SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Alberdi Antxon) "

Sökning: WFRF:(Alberdi Antxon)

  • Resultat 1-50 av 68
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Akiyama, Kazunori, et al. (författare)
  • First M87 Event Horizon Telescope Results. I. the Shadow of the Supermassive Black Hole
  • 2019
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 875:1
  • Tidskriftsartikel (refereegranskat)abstract
    • When surrounded by a transparent emission region, black holes are expected to reveal a dark shadow caused by gravitational light bending and photon capture at the event horizon. To image and study this phenomenon, we have assembled the Event Horizon Telescope, a global very long baseline interferometry array observing at a wavelength of 1.3 mm. This allows us to reconstruct event-horizon-scale images of the supermassive black hole candidate in the center of the giant elliptical galaxy M87. We have resolved the central compact radio source as an asymmetric bright emission ring with a diameter of 42 ±3 μas, which is circular and encompasses a central depression in brightness with a flux ratio ≈10:1. The emission ring is recovered using different calibration and imaging schemes, with its diameter and width remaining stable over four different observations carried out in different days. Overall, the observed image is consistent with expectations for the shadow of a Kerr black hole as predicted by general relativity. The asymmetry in brightness in the ring can be explained in terms of relativistic beaming of the emission from a plasma rotating close to the speed of light around a black hole. We compare our images to an extensive library of ray-traced general-relativistic magnetohydrodynamic simulations of black holes and derive a central mass of M =(6.5 ±0.7) ×10 9 M o . Our radio-wave observations thus provide powerful evidence for the presence of supermassive black holes in centers of galaxies and as the central engines of active galactic nuclei. They also present a new tool to explore gravity in its most extreme limit and on a mass scale that was so far not accessible.
  •  
2.
  • Akiyama, Kazunori, et al. (författare)
  • First M87 Event Horizon Telescope Results. II. Array and Instrumentation
  • 2019
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 875:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Event Horizon Telescope (EHT) is a very long baseline interferometry (VLBI) array that comprises millimeter- and submillimeter-wavelength telescopes separated by distances comparable to the diameter of the Earth. At a nominal operating wavelength of ∼1.3 mm, EHT angular resolution (λ/D) is ∼25 μas, which is sufficient to resolve nearby supermassive black hole candidates on spatial and temporal scales that correspond to their event horizons. With this capability, the EHT scientific goals are to probe general relativistic effects in the strong-field regime and to study accretion and relativistic jet formation near the black hole boundary. In this Letter we describe the system design of the EHT, detail the technology and instrumentation that enable observations, and provide measures of its performance. Meeting the EHT science objectives has required several key developments that have facilitated the robust extension of the VLBI technique to EHT observing wavelengths and the production of instrumentation that can be deployed on a heterogeneous array of existing telescopes and facilities. To meet sensitivity requirements, high-bandwidth digital systems were developed that process data at rates of 64 gigabit s -1 , exceeding those of currently operating cm-wavelength VLBI arrays by more than an order of magnitude. Associated improvements include the development of phasing systems at array facilities, new receiver installation at several sites, and the deployment of hydrogen maser frequency standards to ensure coherent data capture across the array. These efforts led to the coordination and execution of the first Global EHT observations in 2017 April, and to event-horizon-scale imaging of the supermassive black hole candidate in M87.
  •  
3.
  • Akiyama, Kazunori, et al. (författare)
  • First M87 Event Horizon Telescope Results. III. Data Processing and Calibration
  • 2019
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 875:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the calibration and reduction of Event Horizon Telescope (EHT) 1.3 mm radio wavelength observations of the supermassive black hole candidate at the center of the radio galaxy M87 and the quasar 3C 279, taken during the 2017 April 5-11 observing campaign. These global very long baseline interferometric observations include for the first time the highly sensitive Atacama Large Millimeter/submillimeter Array (ALMA); reaching an angular resolution of 25 μas, with characteristic sensitivity limits of ∼1 mJy on baselines to ALMA and ∼10 mJy on other baselines. The observations present challenges for existing data processing tools, arising from the rapid atmospheric phase fluctuations, wide recording bandwidth, and highly heterogeneous array. In response, we developed three independent pipelines for phase calibration and fringe detection, each tailored to the specific needs of the EHT. The final data products include calibrated total intensity amplitude and phase information. They are validated through a series of quality assurance tests that show consistency across pipelines and set limits on baseline systematic errors of 2% in amplitude and 1° in phase. The M87 data reveal the presence of two nulls in correlated flux density at ∼3.4 and ∼8.3 Gλ and temporal evolution in closure quantities, indicating intrinsic variability of compact structure on a timescale of days, or several light-crossing times for a few billion solar-mass black hole. These measurements provide the first opportunity to image horizon-scale structure in M87.
  •  
4.
  • Akiyama, Kazunori, et al. (författare)
  • First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole
  • 2019
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 875:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first Event Horizon Telescope (EHT) images of M87, using observations from April 2017 at 1.3 mm wavelength. These images show a prominent ring with a diameter of similar to 40 mu as, consistent with the size and shape of the lensed photon orbit encircling the "shadow" of a supermassive black hole. The ring is persistent across four observing nights and shows enhanced brightness in the south. To assess the reliability of these results, we implemented a two-stage imaging procedure. In the first stage, four teams, each blind to the others' work, produced images of M87 using both an established method (CLEAN) and a newer technique (regularized maximum likelihood). This stage allowed us to avoid shared human bias and to assess common features among independent reconstructions. In the second stage, we reconstructed synthetic data from a large survey of imaging parameters and then compared the results with the corresponding ground truth images. This stage allowed us to select parameters objectively to use when reconstructing images of M87. Across all tests in both stages, the ring diameter and asymmetry remained stable, insensitive to the choice of imaging technique. We describe the EHT imaging procedures, the primary image features in M87, and the dependence of these features on imaging assumptions.
  •  
5.
  • Akiyama, Kazunori, et al. (författare)
  • First M87 Event Horizon Telescope Results. IX. Detection of Near-horizon Circular Polarization
  • 2023
  • Ingår i: Astrophysical Journal Letters. - 2041-8213 .- 2041-8205. ; 957:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Event Horizon Telescope (EHT) observations have revealed a bright ring of emission around the supermassive black hole at the center of the M87 galaxy. EHT images in linear polarization have further identified a coherent spiral pattern around the black hole, produced from ordered magnetic fields threading the emitting plasma. Here we present the first analysis of circular polarization using EHT data, acquired in 2017, which can potentially provide additional insights into the magnetic fields and plasma composition near the black hole. Interferometric closure quantities provide convincing evidence for the presence of circularly polarized emission on event-horizon scales. We produce images of the circular polarization using both traditional and newly developed methods. All methods find a moderate level of resolved circular polarization across the image (〈|v|〉 < 3.7%), consistent with the low image-integrated circular polarization fraction measured by the Atacama Large Millimeter/submillimeter Array (|vint| < 1%). Despite this broad agreement, the methods show substantial variation in the morphology of the circularly polarized emission, indicating that our conclusions are strongly dependent on the imaging assumptions because of the limited baseline coverage, uncertain telescope gain calibration, and weakly polarized signal. We include this upper limit in an updated comparison to general relativistic magnetohydrodynamic simulation models. This analysis reinforces the previously reported preference for magnetically arrested accretion flow models. We find that most simulations naturally produce a low level of circular polarization consistent with our upper limit and that Faraday conversion is likely the dominant production mechanism for circular polarization at 230 GHz in M87*
  •  
6.
  • Akiyama, Kazunori, et al. (författare)
  • First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring
  • 2019
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 875:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Event Horizon Telescope (EHT) has mapped the central compact radio source of the elliptical galaxy M87 at 1.3 mm with unprecedented angular resolution. Here we consider the physical implications of the asymmetric ring seen in the 2017 EHT data. To this end, we construct a large library of models based on general relativistic magnetohydrodynamic (GRMHD) simulations and synthetic images produced by general relativistic ray tracing. We compare the observed visibilities with this library and confirm that the asymmetric ring is consistent with earlier predictions of strong gravitational lensing of synchrotron emission from a hot plasma orbiting near the black hole event horizon. The ring radius and ring asymmetry depend on black hole mass and spin, respectively, and both are therefore expected to be stable when observed in future EHT campaigns. Overall, the observed image is consistent with expectations for the shadow of a spinning Kerr black hole as predicted by general relativity. If the black hole spin and M87's large scale jet are aligned, then the black hole spin vector is pointed away from Earth. Models in our library of non-spinning black holes are inconsistent with the observations as they do not produce sufficiently powerful jets. At the same time, in those models that produce a sufficiently powerful jet, the latter is powered by extraction of black hole spin energy through mechanisms akin to the Blandford-Znajek process. We briefly consider alternatives to a black hole for the central compact object. Analysis of existing EHT polarization data and data taken simultaneously at other wavelengths will soon enable new tests of the GRMHD models, as will future EHT campaigns at 230 and 345 GHz.
  •  
7.
  • Akiyama, Kazunori, et al. (författare)
  • First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole
  • 2019
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 875:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present measurements of the properties of the central radio source in M87 using Event Horizon Telescope data obtained during the 2017 campaign. We develop and fit geometric crescent models (asymmetric rings with interior brightness depressions) using two independent sampling algorithms that consider distinct representations of the visibility data. We show that the crescent family of models is statistically preferred over other comparably complex geometric models that we explore. We calibrate the geometric model parameters using general relativistic magnetohydrodynamic (GRMHD) models of the emission region and estimate physical properties of the source. We further fit images generated from GRMHD models directly to the data. We compare the derived emission region and black hole parameters from these analyses with those recovered from reconstructed images. There is a remarkable consistency among all methods and data sets. We find that >50% of the total flux at arcsecond scales comes from near the horizon, and that the emission is dramatically suppressed interior to this region by a factor >10, providing direct evidence of the predicted shadow of a black hole. Across all methods, we measure a crescent diameter of 42 +/- 3 mu as and constrain its fractional width to be
  •  
8.
  • Akiyama, Kazunori, et al. (författare)
  • First M87 Event Horizon Telescope Results. VII. Polarization of the Ring
  • 2021
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 910:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In 2017 April, the Event Horizon Telescope (EHT) observed the near-horizon region around the supermassive black hole at the core of the M87 galaxy. These 1.3 mm wavelength observations revealed a compact asymmetric ring-like source morphology. This structure originates from synchrotron emission produced by relativistic plasma located in the immediate vicinity of the black hole. Here we present the corresponding linear-polarimetric EHT images of the center of M87. We find that only a part of the ring is significantly polarized. The resolved fractional linear polarization has a maximum located in the southwest part of the ring, where it rises to the level of similar to 15%. The polarization position angles are arranged in a nearly azimuthal pattern. We perform quantitative measurements of relevant polarimetric properties of the compact emission and find evidence for the temporal evolution of the polarized source structure over one week of EHT observations. The details of the polarimetric data reduction and calibration methodology are provided. We carry out the data analysis using multiple independent imaging and modeling techniques, each of which is validated against a suite of synthetic data sets. The gross polarimetric structure and its apparent evolution with time are insensitive to the method used to reconstruct the image. These polarimetric images carry information about the structure of the magnetic fields responsible for the synchrotron emission. Their physical interpretation is discussed in an accompanying publication.
  •  
9.
  • Akiyama, Kazunori, et al. (författare)
  • First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon
  • 2021
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 910:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Event Horizon Telescope (EHT) observations at 230 GHz have now imaged polarized emission around the supermassive black hole in M87 on event-horizon scales. This polarized synchrotron radiation probes the structure of magnetic fields and the plasma properties near the black hole. Here we compare the resolved polarization structure observed by the EHT, along with simultaneous unresolved observations with the Atacama Large Millimeter/submillimeter Array, to expectations from theoretical models. The low fractional linear polarization in the resolved image suggests that the polarization is scrambled on scales smaller than the EHT beam, which we attribute to Faraday rotation internal to the emission region. We estimate the average density n(e) similar to 10(4-7) cm(-3), magnetic field strength B similar to 1-30 G, and electron temperature T-e similar to (1-12) x 10(10) K of the radiating plasma in a simple one-zone emission model. We show that the net azimuthal linear polarization pattern may result from organized, poloidal magnetic fields in the emission region. In a quantitative comparison with a large library of simulated polarimetric images from general relativistic magnetohydrodynamic (GRMHD) simulations, we identify a subset of physical models that can explain critical features of the polarimetric EHT observations while producing a relativistic jet of sufficient power. The consistent GRMHD models are all of magnetically arrested accretion disks, where near-horizon magnetic fields are dynamically important. We use the models to infer a mass accretion rate onto the black hole in M87 of (3-20) x 10(-4) M yr(-1).
  •  
10.
  • Akiyama, Kazunori, et al. (författare)
  • First Sagittarius A * Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way
  • 2022
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first Event Horizon Telescope (EHT) observations of Sagittarius A* (Sgr A*), the Galactic center source associated with a supermassive black hole. These observations were conducted in 2017 using a global interferometric array of eight telescopes operating at a wavelength of λ = 1.3 mm. The EHT data resolve a compact emission region with intrahour variability. A variety of imaging and modeling analyses all support an image that is dominated by a bright, thick ring with a diameter of 51.8 ± 2.3 μas (68% credible interval). The ring has modest azimuthal brightness asymmetry and a comparatively dim interior. Using a large suite of numerical simulations, we demonstrate that the EHT images of Sgr A* are consistent with the expected appearance of a Kerr black hole with mass ∼4 × 106 M☉, which is inferred to exist at this location based on previous infrared observations of individual stellar orbits, as well as maser proper-motion studies. Our model comparisons disfavor scenarios where the black hole is viewed at high inclination (i > 50°), as well as nonspinning black holes and those with retrograde accretion disks. Our results provide direct evidence for the presence of a supermassive black hole at the center of the Milky Way, and for the first time we connect the predictions from dynamical measurements of stellar orbits on scales of 103-105 gravitational radii to event-horizon-scale images and variability. Furthermore, a comparison with the EHT results for the supermassive black hole M87* shows consistency with the predictions of general relativity spanning over three orders of magnitude in central mass.
  •  
11.
  • Akiyama, Kazunori, et al. (författare)
  • First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data Processing, and Calibration
  • 2022
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present Event Horizon Telescope (EHT) 1.3 mm measurements of the radio source located at the position of the supermassive black hole Sagittarius A* (Sgr A*), collected during the 2017 April 5-11 campaign. The observations were carried out with eight facilities at six locations across the globe. Novel calibration methods are employed to account for Sgr A*'s flux variability. The majority of the 1.3 mm emission arises from horizon scales, where intrinsic structural source variability is detected on timescales of minutes to hours. The effects of interstellar scattering on the image and its variability are found to be subdominant to intrinsic source structure. The calibrated visibility amplitudes, particularly the locations of the visibility minima, are broadly consistent with a blurred ring with a diameter of similar to 50 mu as, as determined in later works in this series. Contemporaneous multiwavelength monitoring of Sgr A* was performed at 22, 43, and 86 GHz and at near-infrared and X-ray wavelengths. Several X-ray flares from Sgr A* are detected by Chandra, one at low significance jointly with Swift on 2017 April 7 and the other at higher significance jointly with NuSTAR on 2017 April 11. The brighter April 11 flare is not observed simultaneously by the EHT but is followed by a significant increase in millimeter flux variability immediately after the X-ray outburst, indicating a likely connection in the emission physics near the event horizon. We compare Sgr A*'s broadband flux during the EHT campaign to its historical spectral energy distribution and find that both the quiescent emission and flare emission are consistent with its long-term behavior.
  •  
12.
  • Akiyama, Kazunori, et al. (författare)
  • First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black Hole
  • 2022
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first event-horizon-scale images and spatiotemporal analysis of Sgr A* taken with the Event Horizon Telescope in 2017 April at a wavelength of 1.3 mm. Imaging of Sgr A* has been conducted through surveys over a wide range of imaging assumptions using the classical CLEAN algorithm, regularized maximum likelihood methods, and a Bayesian posterior sampling method. Different prescriptions have been used to account for scattering effects by the interstellar medium toward the Galactic center. Mitigation of the rapid intraday variability that characterizes Sgr A* has been carried out through the addition of a "variability noise budget" in the observed visibilities, facilitating the reconstruction of static full-track images. Our static reconstructions of Sgr A* can be clustered into four representative morphologies that correspond to ring images with three different azimuthal brightness distributions and a small cluster that contains diverse nonring morphologies. Based on our extensive analysis of the effects of sparse (u, v)-coverage, source variability, and interstellar scattering, as well as studies of simulated visibility data, we conclude that the Event Horizon Telescope Sgr A* data show compelling evidence for an image that is dominated by a bright ring of emission with a ring diameter of similar to 50 mu as, consistent with the expected "shadow" of a 4 x 10(6) M (circle dot) black hole in the Galactic center located at a distance of 8 kpc.
  •  
13.
  • Akiyama, Kazunori, et al. (författare)
  • First Sagittarius A* Event Horizon Telescope Results. IV. Variability, Morphology, and Black Hole Mass
  • 2022
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper we quantify the temporal variability and image morphology of the horizon-scale emission from Sgr A*, as observed by the EHT in 2017 April at a wavelength of 1.3 mm. We find that the Sgr A* data exhibit variability that exceeds what can be explained by the uncertainties in the data or by the effects of interstellar scattering. The magnitude of this variability can be a substantial fraction of the correlated flux density, reaching similar to 100% on some baselines. Through an exploration of simple geometric source models, we demonstrate that ring-like morphologies provide better fits to the Sgr A* data than do other morphologies with comparable complexity. We develop two strategies for fitting static geometric ring models to the time-variable Sgr A* data; one strategy fits models to short segments of data over which the source is static and averages these independent fits, while the other fits models to the full data set using a parametric model for the structural variability power spectrum around the average source structure. Both geometric modeling and image-domain feature extraction techniques determine the ring diameter to be 51.8 +/- 2.3 mu as (68% credible intervals), with the ring thickness constrained to have an FWHM between similar to 30% and 50% of the ring diameter. To bring the diameter measurements to a common physical scale, we calibrate them using synthetic data generated from GRMHD simulations. This calibration constrains the angular size of the gravitational radius to be 4.8(-0.7)(+1.4) mu as, which we combine with an independent distance measurement from maser parallaxes to determine the mass of Sgr A* to be 4.0(-0.6)(+1.1) x 10(6) M-circle dot.
  •  
14.
  • Akiyama, Kazunori, et al. (författare)
  • First Sagittarius A* Event Horizon Telescope Results. V. Testing Astrophysical Models of the Galactic Center Black Hole
  • 2022
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper we provide a first physical interpretation for the Event Horizon Telescope's (EHT) 2017 observations of Sgr A*. Our main approach is to compare resolved EHT data at 230 GHz and unresolved non-EHT observations from radio to X-ray wavelengths to predictions from a library of models based on time-dependent general relativistic magnetohydrodynamics simulations, including aligned, tilted, and stellar-wind-fed simulations; radiative transfer is performed assuming both thermal and nonthermal electron distribution functions. We test the models against 11 constraints drawn from EHT 230 GHz data and observations at 86 GHz, 2.2 mu m, and in the X-ray. All models fail at least one constraint. Light-curve variability provides a particularly severe constraint, failing nearly all strongly magnetized (magnetically arrested disk (MAD)) models and a large fraction of weakly magnetized models. A number of models fail only the variability constraints. We identify a promising cluster of these models, which are MAD and have inclination i <= 30 degrees. They have accretion rate (5.2-9.5) x 10(-9) M (circle dot) yr(-1), bolometric luminosity (6.8-9.2) x 10(35) erg s(-1), and outflow power (1.3-4.8) x 10(38) erg s(-1). We also find that all models with i >= 70 degrees fail at least two constraints, as do all models with equal ion and electron temperature; exploratory, nonthermal model sets tend to have higher 2.2 mu m flux density; and the population of cold electrons is limited by X-ray constraints due to the risk of bremsstrahlung overproduction. Finally, we discuss physical and numerical limitations of the models, highlighting the possible importance of kinetic effects and duration of the simulations.
  •  
15.
  • Akiyama, Kazunori, et al. (författare)
  • First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric
  • 2022
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Astrophysical black holes are expected to be described by the Kerr metric. This is the only stationary, vacuum, axisymmetric metric, without electromagnetic charge, that satisfies Einstein's equations and does not have pathologies outside of the event horizon. We present new constraints on potential deviations from the Kerr prediction based on 2017 EHT observations of Sagittarius A* (Sgr A*). We calibrate the relationship between the geometrically defined black hole shadow and the observed size of the ring-like images using a library that includes both Kerr and non-Kerr simulations. We use the exquisite prior constraints on the mass-to-distance ratio for Sgr A* to show that the observed image size is within similar to 10% of the Kerr predictions. We use these bounds to constrain metrics that are parametrically different from Kerr, as well as the charges of several known spacetimes. To consider alternatives to the presence of an event horizon, we explore the possibility that Sgr A* is a compact object with a surface that either absorbs and thermally reemits incident radiation or partially reflects it. Using the observed image size and the broadband spectrum of Sgr A*, we conclude that a thermal surface can be ruled out and a fully reflective one is unlikely. We compare our results to the broader landscape of gravitational tests. Together with the bounds found for stellar-mass black holes and the M87 black hole, our observations provide further support that the external spacetimes of all black holes are described by the Kerr metric, independent of their mass.
  •  
16.
  • Akiyama, Kazunori, et al. (författare)
  • First Sagittarius A∗ Event Horizon Telescope Results. VII. Polarization of the Ring
  • 2024
  • Ingår i: Astrophysical Journal Letters. - 2041-8213 .- 2041-8205. ; 964:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Event Horizon Telescope observed the horizon-scale synchrotron emission region around the Galactic center supermassive black hole, Sagittarius A∗ (Sgr A∗), in 2017. These observations revealed a bright, thick ring morphology with a diameter of 51.8 ± 2.3 μas and modest azimuthal brightness asymmetry, consistent with the expected appearance of a black hole with mass M≈ 4 × 106 M⊙. From these observations, we present the first resolved linear and circular polarimetric images of Sgr A∗. The linear polarization images demonstrate that the emission ring is highly polarized, exhibiting a prominent spiral electric vector polarization angle pattern with a peak fractional polarization of ∼40% in the western portion of the ring. The circular polarization images feature a modestly (∼5%°-10%) polarized dipole structure along the emission ring, with negative circular polarization in the western region and positive circular polarization in the eastern region, although our methods exhibit stronger disagreement than for linear polarization. We analyze the data using multiple independent imaging and modeling methods, each of which is validated using a standardized suite of synthetic data sets. While the detailed spatial distribution of the linear polarization along the ring remains uncertain owing to the intrinsic variability of the source, the spiraling polarization structure is robust to methodological choices. The degree and orientation of the linear polarization provide stringent constraints for the black hole and its surrounding magnetic fields, which we discuss in an accompanying publication.
  •  
17.
  • Akiyama, Kazunori, et al. (författare)
  • First Sagittarius A∗ Event Horizon Telescope Results. VIII. Physical Interpretation of the Polarized Ring
  • 2024
  • Ingår i: Astrophysical Journal Letters. - 2041-8213 .- 2041-8205. ; 964:2
  • Tidskriftsartikel (refereegranskat)abstract
    • In a companion paper, we present the first spatially resolved polarized image of Sagittarius A∗ on event horizon scales, captured using the Event Horizon Telescope, a global very long baseline interferometric array operating at a wavelength of 1.3 mm. Here we interpret this image using both simple analytic models and numerical general relativistic magnetohydrodynamic (GRMHD) simulations. The large spatially resolved linear polarization fraction (24%-28%, peaking at ∼40%) is the most stringent constraint on parameter space, disfavoring models that are too Faraday depolarized. Similar to our studies of M87∗, polarimetric constraints reinforce a preference for GRMHD models with dynamically important magnetic fields. Although the spiral morphology of the polarization pattern is known to constrain the spin and inclination angle, the time-variable rotation measure (RM) of Sgr A∗ (equivalent to ≈ 46° ± 12° rotation at 228 GHz) limits its present utility as a constraint. If we attribute the RM to internal Faraday rotation, then the motion of accreting material is inferred to be counterclockwise, contrary to inferences based on historical polarized flares, and no model satisfies all polarimetric and total intensity constraints. On the other hand, if we attribute the mean RM to an external Faraday screen, then the motion of accreting material is inferred to be clockwise, and one model passes all applied total intensity and polarimetric constraints: a model with strong magnetic fields, a spin parameter of 0.94, and an inclination of 150°. We discuss how future 345 GHz and dynamical imaging will mitigate our present uncertainties and provide additional constraints on the black hole and its accretion flow.
  •  
18.
  • Akiyama, Kazunori, et al. (författare)
  • The persistent shadow of the supermassive black hole of M 87: I. Observations, calibration, imaging, and analysis*
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 681
  • Tidskriftsartikel (refereegranskat)abstract
    • In April 2019, the Event Horizon Telescope (EHT) Collaboration reported the first-ever event-horizon-scale images of a black hole, resolving the central compact radio source in the giant elliptical galaxy M 87. These images reveal a ring with a southerly brightness distribution and a diameter of ∼42 μas, consistent with the predicted size and shape of a shadow produced by the gravitationally lensed emission around a supermassive black hole. These results were obtained as part of the April 2017 EHT observation campaign, using a global very long baseline interferometric radio array operating at a wavelength of 1.3 mm. Here, we present results based on the second EHT observing campaign, taking place in April 2018 with an improved array, wider frequency coverage, and increased bandwidth. In particular, the additional baselines provided by the Greenland telescope improved the coverage of the array. Multiyear EHT observations provide independent snapshots of the horizon-scale emission, allowing us to confirm the persistence, size, and shape of the black hole shadow, and constrain the intrinsic structural variability of the accretion flow. We have confirmed the presence of an asymmetric ring structure, brighter in the southwest, with a median diameter of 43.3-3.1+1.5 μas. The diameter of the 2018 ring is remarkably consistent with the diameter obtained from the previous 2017 observations. On the other hand, the position angle of the brightness asymmetry in 2018 is shifted by about 30 relative to 2017. The perennial persistence of the ring and its diameter robustly support the interpretation that the ring is formed by lensed emission surrounding a Kerr black hole with a mass ∼6.5× 109M. The significant change in the ring brightness asymmetry implies a spin axis that is more consistent with the position angle of the large-scale jet.
  •  
19.
  • Alberdi, Antxon, et al. (författare)
  • The jet of the Low Luminosity AGN of M81. Evidence of Precession
  • 2013
  • Ingår i: EPJ Web of Conferences. - : EDP Sciences. - 2101-6275 .- 2100-014X. ; 61
  • Konferensbidrag (refereegranskat)abstract
    • In this contribution, we summarize our main results of a big campaign of global VLBI observations of the AGN in M81 (M81*) phase-referenced to the radio supernova SN 1993J. Thanks to the precise multi-epoch and multi-frequency astrometry, we have determined the normalized core-shift of the relativistic jet of M81* and estimated both the magnetic field and the particle density at the jet base. We have also found evidence of jet precession in M81* coming from the systematic time evolution of the jet orientation correlated with changes in the overall flux density.
  •  
20.
  • Algaba, Juan-Carlos, et al. (författare)
  • Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign
  • 2021
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 911:1
  • Forskningsöversikt (refereegranskat)abstract
    • In 2017, the Event Horizon Telescope (EHT) Collaboration succeeded in capturing the first direct image of the center of the M87 galaxy. The asymmetric ring morphology and size are consistent with theoretical expectations for a weakly accreting supermassive black hole of mass ∼6.5 × 109 M o˙. The EHTC also partnered with several international facilities in space and on the ground, to arrange an extensive, quasi-simultaneous multi-wavelength campaign. This Letter presents the results and analysis of this campaign, as well as the multi-wavelength data as a legacy data repository. We captured M87 in a historically low state, and the core flux dominates over HST-1 at high energies, making it possible to combine core flux constraints with the more spatially precise very long baseline interferometry data. We present the most complete simultaneous multi-wavelength spectrum of the active nucleus to date, and discuss the complexity and caveats of combining data from different spatial scales into one broadband spectrum. We apply two heuristic, isotropic leptonic single-zone models to provide insight into the basic source properties, but conclude that a structured jet is necessary to explain M87's spectrum. We can exclude that the simultaneous γ-ray emission is produced via inverse Compton emission in the same region producing the EHT mm-band emission, and further conclude that the γ-rays can only be produced in the inner jets (inward of HST-1) if there are strongly particle-dominated regions. Direct synchrotron emission from accelerated protons and secondaries cannot yet be excluded.
  •  
21.
  • Baldi, R. D., et al. (författare)
  • LeMMINGs - I. The eMERLIN legacy survey of nearby galaxies. 1.5-GHz parsec-scale radio structures and cores
  • 2018
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 476:3, s. 3478-3522
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first data release of high-resolution (≤0.2 arcsec) 1.5-GHz radio images of 103 nearby galaxies from the Palomar sample, observed with the eMERLIN array, as part of the LeMMINGs survey. This sample includes galaxies which are active (low-ionization nuclear emission-line regions [LINER] and Seyfert) and quiescent (H II galaxies and absorption line galaxies, ALGs), which are reclassified based upon revised emission-line diagrams.We detect radio emission ≳0.2 mJy for 47/103 galaxies (22/34 for LINERS, 4/4 for Seyferts, 16/51 for HII galaxies, and 5/14 for ALGs) with radio sizes typically of ≲100 pc. We identify the radio core position within the radio structures for 41 sources. Half of the sample shows jetted morphologies. The remaining half shows single radio cores or complex morphologies. LINERs show radio structures more core-brightened than Seyferts. Radio luminosities of the sample range from 1032to 1040erg s-1: LINERs and HII galaxies show the highest and lowest radio powers, respectively, while ALGs and Seyferts have intermediate luminosities. We find that radio core luminosities correlate with black hole (BH) mass down to ~107M⊙, but a break emerges at lower masses. Using [OIII] line luminosity as a proxy for the accretion luminosity, active nuclei and jetted HII galaxies follow an optical Fundamental Plane of BH activity, suggesting a common disc-jet relationship. In conclusion, LINER nuclei are the scaled-down version of FR I radio galaxies; Seyferts show less collimated jets; HII galaxies may host weak active BHs and/or nuclear star-forming cores; and recurrent BH activity may account for ALG properties.
  •  
22.
  • Baldi, R. D., et al. (författare)
  • LeMMINGs - II. The e-MERLIN legacy survey of nearby galaxies. The deepest radio view of the Palomar sample on parsec scale
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 500:4, s. 4749-4767
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the second data release of high-resolution (≤0.2 arcsec) 1.5-GHz radio images of 177 nearby galaxies from the Palomar sample, observed with the e-MERLIN array, as part of the Legacy e-MERLIN Multi-band Imaging of Nearby Galaxies Sample (LeMMINGs) survey. Together with the 103 targets of the first LeMMINGs data release, this represents a complete sample of 280 local active (LINER and Seyfert) and inactive galaxies (H ii galaxies and absorption line galaxies, ALG). This large program is the deepest radio survey of the local Universe, ≳1017.6 W Hz-1, regardless of the host and nuclear type: we detect radio emission ≳0.25 mJy beam-1 for 125/280 galaxies (44.6 per cent) with sizes of typically ≲100 pc. Of those 125, 106 targets show a core which coincides within 1.2 arcsec with the optical nucleus. Although we observed mostly cores, around one third of the detected galaxies features jetted morphologies. The detected radio core luminosities of the sample range between ∼1034 and 1040 erg s-1. LINERs and Seyferts are the most luminous sources, whereas H ii galaxies are the least. LINERs show FR I-like core-brightened radio structures while Seyferts reveal the highest fraction of symmetric morphologies. The majority of H ii galaxies have single radio core or complex extended structures, which probably conceal a nuclear starburst and/or a weak active nucleus (seven of them show clear jets). ALGs, which are typically found in evolved ellipticals, although the least numerous, exhibit on average the most luminous radio structures, similar to LINERs.
  •  
23.
  • Baldi, R. D., et al. (författare)
  • LeMMINGs III. The e-MERLIN legacy survey of the Palomar sample: Exploring the origin of nuclear radio emission in active and inactive galaxies through the [O iii] - Radio connection
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 508:2, s. 2019-2038
  • Tidskriftsartikel (refereegranskat)abstract
    • What determines the nuclear radio emission in local galaxies? To address this question, we combine optical [O iii] line emission, robust black hole (BH) mass estimates, and high-resolution e-MERLIN 1.5-GHz data, from the LeMMINGs survey, of a statistically complete sample of 280 nearby optically active (LINER and Seyfert) and inactive [H ii and absorption line galaxies (ALGs)] galaxies. Using [O iii] luminosity (L[O III]) as a proxy for the accretion power, local galaxies follow distinct sequences in the optical-radio planes of BH activity, which suggest different origins of the nuclear radio emission for the optical classes. The 1.5-GHz radio luminosity of their parsec-scale cores (Lcore) is found to scale with BH mass (MBH) and [O iii] luminosity. Below MBH ∼106.5 M⊙, stellar processes from non-jetted H ii galaxies dominate with Lcore ∝ MBH0.61 ± 0.33 and Lcore ∝ L[O III]0.79 ± 0.30. Above MBH ∼106.5 M⊙, accretion-driven processes dominate with Lcore ∝ MBH1.5-1.65 and Lcore ∝ L[O III]0.99-1.31 for active galaxies: radio-quiet/loud LINERs, Seyferts, and jetted H ii galaxies always display (although low) signatures of radio-emitting BH activity, with L1.5 GHz ≳ 1019.8 W Hz-1 and MBH ≳ 107 M⊙, on a broad range of Eddington-scaled accretion rates (m). Radio-quiet and radio-loud LINERs are powered by low-m discs launching sub-relativistic and relativistic jets, respectively. Low-power slow jets and disc/corona winds from moderately high to high-m discs account for the compact and edge-brightened jets of Seyferts, respectively. Jetted H ii galaxies may host weakly active BHs. Fuel-starved BHs and recurrent activity account for ALG properties. In conclusion, specific accretion-ejection states of active BHs determine the radio production and the optical classification of local active galaxies.
  •  
24.
  • Beswick, R. J., et al. (författare)
  • SKA studies of nearby galaxies: Star-formation, accretion processes and molecular gas across all environments
  • 2014
  • Ingår i: Proceedings of Science. - 1824-8039. ; 9-13-June-2014
  • Konferensbidrag (refereegranskat)abstract
    • The SKA will be a transformational instrument in the study of our local Universe. In particular, by virtue of its high sensitivity (both to point sources and diffuse low surface brightness emission), angular resolution and the frequency ranges covered, the SKA will undertake a very wide range of astrophysical research in the field of nearby galaxies. By surveying vast numbers of nearby galaxies of all types with mJy sensitivity and sub-arcsecond angular resolutions at radio wavelengths, the SKA will provide the cornerstone of our understanding of star-formation and accretion activity in the local Universe. In this chapter we outline the key continuum and molecular line science areas where the SKA, both during phase-1 and when it becomes the full SKA, will have a significant scientific impact.
  •  
25.
  • Broderick, Avery E., et al. (författare)
  • Characterizing and Mitigating Intraday Variability: Reconstructing Source Structure in Accreting Black Holes with mm-VLBI
  • 2022
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The extraordinary physical resolution afforded by the Event Horizon Telescope has opened a window onto the astrophysical phenomena unfolding on horizon scales in two known black holes, M87* and Sgr A*. However, with this leap in resolution has come a new set of practical complications. Sgr A* exhibits intraday variability that violates the assumptions underlying Earth aperture synthesis, limiting traditional image reconstruction methods to short timescales and data sets with very sparse (u, v) coverage. We present a new set of tools to detect and mitigate this variability. We develop a data-driven, model-agnostic procedure to detect and characterize the spatial structure of intraday variability. This method is calibrated against a large set of mock data sets, producing an empirical estimator of the spatial power spectrum of the brightness fluctuations. We present a novel Bayesian noise modeling algorithm that simultaneously reconstructs an average image and statistical measure of the fluctuations about it using a parameterized form for the excess variance in the complex visibilities not otherwise explained by the statistical errors. These methods are validated using a variety of simulated data, including general relativistic magnetohydrodynamic simulations appropriate for Sgr A* and M87*. We find that the reconstructed source structure and variability are robust to changes in the underlying image model. We apply these methods to the 2017 EHT observations of M87*, finding evidence for variability across the EHT observing campaign. The variability mitigation strategies presented are widely applicable to very long baseline interferometry observations of variable sources generally, for which they provide a data-informed averaging procedure and natural characterization of inter-epoch image consistency.
  •  
26.
  • Broderick, Avery E., et al. (författare)
  • THEMIS: A Parameter Estimation Framework for the Event Horizon Telescope
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 897:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Event Horizon Telescope (EHT) provides the unprecedented ability to directly resolve the structure and dynamics of black hole emission regions on scales smaller than their horizons. This has the potential to critically probe the mechanisms by which black holes accrete and launch outflows, and the structure of supermassive black hole spacetimes. However, accessing this information is a formidable analysis challenge for two reasons. First, the EHT natively produces a variety of data types that encode information about the image structure in nontrivial ways; these are subject to a variety of systematic effects associated with very long baseline interferometry and are supplemented by a wide variety of auxiliary data on the primary EHT targets from decades of other observations. Second, models of the emission regions and their interaction with the black hole are complex, highly uncertain, and computationally expensive to construct. As a result, the scientific utilization of EHT observations requires a flexible, extensible, and powerful analysis framework. We present such a framework, Themis, which defines a set of interfaces between models, data, and sampling algorithms that facilitates future development. We describe the design and currently existing components of Themis, how Themis has been validated thus far, and present additional analyses made possible by Themis that illustrate its capabilities. Importantly, we demonstrate that Themis is able to reproduce prior EHT analyses, extend these, and do so in a computationally efficient manner that can efficiently exploit modern high-performance computing facilities. Themis has already been used extensively in the scientific analysis and interpretation of the first EHT observations of M87.
  •  
27.
  • Costagliola, Francesco, 1981, et al. (författare)
  • Molecules as Tracers of Galaxy Evolution
  • 2011
  • Ingår i: EAS Publications Series. ; 52, s. 285-
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)
  •  
28.
  • Costagliola, Francesco, 1981, et al. (författare)
  • Molecules as tracers of galaxy evolution: an EMIR survey I. Presentation of the data and first results
  • 2011
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 528
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We investigate the molecular gas properties of a sample of 23 galaxies in order to find and test chemical signatures of galaxy evolution and to compare them to IR evolutionary tracers. Methods. Observation at 3 mm wavelengths were obtained with the EMIR broadband receiver, mounted on the IRAM 30 m telescope on Pico Veleta, Spain. We compare the emission of the main molecular species with existing models of chemical evolution by means of line intensity ratios diagrams and principal component analysis. Results. We detect molecular emission in 19 galaxies in two 8 GHz-wide bands centred at 88 and 112 GHz. The main detected molecules are CO, (CO)-C-13, HCN, HNC, HCO+, CN, and C2H. We also detect HC3N J = 10-9 in the galaxies IRAS 17208, IC 860, NGC 4418, NGC 7771, and NGC 1068. The only HC3N detections are in objects with HCO+/HCN 0.8). The brightest HC3N emission is found in IC 860, where we also detect the molecule in its vibrationally excited state. We find low HNC/HCN line ratios (
  •  
29.
  • Costagliola, Francesco, 1981, et al. (författare)
  • Radio continuum and X-ray emission from the most extreme far-IR-excess galaxy NGC 1377: An extremely obscured AGN revealed
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 594, s. A114-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Galaxies which strongly deviate from the radio-far infrared (FIR) correlation are of great importance for studies of galaxy evolution as they may be tracing early, short-lived stages of starbursts and active galactic nuclei (AGNs). The most extreme FIR-excess galaxy NGC 1377 has long been interpreted as a young dusty starburst, but millimeter observations of CO lines revealed a powerful collimated molecular outflow which cannot be explained by star formation alone. Aims. This paper aims to determine the nature of the energy source in the nucleus of NGC 1377 and to study the driving mechanism of the collimated CO outflow. Methods. We present new radio observations of NGC 1377 at 1.5 and 10 GHz obtained with the Jansky Very Large Array (JVLA) and Chandra X-ray observations. The observations are compared to synthetic starburst models to constrain the properties of the central energy source. Results. We obtained the first detection of the cm radio continuum and X-ray emission in NGC 1377. We found that the radio emission is distributed in two components, one on the nucleus and another offset by 4?5 to the south-west. We confirm the extreme FIR-excess of the galaxy, with a qFIR ? 4.2, which deviates by more than 7? from the radio-FIR correlation. Soft X-ray emission is detected on the off-nucleus component. From the radio emission we estimated for a young (
  •  
30.
  • Dullo, B. T., et al. (författare)
  • LeMMINGs. VI. Connecting nuclear activity to bulge properties of active and inactive galaxies: radio scaling relations and galaxy environment
  • 2023
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 522:3, s. 3412-3438
  • Tidskriftsartikel (refereegranskat)abstract
    • Multiwavelength studies indicate that nuclear activity and bulge properties are closely related, but the details remain unclear. To study this further, we combine Hubble Space Telescope bulge structural and photometric properties with 1.5 GHz, e-MERLIN nuclear radio continuum data from the LeMMINGs survey for a large sample of 173 'active' galaxies (LINERs and Seyferts) and 'inactive' galaxies (H IIs and absorption line galaxies, ALGs). Dividing our sample into active and inactive, they define distinct (radio core luminosity)-(bulge mass), LR,core − M∗,bulge, relations, with a mass turnover at M∗,bulge ∼ 109.8±0.3M☉ (supermassive blackhole mass MBH ∼ 106.8±0.3M☉), which marks the transition from AGN-dominated nuclear radio emission in more massive bulges to that mainly driven by stellar processes in low-mass bulges. None of our 10/173 bulge-less galaxies host an AGN. The AGN fraction increases with increasing M∗,bulge such that foptical_AGN ∝ M∗,bulge0.24±0.06 and fradio_AGN ∝ M∗,bulge0.24±0.05. Between M∗,bulge ∼ 108.5 and 1011.3M☉, foptical_AGN steadily rises from 15 ± 4 to 80 ± 5 per cent. We find that at fixed bulge mass, the radio loudness, nuclear radio activity, and the (optical and radio) AGN fraction exhibit no dependence on environment. Radio-loud hosts preferentially possess an early-type morphology than radio-quiet hosts, the two types are however indistinguishable in terms of bulge Sérsic index and ellipticity, while results on the bulge inner logarithmic profile slope are inconclusive. We finally discuss the importance of bulge mass in determining the AGN triggering processes, including potential implications for the nuclear radio emission in nearby galaxies.
  •  
31.
  • Eatough, Ralph P., et al. (författare)
  • Verification of Radiative Transfer Schemes for the EHT
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 897:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Event Horizon Telescope (EHT) Collaboration has recently produced the first resolved images of the central supermassive black hole in the giant elliptical galaxy M87. Here we report on tests of the consistency and accuracy of the general relativistic radiative transfer codes used within the collaboration to model M87∗ and Sgr A∗. We compare and evaluate (1) deflection angles for equatorial null geodesics in a Kerr spacetime; (2) images calculated from a series of simple, parameterized matter distributions in the Kerr metric using simplified emissivities and absorptivities; (3) for a subset of codes, images calculated from general relativistic magnetohydrodynamics simulations using different realistic synchrotron emissivities and absorptivities; (4) observables for the 2017 configuration of EHT, including visibility amplitudes and closure phases. The error in total flux is of order 1% when the codes are run with production numerical parameters. The dominant source of discrepancies for small camera distances is the location and detailed setup of the software "camera"that each code uses to produce synthetic images. We find that when numerical parameters are suitably chosen and the camera is sufficiently far away the images converge and that for given transfer coefficients, numerical uncertainties are unlikely to limit parameter estimation for the current generation of EHT observations. The purpose of this paper is to describe a verification and comparison of EHT radiative transfer codes. It is not to verify EHT models more generally.
  •  
32.
  • Farah, Joseph, et al. (författare)
  • Selective Dynamical Imaging of Interferometric Data
  • 2022
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent developments in very long baseline interferometry (VLBI) have made it possible for the Event Horizon Telescope (EHT) to resolve the innermost accretion flows of the largest supermassive black holes on the sky. The sparse nature of the EHT's (u, v)-coverage presents a challenge when attempting to resolve highly time-variable sources. We demonstrate that the changing (u, v)-coverage of the EHT can contain regions of time over the course of a single observation that facilitate dynamical imaging. These optimal time regions typically have projected baseline distributions that are approximately angularly isotropic and radially homogeneous. We derive a metric of coverage quality based on baseline isotropy and density that is capable of ranking array configurations by their ability to produce accurate dynamical reconstructions. We compare this metric to existing metrics in the literature and investigate their utility by performing dynamical reconstructions on synthetic data from simulated EHT observations of sources with simple orbital variability. We then use these results to make recommendations for imaging the 2017 EHT Sgr A* data set.
  •  
33.
  • Georgiev, Boris, et al. (författare)
  • A Universal Power-law Prescription for Variability from Synthetic Images of Black Hole Accretion Flows
  • 2022
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a framework for characterizing the spatiotemporal power spectrum of the variability expected from the horizon-scale emission structure around supermassive black holes, and we apply this framework to a library of general relativistic magnetohydrodynamic (GRMHD) simulations and associated general relativistic ray-traced images relevant for Event Horizon Telescope (EHT) observations of Sgr A*. We find that the variability power spectrum is generically a red-noise process in both the temporal and spatial dimensions, with the peak in power occurring on the longest timescales and largest spatial scales. When both the time-averaged source structure and the spatially integrated light-curve variability are removed, the residual power spectrum exhibits a universal broken power-law behavior. On small spatial frequencies, the residual power spectrum rises as the square of the spatial frequency and is proportional to the variance in the centroid of emission. Beyond some peak in variability power, the residual power spectrum falls as that of the time-averaged source structure, which is similar across simulations; this behavior can be naturally explained if the variability arises from a multiplicative random field that has a steeper high-frequency power-law index than that of the time-averaged source structure. We briefly explore the ability of power spectral variability studies to constrain physical parameters relevant for the GRMHD simulations, which can be scaled to provide predictions for black holes in a range of systems in the optically thin regime. We present specific expectations for the behavior of the M87* and Sgr A* accretion flows as observed by the EHT.
  •  
34.
  • Goddi, Ciriaco, et al. (författare)
  • Polarimetric Properties of Event Horizon Telescope Targets from ALMA
  • 2021
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 910:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results from a full polarization study carried out with the Atacama Large Millimeter/submillimeter Array (ALMA) during the first Very Long Baseline Interferometry (VLBI) campaign, which was conducted in 2017 April in the lambda 3 mm and lambda 1.3 mm bands, in concert with the Global mm-VLBI Array (GMVA) and the Event Horizon Telescope (EHT), respectively. We determine the polarization and Faraday properties of all VLBI targets, including Sgr A*, M87, and a dozen radio-loud active galactic nuclei (AGNs), in the two bands at several epochs in a time window of 10 days. We detect high linear polarization fractions (2%-15%) and large rotation measures (RM > 10(3.3)-10(5.5) rad m(-2)), confirming the trends of previous AGN studies at millimeter wavelengths. We find that blazars are more strongly polarized than other AGNs in the sample, while exhibiting (on average) order-of-magnitude lower RM values, consistent with the AGN viewing angle unification scheme. For Sgr A* we report a mean RM of (-4.2 0.3) x 10(5) rad m(-2) at 1.3 mm, consistent with measurements over the past decade and, for the first time, an RM of (-2.1 0.1) x 10(5) rad m(-2) at 3 mm, suggesting that about half of the Faraday rotation at 1.3 mm may occur between the 3 mm photosphere and the 1.3 mm source. We also report the first unambiguous measurement of RM toward the M87 nucleus at millimeter wavelengths, which undergoes significant changes in magnitude and sign reversals on a one year timescale, spanning the range from -1.2 to 0.3 x 10(5) rad m(-2) at 3 mm and -4.1 to 1.5 x 10(5) rad m(-2) at 1.3 mm. Given this time variability, we argue that, unlike the case of Sgr A*, the RM in M87 does not provide an accurate estimate of the mass accretion rate onto the black hole. We put forward a two-component model, comprised of a variable compact region and a static extended region, that can simultaneously explain the polarimetric properties observed by both the EHT (on horizon scales) and ALMA (which observes the combined emission from both components). These measurements provide critical constraints for the calibration, analysis, and interpretation of simultaneously obtained VLBI data with the EHT and GMVA.
  •  
35.
  • Hartley, Philippa, et al. (författare)
  • SKA Science Data Challenge 2: analysis and results
  • 2023
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 523:2, s. 1967-1993
  • Tidskriftsartikel (refereegranskat)abstract
    • The Square Kilometre Array Observatory (SKAO) will explore the radio sky to new depths in order to conduct transformational science. SKAO data products made available to astronomers will be correspondingly large and complex, requiring the application of advanced analysis techniques to extract key science findings. To this end, SKAO is conducting a series of Science Data Challenges, each designed to familiarize the scientific community with SKAO data and to drive the development of new analysis techniques. We present the results from Science Data Challenge 2 (SDC2), which invited participants to find and characterize 233 245 neutral hydrogen (H i) sources in a simulated data product representing a 2000 h SKA-Mid spectral line observation from redshifts 0.25-0.5. Through the generous support of eight international supercomputing facilities, participants were able to undertake the Challenge using dedicated computational resources. Alongside the main challenge, 'reproducibility awards' were made in recognition of those pipelines which demonstrated Open Science best practice. The Challenge saw over 100 participants develop a range of new and existing techniques, with results that highlight the strengths of multidisciplinary and collaborative effort. The winning strategy - which combined predictions from two independent machine learning techniques to yield a 20 per cent improvement in overall performance - underscores one of the main Challenge outcomes: that of method complementarity. It is likely that the combination of methods in a so-called ensemble approach will be key to exploiting very large astronomical data sets.
  •  
36.
  • Issaoun, Sara, et al. (författare)
  • Resolving the Inner Parsec of the Blazar J1924-2914 with the Event Horizon Telescope
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 934:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The blazar J1924-2914 is a primary Event Horizon Telescope (EHT) calibrator for the Galactic center's black hole Sagittarius A*. Here we present the first total and linearly polarized intensity images of this source obtained with the unprecedented 20 mu as resolution of the EHT. J1924-2914 is a very compact flat-spectrum radio source with strong optical variability and polarization. In April 2017 the source was observed quasi-simultaneously with the EHT (April 5-11), the Global Millimeter VLBI Array (April 3), and the Very Long Baseline Array (April 28), giving a novel view of the source at four observing frequencies, 230, 86, 8.7, and 2.3 GHz. These observations probe jet properties from the subparsec to 100 pc scales. We combine the multifrequency images of J1924-2914 to study the source morphology. We find that the jet exhibits a characteristic bending, with a gradual clockwise rotation of the jet projected position angle of about 90 degrees between 2.3 and 230 GHz. Linearly polarized intensity images of J1924-2914 with the extremely fine resolution of the EHT provide evidence for ordered toroidal magnetic fields in the blazar compact core.
  •  
37.
  • Janssen, Michael, et al. (författare)
  • Event Horizon Telescope observations of the jet launching and collimation in Centaurus A
  • 2021
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 5:10, s. 1017-1028
  • Tidskriftsartikel (refereegranskat)abstract
    • Very-long-baseline interferometry (VLBI) observations of active galactic nuclei at millimetre wavelengths have the power to reveal the launching and initial collimation region of extragalactic radio jets, down to 10–100 gravitational radii (rg ≡ GM/c2) scales in nearby sources1. Centaurus A is the closest radio-loud source to Earth2. It bridges the gap in mass and accretion rate between the supermassive black holes (SMBHs) in Messier 87 and our Galactic Centre. A large southern declination of −43° has, however, prevented VLBI imaging of Centaurus A below a wavelength of 1 cm thus far. Here we show the millimetre VLBI image of the source, which we obtained with the Event Horizon Telescope at 228 GHz. Compared with previous observations3, we image the jet of Centaurus A at a tenfold higher frequency and sixteen times sharper resolution and thereby probe sub-lightday structures. We reveal a highly collimated, asymmetrically edge-brightened jet as well as the fainter counterjet. We find that the source structure of Centaurus A resembles the jet in Messier 87 on ~500 rg scales remarkably well. Furthermore, we identify the location of Centaurus A’s SMBH with respect to its resolved jet core at a wavelength of 1.3 mm and conclude that the source’s event horizon shadow4 should be visible at terahertz frequencies. This location further supports the universal scale invariance of black holes over a wide range of masses5,6.
  •  
38.
  • Jorstad, S.G., et al. (författare)
  • The Event Horizon Telescope Image of the Quasar NRAO 530
  • 2023
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 943:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the observations of the quasar NRAO 530 with the Event Horizon Telescope (EHT) on 2017 April 5-7, when NRAO 530 was used as a calibrator for the EHT observations of Sagittarius A*. At z = 0.902, this is the most distant object imaged by the EHT so far. We reconstruct the first images of the source at 230 GHz, at an unprecedented angular resolution of similar to 20 mu as, both in total intensity and in linear polarization (LP). We do not detect source variability, allowing us to represent the whole data set with static images. The images reveal a bright feature located on the southern end of the jet, which we associate with the core. The feature is linearly polarized, with a fractional polarization of similar to 5%-8%, and it has a substructure consisting of two components. Their observed brightness temperature suggests that the energy density of the jet is dominated by the magnetic field. The jet extends over 60 mu as along a position angle similar to -28 degrees. It includes two features with orthogonal directions of polarization (electric vector position angle), parallel and perpendicular to the jet axis, consistent with a helical structure of the magnetic field in the jet. The outermost feature has a particularly high degree of LP, suggestive of a nearly uniform magnetic field. Future EHT observations will probe the variability of the jet structure on microarcsecond scales, while simultaneous multiwavelength monitoring will provide insight into the high-energy emission origin.
  •  
39.
  • Kim, Jae-Young, et al. (författare)
  • Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 640
  • Tidskriftsartikel (refereegranskat)abstract
    • 3C 279 is an archetypal blazar with a prominent radio jet that show broadband flux density variability across the entire electromagnetic spectrum. We use an ultra-high angular resolution technique - global Very Long Baseline Interferometry (VLBI) at 1.3mm (230 GHz) - to resolve the innermost jet of 3C 279 in order to study its fine-scale morphology close to the jet base where highly variable-ray emission is thought to originate, according to various models. The source was observed during four days in April 2017 with the Event Horizon Telescope at 230 GHz, including the phased Atacama Large Millimeter/submillimeter Array, at an angular resolution of ∼20 μas (at a redshift of z = 0:536 this corresponds to ∼0:13 pc ∼ 1700 Schwarzschild radii with a black hole mass MBH = 8 × 108 M⊙). Imaging and model-fitting techniques were applied to the data to parameterize the fine-scale source structure and its variation.We find a multicomponent inner jet morphology with the northernmost component elongated perpendicular to the direction of the jet, as imaged at longer wavelengths. The elongated nuclear structure is consistent on all four observing days and across diffierent imaging methods and model-fitting techniques, and therefore appears robust. Owing to its compactness and brightness, we associate the northern nuclear structure as the VLBI "core". This morphology can be interpreted as either a broad resolved jet base or a spatially bent jet.We also find significant day-to-day variations in the closure phases, which appear most pronounced on the triangles with the longest baselines. Our analysis shows that this variation is related to a systematic change of the source structure. Two inner jet components move non-radially at apparent speeds of ∼15 c and ∼20 c (∼1:3 and ∼1:7 μas day-1, respectively), which more strongly supports the scenario of traveling shocks or instabilities in a bent, possibly rotating jet. The observed apparent speeds are also coincident with the 3C 279 large-scale jet kinematics observed at longer (cm) wavelengths, suggesting no significant jet acceleration between the 1.3mm core and the outer jet. The intrinsic brightness temperature of the jet components are ≤1010 K, a magnitude or more lower than typical values seen at ≥7mm wavelengths. The low brightness temperature and morphological complexity suggest that the core region of 3C 279 becomes optically thin at short (mm) wavelengths.
  •  
40.
  • Lucatelli, Geferson, et al. (författare)
  • The PARADIGM project I: a multiscale radio morphological analysis of local U/LIRGS
  • 2024
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 529:4, s. 4468-4499
  • Tidskriftsartikel (refereegranskat)abstract
    • Disentangling the radio flux contribution from star formation (SF) and active-galactic-nuclei (AGNs) activity is a long-standing problem in extragalactic astronomy, since at frequencies of 10 GHz, both processes emit synchrotron radiation. We present in this work the general objectives of the PARADIGM (PAnchromatic high-Resolution Analysis of DIstant Galaxy Mergers) project, a multi-instrument concept to explore SF and mass assembly of galaxies. We introduce two novel general approaches for a detailed multiscale study of the radio emission in local (ultra) luminous infrared galaxies (U/LIRGs). In this work, we use archival interferometric data from the Very Large Array (VLA) centred at ∼6 GHz (C band) and present new observations from the e-Multi-Element Radio-Linked Interferometer Network (e-MERLIN) for UGC 5101, VV 705, VV 250, and UGC 8696. Using our image decomposition methods, we robustly disentangle the radio emission into distinct components by combining information from the two interferometric arrays. We use e-MERLIN as a probe of the core-compact radio emission (AGN or starburst) at ∼20 pc scales, and as a probe of nuclear diffuse emission, at scales ∼100-200 pc. With VLA, we characterize the source morphology and the flux density on scales from ∼200 pc up to and above 1 kpc. As a result, we find deconvolved and convolved sizes for nuclear regions from ∼10 to ∼200 pc. At larger scales, we find sizes of 1.5-2 kpc for diffuse structures (with effective sizes of ∼300-400 pc). We demonstrate that the radio emission from nuclear extended structures (∼100 pc) can dominate over core-compact components, providing a significant fraction of the total multiscale SF output. We establish a multiscale radio tracer for SF by combining information from different instruments. Consequently, this work sets a starting point to potentially correct for overestimations of AGN fractions and underestimates of SF activity.
  •  
41.
  • Lundqvist, Peter, et al. (författare)
  • The Deepest Radio Observations of Nearby SNe Ia : Constraining Progenitor Types and Optimizing Future Surveys
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 890:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report deep radio observations of nearby Type Ia supernovae (SNe Ia) with the electronic Multi-Element Radio Linked Interferometer Network and the Australia Telescope Compact Array. No detections were made. With standard assumptions for the energy densities of relativistic electrons going into a power-law energy distribution and the magnetic field strength (epsilon(e) = epsilon(B)=.0.1), we arrive at upper limits on mass-loss rate for the progenitor system of SN.2013dy.(SN 2016coj, SN 2018gv, SN 2018pv, SN 2019np) of M less than or similar to 12 (2.8, 1.3, 2.1, 1.7) x 10(-8) M-circle dot yr(-1) (v(w)/100 km s-(1)), where v(w) is the wind speed of the mass loss. To SN.2016coj, SN 2018gv, SN 2018pv, and SN 2019np we add radio data for 17 other nearby SNe.Ia and model their nondetections. With the same model as described, all 21 SNe Ia have M less than or similar to 4 x 10(-8) M-circle dot yr(-1) (v(w)/ 100 km s(-1)). We compare those limits with the expected mass-loss rates in different single-degenerate progenitor scenarios. We also discuss how information on oe and oB can be obtained from late observations of SNe.Ia and the youngest SN.Ia remnant detected in radio, G1.9+0.3, as well as strippedenvelope core-collapse SNe. We highlight SN.2011dh and argue for epsilon e approximate to 0.1 and epsilon(B) approximate to 0.0033. Finally, we discuss strategies to observe at radio frequencies to maximize the chance of detection, given the time since explosion, the distance to the SN, and the telescope sensitivity.
  •  
42.
  • Marti-Vidal, Ivan, 1980, et al. (författare)
  • Detection of jet precession in the active nucleus of M 81
  • 2011
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 533
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on very-long-baseline-interferometry (VLBI) monitoring observations of the low-luminosity active galactic nucleus (LLAGN) in the galaxy M 81 at the frequencies of 1.7, 2.3, 5.0, and 8.4 GHz. The observations reported here are phase-referenced to the supernova SN 1993J (located in the same galaxy) and cover from late 1993 to late 2005. The large amount of available observations allows us to study the stability of the AGN position in the frame of its host galaxy at different frequencies and chromatic effects in the jet morphology, together with their time evolution. The source consists at all frequencies of a slightly resolved core and a small jet extension towards the northeast direction (position angle of ~65 degrees) in agreement with previous publications. We find that the position of the intensity peak in the images at 8.4 GHz is very stable in the galactic frame of M 81 (proper motion upper limit about 10 μas per year). We confirm previous reports that the peaks at all frequencies are systematically shifted among them, possibly due to opacity effects in the jet as predicted by the standard relativistic jet model. We use this model, under plausible assumptions, to estimate the magnetic field in the jet close to the jet base and the mass of the central black hole. We obtain a black-hole mass of ~2 × 107 M âŠ(tm), comparable to estimates previously reported using different approaches, but the magnetic fields obtained are 10 3-104 times lower than previous estimates. We find that the positions of the cores at 1.7, 2.3, and 5.0 GHz are less stable than that at 8.4 GHz and evolve systematically, shifting southward at a rate of several tens of μas per year. The evolution in the jet orientation seems to be related to changes in the inclination of the cores at all frequencies. These results can be interpreted as due to a precessing jet. The evolving jet orientation also seems to be related to a flare in the peak flux densities at 5.0 and 8.4 GHz, which lasts ~4 years (from mid 1997 to mid 2001). An increase in the accretion rate of the black hole, and its correlation with the jet luminosity via the disk-jet connection model, seems insufficient to explain this long flare and the simultaneous evolution in the jet orientation. A continued monitoring of the flux density and the jet structure evolution in this LLAGN will be necessary to further confirm our jet precession model. © 2011 ESO.
  •  
43.
  • Marti-Vidal, Ivan, 1980, et al. (författare)
  • Jet precession in the active nucleus of M81. Ongoing VLBI monitoring
  • 2012
  • Ingår i: Proceedings of Science. - 1824-8039. ; 2012-October
  • Konferensbidrag (refereegranskat)abstract
    • In a recent publication, we reported results of a multi-frequency VLBI campaign of observations of the Active Galactic Nucleus (AGN) in galaxy M\,81, phase-referenced to the supernova SN\,1993J. We were able to extract precise information on the relative astrometry of the AGN radio emission at different epochs and frequencies. We found strong evidence of precession in the AGN jet (i.e., a systematic evolution in the jet inclination at each frequency) coupled to changes in the overall flux density at the different frequencies. In these proceedings, we summarise the main contents of our previous publication and we report on (preliminary) new results from our follow-up VLBI observations, now phase-referenced to the young supernova SN2008iz. We also briefly discuss how these results match the picture of our previously-reported precession model.
  •  
44.
  • Marti-Vidal, Ivan, 1980, et al. (författare)
  • Radio emission of SN1993J: The complete picture: II. Simultaneous fit of expansion and radio light curves
  • 2011
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 526:18
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on a simultaneous modelling of the expansion and radio light curves of the supernova SN1993J. We developed a simulation code capable of generating synthetic expansion and radio light curves of supernovae by taking into consideration the evolution of the expanding shock, magnetic fields, and relativistic electrons, as well as the finite sensitivity of the interferometric arrays used in the observations. Our software successfully fits all the available radio data of SN 1993J with a standard emission model for supernovae, which is extended with some physical considerations, such as an evolution in the opacity of the ejecta material, a radial decline in the magnetic fields within the radiating region, and a changing radial density profile for the circumstellar medium starting from day 3100 after the explosion. © 2011 ESO.
  •  
45.
  • Mattila, S., et al. (författare)
  • A dust-enshrouded tidal disruption event with a resolved radio jet in a galaxy merger
  • 2018
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 361:6401, s. 482-485
  • Tidskriftsartikel (refereegranskat)abstract
    • Tidal disruption events (TDEs) are transient flares produced when a star is ripped apart by the gravitational field of a supermassive black hole (SMBH). We have observed a transient source in the western nucleus of the merging galaxy pair Arp 299 that radiated >1.5 × 1052erg at infrared and radio wavelengths but was not luminous at optical or x-ray wavelengths. We interpret this as a TDE with much of its emission reradiated at infrared wavelengths by dust. Efficient reprocessing by dense gas and dust may explain the difference between theoretical predictions and observed luminosities of TDEs. The radio observations resolve an expanding and decelerating jet, probing the jet formation and evolution around a SMBH.
  •  
46.
  • Narayan, Ramesh, et al. (författare)
  • The Polarized Image of a Synchrotron-emitting Ring of Gas Orbiting a Black Hole
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 912:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Synchrotron radiation from hot gas near a black hole results in a polarized image. The image polarization is determined by effects including the orientation of the magnetic field in the emitting region, relativistic motion of the gas, strong gravitational lensing by the black hole, and parallel transport in the curved spacetime. We explore these effects using a simple model of an axisymmetric, equatorial accretion disk around a Schwarzschild black hole. By using an approximate expression for the null geodesics derived by Beloborodov and conservation of the Walker-Penrose constant, we provide analytic estimates for the image polarization. We test this model using currently favored general relativistic magnetohydrodynamic simulations of M87*, using ring parameters given by the simulations. For a subset of these with modest Faraday effects, we show that the ring model broadly reproduces the polarimetric image morphology. Our model also predicts the polarization evolution for compact flaring regions, such as those observed from Sgr A* with GRAVITY. With suitably chosen parameters, our simple model can reproduce the EVPA pattern and relative polarized intensity in Event Horizon Telescope images of M87*. Under the physically motivated assumption that the magnetic field trails the fluid velocity, this comparison is consistent with the clockwise rotation inferred from total intensity images.
  •  
47.
  • Perez-Torres, Miguel Angel, et al. (författare)
  • Constraining the progenitor of the type Ia SN 2014J with the EVN and eMERLIN
  • 2014
  • Ingår i: Proceedings of Science. - 1824-8039.
  • Konferensbidrag (refereegranskat)abstract
    • We report the deepest radio interferometric observations of the closest Type Ia supernova in decades, SN 2014J, which exploded in the nearby galaxy M 82. These observations represent, together with radio observations of SNe 2011fe, the most sensitive radio studies of a Type Ia SN ever. We constrain the mass-loss rate from the progenitor system of SN 2014J to M ≲ 7.0 × 10-10 M⊙yr-1 (for a wind speed of 100 km s-1). Most single-degenerate scenarios, i.e., the wide family of progenitor systems where a red giant, main-sequence, or sub-giant star donates mass to a exploding white dwarf, are ruled out by our observations. On the contrary, our stringent upper limits to the radio emission from SN 2014 favor a double-degenerate scenario-involving two WD stars-for the progenitor system of SN 2014J, as such systems have less circumstellar gas than our upper limits. Thus, the evidence from SNe 2011fe and 2014J points in the direction of a double-degenerate scenario for both. Looking into the future, we note that the huge improvement in sensitivity of the SKA with respect to its predecessors will allow us to determine which progenitor scenario (single-degenerate vs. double-degenerate) applies to a large sample of nearby Type Ia SNe, thus unambiguously solving this issue. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.
  •  
48.
  • Perez-Torres, Miguel Angel, et al. (författare)
  • Constraints on the Progenitor System and the Environs of SN 2014J from Deep Radio Observations
  • 2014
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 792:1, s. Art. no. 38-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report deep EVN and eMERLIN observations of the Type Ia SN 2014J in the nearby galaxy M82. Our observations represent, together with JVLA observations of SNe 2011fe and 2014J, the most sensitive radio studies of Type Ia SNe ever. By combining data and a proper modeling of the radio emission, we constrain the mass-loss rate from the progenitor system of SN 2014J to (M) over dot less than or similar to 7.0 x 10(-10) M yr(-1) (for a wind speed of 100 km s(-1)). If the medium around the supernova is uniform, then n(ISM) less than or similar to 1.3 cm(-3), which is the most stringent limit for the (uniform) density around a Type Ia SN. Our deep upper limits favor a double-degenerate (DD) scenario-involving two WD stars-for the progenitor system of SN 2014J, as such systems have less circumstellar gas than our upper limits. By contrast, most single-degenerate (SD) scenarios, i.e., the wide family of progenitor systems where a red giant, main-sequence, or sub-giant star donates mass to an exploding WD, are ruled out by our observations. (While completing our work, we noticed that a paper by Margutti et al. was submitted to The Astrophysical Journal. From a non-detection of X-ray emission from SN 2014J, the authors obtain limits of (M) over dot less than or similar to 1.2 x 10(-9) M-circle dot yr(-1) (for a wind speed of 100 km s(-1)) and n(ISM) less than or similar to 3.5 cm(-3), for the rho proportional to r(-2) wind and constant density cases, respectively. As these limits are less constraining than ours, the findings by Margutti et al. do not alter our conclusions. The X-ray results are, however, important to rule out free-free and synchrotron self-absorption as a reason for the radio non-detections.) Our estimates on the limits on the gas density surrounding SN2011fe, using the flux density limits from Chomiuk et al., agree well with their results. Although we discuss the possibilities of an SD scenario passing observational tests, as well as uncertainties in the modeling of the radio emission, the evidence from SNe 2011fe and 2014J points in the direction of a DD scenario for both.
  •  
49.
  • Perez-Torres, Miguel Angel, et al. (författare)
  • Core-collapse and type ia supernovae with the SKA
  • 2014
  • Ingår i: Proceedings of Science. - 1824-8039. ; 9-13-June-2014
  • Konferensbidrag (refereegranskat)abstract
    • Core-collapse SNe (CCSNe): Systematic searches of radio emission from CCSNe are still lacking, and only targeted searches of radio emission from just some of the optically discovered CCSNe in the local universe have been carried out. Optical searches miss a significant fraction of CCSNe due to dust obscuration; CCSN radio searches are thus more promising for yielding the complete, unobscured star-formation rates in the local universe. The SKA yields the possibility to piggyback for free in this area of research by carrying out commensal, wide-field, blind transient survey observations. SKA1-SUR should be able to discover several hundreds of CCSNe in just one year, compared to about a dozen CCSNe that the VLASS would be able to detect in one year, at most. SKA, with an expected sensitivity ten times that of SKA1, is expected to detect CCSNe in the local Universe by the thousands. Therefore, commensal SKA observations could easily result in an essentially complete census of all CCSNe in the local universe, thus yielding an accurate determination of the volumetric CCSN rate. Type Ia SNe: We advocate for the use of the SKA to search for the putative prompt (first few days after the explosion) radio emission of any nearby type Ia SN, via target-of-opportunity observations. The huge improvement in sensitivity of the SKA with respect to its predecessors will allow to unambiguously discern which progenitor scenario (single-degenerate vs. double-degenerate) applies to them.
  •  
50.
  • Perez-Torres, Miguel Angel, et al. (författare)
  • What is the progenitor of the Type Ia SN 2014J?
  • 2014
  • Ingår i: Proceedings of the 11th Scientific Meeting of the Spanish Astronomical Society - Highlights of Spanish Astrophysics VIII, SEA 2014. ; , s. 540-546
  • Konferensbidrag (refereegranskat)abstract
    • We report the deepest radio interferometric observations of the closest Type Ia supernova in decades, SN 2014J, which exploded in the nearby galaxy M 82. These observations represent, together with radio observations of SNe 2011fe, the most sensitive radio studies of a Type Ia SN ever. We constrain the mass-loss rate from the progenitor system of SN 2014J lower than 7.0 × 10^(−10) M yr^(−1) (for a wind speed of 100 km s^(−1) ). Our deep upper limits favor a double-degenerate scenario–involving two WD stars–for the progenitor system of SN 2014J, as such systems have less circumstellar gas than our upper limits. By contrast, most single-degenerate scenarios, i.e., the wide family of progenitor systems where a red giant, main-sequence, or sub-giant star donates mass to a exploding white dwarf, are ruled out by our observations. The evidence from SNe 2011fe and 2014J points in the direction of a double-degenerate scenario for both.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 68

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy