles (EDS-1), and a maximum 140% heat transfer enhancement is achieved on the surface EDS-2 compared with the SS. However, the critical heat flux is not enhanced by the coatings but even slightly decreased. A high speed visualization is employed to capture bubble behavior. It is found that bubbles on EDS-1 and EDS-2 have smaller sizes and higher departure frequency than those on the SS before reaching the critical heat flux. However, at critical heat fluxes, a vapor blanket appears on all surfaces.
  •  
10.
  • Cao, Zhen, et al. (författare)
  • Pool boiling heat transfer enhancement of water by gold nanoparticles with an electrophoretic deposition method
  • 2019
  • Ingår i: Proceedings of the Asme International Mechanical Engineering Congress and Exposition, 2018, vol 8b. - : Amer Soc Mechanical Engineers. - 9780791852125
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Saturated pool boiling heat transfer of water is investigated experimentally on copper surfaces with nanoparticle coatings at atmospheric pressure. The coatings are generated by an electrophoretic deposition method (EPD). Three modified surfaces are prepared with gold nanoparticles of 0.20 mg, 0.25 mg and 0.30 mg, respectively. During the deposition, ethanol works as the solvent while the electrical potential and deposition time are controlled as 9.5 V and 30 min, respectively. The experimental results show that heat transfer coefficients (HTC) and critical heat fluxes (CHF) are enhanced on the modified surfaces. HTC increases with decreasing thickness of the coating, while CHF increases with increasing thickness of the coating. CHFs of EPD-0.20 mg, EPD-0.25 mg and EPD-0.30 mg are 93 W/cm2, 123 W/cm2 and 142 W/cm2, respectively, which are increased by 7%, 41% and 63% compared with the smooth surface. EPD-0.20 mg performs the best on heat transfer, with a maximum enhancement of around 60%. At the end, a brief review about mechanistic models of heat transfer at low and moderate heat fluxes is provided, based on which, the reasons why heat transfer is enhanced are discussed.
  •  
11.
  • Cao, Zhen, et al. (författare)
  • Pool boiling of HFE-7200 on nanoparticle-coating surfaces: Experiments and heat transfer analysis
  • 2018
  • Ingår i: International Journal of Heat and Mass Transfer. - : Elsevier BV. - 0017-9310 .- 1879-2189. ; 133, s. 548-560
  • Tidskriftsartikel (refereegranskat)abstract
    • In the present study, an electrophoretic deposition method was employed to modify copper surfaces withCu-Zn (100 nm) nanoparticles. Pool boiling heat transfer of HFE-7200 on the modified surfaces was experimentally studied. The results showed that the heat transfer coefficient on the modified surfaces was significantly enhanced compared with that on a smooth surface, e.g., a maximum 100% enhancement,while the maximum superheat on the modified surfaces was around 20 K lower than that on the smooth surface. However, the critical heat flux (CHF) was not improved considerably, and supplementary tests indicated that the wickability of HFE-7200 was almost the same on the modified surfaces and the smooth surface. The departure diameters of bubbles were recorded by a high speed camera, which were compared with several models in literature. Active nucleation site sizes were evaluated by the Hsu nucleation theory and active nucleation site densities were estimated by appropriate correlations.In addition, a heat transfer model, considering natural convection, re-formation of thermal boundary layer and microlayer evaporation, was formulated to predict the heat transfer on the modified surfaces and the smooth surface. A relatively good prediction was achieved.
  •  
12.
  • Wu, Zan, et al. (författare)
  • Pool boiling heat transfer of n -pentane and acetone on nanostructured surfaces by electrophoretic deposition
  • 2019
  • Ingår i: Proceedings of the Asme International Mechanical Engineering Congress and Exposition, 2018, vol 8b. - : Amer Soc Mechanical Engineers. - 9780791852125
  • Konferensbidrag (refereegranskat)abstract
    • This work aims to investigate pool boiling heat transfer enhancement by using nanostructured surfaces. Two types of nanostructured surfaces were employed, gold nanoparticlecoated surfaces and alumina nanoparticle-coated surfaces. The nanostructured surfaces were fabricated by an electrophoretic deposition technique, depositing nanoparticles in a nanofluid onto smooth copper surfaces under an electric field. N -pentane and acetone were tested as working fluids. Compared to the smooth surface, the pool boiling heat transfer coefficient has been increased by 80% for n -pentane and acetone. Possible mechanisms for the enhancement in heat transfer are qualitatively provided. The increase in active nucleation site density due to multiple micro/nanopores on nanoparticle-coated surfaces is likely the main contributor. The critical heat flux on nanostructured surfaces are approximately the same as that on the smooth surface because both smooth and modified surfaces show similar wickability for the two working fluids.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-12 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy