SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ali Syed Muhammad) "

Search: WFRF:(Ali Syed Muhammad)

  • Result 1-50 of 81
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ademuyiwa, Adesoji O., et al. (author)
  • Determinants of morbidity and mortality following emergency abdominal surgery in children in low-income and middle-income countries
  • 2016
  • In: BMJ Global Health. - : BMJ Publishing Group Ltd. - 2059-7908. ; 1:4
  • Journal article (peer-reviewed)abstract
    • Background: Child health is a key priority on the global health agenda, yet the provision of essential and emergency surgery in children is patchy in resource-poor regions. This study was aimed to determine the mortality risk for emergency abdominal paediatric surgery in low-income countries globally.Methods: Multicentre, international, prospective, cohort study. Self-selected surgical units performing emergency abdominal surgery submitted prespecified data for consecutive children aged <16 years during a 2-week period between July and December 2014. The United Nation's Human Development Index (HDI) was used to stratify countries. The main outcome measure was 30-day postoperative mortality, analysed by multilevel logistic regression.Results: This study included 1409 patients from 253 centres in 43 countries; 282 children were under 2 years of age. Among them, 265 (18.8%) were from low-HDI, 450 (31.9%) from middle-HDI and 694 (49.3%) from high-HDI countries. The most common operations performed were appendectomy, small bowel resection, pyloromyotomy and correction of intussusception. After adjustment for patient and hospital risk factors, child mortality at 30 days was significantly higher in low-HDI (adjusted OR 7.14 (95% CI 2.52 to 20.23), p<0.001) and middle-HDI (4.42 (1.44 to 13.56), p=0.009) countries compared with high-HDI countries, translating to 40 excess deaths per 1000 procedures performed.Conclusions: Adjusted mortality in children following emergency abdominal surgery may be as high as 7 times greater in low-HDI and middle-HDI countries compared with high-HDI countries. Effective provision of emergency essential surgery should be a key priority for global child health agendas.
  •  
2.
  • Lozano, Rafael, et al. (author)
  • Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • In: The Lancet. - : Elsevier. - 1474-547X .- 0140-6736. ; 392:10159, s. 2091-2138
  • Journal article (peer-reviewed)abstract
    • Background: Efforts to establish the 2015 baseline and monitor early implementation of the UN Sustainable Development Goals (SDGs) highlight both great potential for and threats to improving health by 2030. To fully deliver on the SDG aim of “leaving no one behind”, it is increasingly important to examine the health-related SDGs beyond national-level estimates. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017), we measured progress on 41 of 52 health-related SDG indicators and estimated the health-related SDG index for 195 countries and territories for the period 1990–2017, projected indicators to 2030, and analysed global attainment. Methods: We measured progress on 41 health-related SDG indicators from 1990 to 2017, an increase of four indicators since GBD 2016 (new indicators were health worker density, sexual violence by non-intimate partners, population census status, and prevalence of physical and sexual violence [reported separately]). We also improved the measurement of several previously reported indicators. We constructed national-level estimates and, for a subset of health-related SDGs, examined indicator-level differences by sex and Socio-demographic Index (SDI) quintile. We also did subnational assessments of performance for selected countries. To construct the health-related SDG index, we transformed the value for each indicator on a scale of 0–100, with 0 as the 2·5th percentile and 100 as the 97·5th percentile of 1000 draws calculated from 1990 to 2030, and took the geometric mean of the scaled indicators by target. To generate projections through 2030, we used a forecasting framework that drew estimates from the broader GBD study and used weighted averages of indicator-specific and country-specific annualised rates of change from 1990 to 2017 to inform future estimates. We assessed attainment of indicators with defined targets in two ways: first, using mean values projected for 2030, and then using the probability of attainment in 2030 calculated from 1000 draws. We also did a global attainment analysis of the feasibility of attaining SDG targets on the basis of past trends. Using 2015 global averages of indicators with defined SDG targets, we calculated the global annualised rates of change required from 2015 to 2030 to meet these targets, and then identified in what percentiles the required global annualised rates of change fell in the distribution of country-level rates of change from 1990 to 2015. We took the mean of these global percentile values across indicators and applied the past rate of change at this mean global percentile to all health-related SDG indicators, irrespective of target definition, to estimate the equivalent 2030 global average value and percentage change from 2015 to 2030 for each indicator. Findings: The global median health-related SDG index in 2017 was 59·4 (IQR 35·4–67·3), ranging from a low of 11·6 (95% uncertainty interval 9·6–14·0) to a high of 84·9 (83·1–86·7). SDG index values in countries assessed at the subnational level varied substantially, particularly in China and India, although scores in Japan and the UK were more homogeneous. Indicators also varied by SDI quintile and sex, with males having worse outcomes than females for non-communicable disease (NCD) mortality, alcohol use, and smoking, among others. Most countries were projected to have a higher health-related SDG index in 2030 than in 2017, while country-level probabilities of attainment by 2030 varied widely by indicator. Under-5 mortality, neonatal mortality, maternal mortality ratio, and malaria indicators had the most countries with at least 95% probability of target attainment. Other indicators, including NCD mortality and suicide mortality, had no countries projected to meet corresponding SDG targets on the basis of projected mean values for 2030 but showed some probability of attainment by 2030. For some indicators, including child malnutrition, several infectious diseases, and most violence measures, the annualised rates of change required to meet SDG targets far exceeded the pace of progress achieved by any country in the recent past. We found that applying the mean global annualised rate of change to indicators without defined targets would equate to about 19% and 22% reductions in global smoking and alcohol consumption, respectively; a 47% decline in adolescent birth rates; and a more than 85% increase in health worker density per 1000 population by 2030. Interpretation: The GBD study offers a unique, robust platform for monitoring the health-related SDGs across demographic and geographic dimensions. Our findings underscore the importance of increased collection and analysis of disaggregated data and highlight where more deliberate design or targeting of interventions could accelerate progress in attaining the SDGs. Current projections show that many health-related SDG indicators, NCDs, NCD-related risks, and violence-related indicators will require a concerted shift away from what might have driven past gains—curative interventions in the case of NCDs—towards multisectoral, prevention-oriented policy action and investments to achieve SDG aims. Notably, several targets, if they are to be met by 2030, demand a pace of progress that no country has achieved in the recent past. The future is fundamentally uncertain, and no model can fully predict what breakthroughs or events might alter the course of the SDGs. What is clear is that our actions—or inaction—today will ultimately dictate how close the world, collectively, can get to leaving no one behind by 2030.
  •  
3.
  • Stanaway, Jeffrey D., et al. (author)
  • Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • In: The Lancet. - 1474-547X .- 0140-6736. ; 392:10159, s. 1923-1994
  • Journal article (peer-reviewed)abstract
    • Background The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 comparative risk assessment (CRA) is a comprehensive approach to risk factor quantification that offers a useful tool for synthesising evidence on risks and risk-outcome associations. With each annual GBD study, we update the GBD CRA to incorporate improved methods, new risks and risk-outcome pairs, and new data on risk exposure levels and risk- outcome associations. Methods We used the CRA framework developed for previous iterations of GBD to estimate levels and trends in exposure, attributable deaths, and attributable disability-adjusted life-years (DALYs), by age group, sex, year, and location for 84 behavioural, environmental and occupational, and metabolic risks or groups of risks from 1990 to 2017. This study included 476 risk-outcome pairs that met the GBD study criteria for convincing or probable evidence of causation. We extracted relative risk and exposure estimates from 46 749 randomised controlled trials, cohort studies, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. Using the counterfactual scenario of theoretical minimum risk exposure level (TMREL), we estimated the portion of deaths and DALYs that could be attributed to a given risk. We explored the relationship between development and risk exposure by modelling the relationship between the Socio-demographic Index (SDI) and risk-weighted exposure prevalence and estimated expected levels of exposure and risk-attributable burden by SDI. Finally, we explored temporal changes in risk-attributable DALYs by decomposing those changes into six main component drivers of change as follows: (1) population growth; (2) changes in population age structures; (3) changes in exposure to environmental and occupational risks; (4) changes in exposure to behavioural risks; (5) changes in exposure to metabolic risks; and (6) changes due to all other factors, approximated as the risk-deleted death and DALY rates, where the risk-deleted rate is the rate that would be observed had we reduced the exposure levels to the TMREL for all risk factors included in GBD 2017.
  •  
4.
  • Murray, Christopher J. L., et al. (author)
  • Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • In: The Lancet. - 1474-547X .- 0140-6736. ; 392:10159, s. 1995-2051
  • Journal article (peer-reviewed)abstract
    • Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49·4% (95% uncertainty interval [UI] 46·4–52·0). The TFR decreased from 4·7 livebirths (4·5–4·9) to 2·4 livebirths (2·2–2·5), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83·8 million people per year since 1985. The global population increased by 197·2% (193·3–200·8) since 1950, from 2·6 billion (2·5–2·6) to 7·6 billion (7·4–7·9) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2·0%; this rate then remained nearly constant until 1970 and then decreased to 1·1% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2·5% in 1963 to 0·7% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2·7%. The global average age increased from 26·6 years in 1950 to 32·1 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59·9% to 65·3%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1·0 livebirths (95% UI 0·9–1·2) in Cyprus to a high of 7·1 livebirths (6·8–7·4) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0·08 livebirths (0·07–0·09) in South Korea to 2·4 livebirths (2·2–2·6) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0·3 livebirths (0·3–0·4) in Puerto Rico to a high of 3·1 livebirths (3·0–3·2) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2·0% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress. Funding: Bill & Melinda Gates Foundation.
  •  
5.
  • Abbafati, Cristiana, et al. (author)
  • 2020
  • Journal article (peer-reviewed)
  •  
6.
  • Micah, Angela E., et al. (author)
  • Tracking development assistance for health and for COVID-19 : a review of development assistance, government, out-of-pocket, and other private spending on health for 204 countries and territories, 1990-2050
  • 2021
  • In: The Lancet. - : Elsevier. - 0140-6736 .- 1474-547X. ; 398:10308, s. 1317-1343
  • Research review (peer-reviewed)abstract
    • Background The rapid spread of COVID-19 renewed the focus on how health systems across the globe are financed, especially during public health emergencies. Development assistance is an important source of health financing in many low-income countries, yet little is known about how much of this funding was disbursed for COVID-19. We aimed to put development assistance for health for COVID-19 in the context of broader trends in global health financing, and to estimate total health spending from 1995 to 2050 and development assistance for COVID-19 in 2020. Methods We estimated domestic health spending and development assistance for health to generate total health-sector spending estimates for 204 countries and territories. We leveraged data from the WHO Global Health Expenditure Database to produce estimates of domestic health spending. To generate estimates for development assistance for health, we relied on project-level disbursement data from the major international development agencies' online databases and annual financial statements and reports for information on income sources. To adjust our estimates for 2020 to include disbursements related to COVID-19, we extracted project data on commitments and disbursements from a broader set of databases (because not all of the data sources used to estimate the historical series extend to 2020), including the UN Office of Humanitarian Assistance Financial Tracking Service and the International Aid Transparency Initiative. We reported all the historic and future spending estimates in inflation-adjusted 2020 US$, 2020 US$ per capita, purchasing-power parity-adjusted US$ per capita, and as a proportion of gross domestic product. We used various models to generate future health spending to 2050. Findings In 2019, health spending globally reached $8. 8 trillion (95% uncertainty interval [UI] 8.7-8.8) or $1132 (1119-1143) per person. Spending on health varied within and across income groups and geographical regions. Of this total, $40.4 billion (0.5%, 95% UI 0.5-0.5) was development assistance for health provided to low-income and middle-income countries, which made up 24.6% (UI 24.0-25.1) of total spending in low-income countries. We estimate that $54.8 billion in development assistance for health was disbursed in 2020. Of this, $13.7 billion was targeted toward the COVID-19 health response. $12.3 billion was newly committed and $1.4 billion was repurposed from existing health projects. $3.1 billion (22.4%) of the funds focused on country-level coordination and $2.4 billion (17.9%) was for supply chain and logistics. Only $714.4 million (7.7%) of COVID-19 development assistance for health went to Latin America, despite this region reporting 34.3% of total recorded COVID-19 deaths in low-income or middle-income countries in 2020. Spending on health is expected to rise to $1519 (1448-1591) per person in 2050, although spending across countries is expected to remain varied. Interpretation Global health spending is expected to continue to grow, but remain unequally distributed between countries. We estimate that development organisations substantially increased the amount of development assistance for health provided in 2020. Continued efforts are needed to raise sufficient resources to mitigate the pandemic for the most vulnerable, and to help curtail the pandemic for all. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.
  •  
7.
  •  
8.
  • Feigin, Valery L., et al. (author)
  • Global, regional, and national burden of neurological disorders, 1990–2016 : a systematic analysis for the Global Burden of Disease Study 2016
  • 2019
  • In: Lancet Neurology. - : Elsevier. - 1474-4422 .- 1474-4465. ; 18:5, s. 459-480
  • Journal article (peer-reviewed)abstract
    • Background: Neurological disorders are increasingly recognised as major causes of death and disability worldwide. The aim of this analysis from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 is to provide the most comprehensive and up-to-date estimates of the global, regional, and national burden from neurological disorders.Methods: We estimated prevalence, incidence, deaths, and disability-adjusted life-years (DALYs; the sum of years of life lost [YLLs] and years lived with disability [YLDs]) by age and sex for 15 neurological disorder categories (tetanus, meningitis, encephalitis, stroke, brain and other CNS cancers, traumatic brain injury, spinal cord injury, Alzheimer's disease and other dementias, Parkinson's disease, multiple sclerosis, motor neuron diseases, idiopathic epilepsy, migraine, tension-type headache, and a residual category for other less common neurological disorders) in 195 countries from 1990 to 2016. DisMod-MR 2.1, a Bayesian meta-regression tool, was the main method of estimation of prevalence and incidence, and the Cause of Death Ensemble model (CODEm) was used for mortality estimation. We quantified the contribution of 84 risks and combinations of risk to the disease estimates for the 15 neurological disorder categories using the GBD comparative risk assessment approach.Findings: Globally, in 2016, neurological disorders were the leading cause of DALYs (276 million [95% UI 247–308]) and second leading cause of deaths (9·0 million [8·8–9·4]). The absolute number of deaths and DALYs from all neurological disorders combined increased (deaths by 39% [34–44] and DALYs by 15% [9–21]) whereas their age-standardised rates decreased (deaths by 28% [26–30] and DALYs by 27% [24–31]) between 1990 and 2016. The only neurological disorders that had a decrease in rates and absolute numbers of deaths and DALYs were tetanus, meningitis, and encephalitis. The four largest contributors of neurological DALYs were stroke (42·2% [38·6–46·1]), migraine (16·3% [11·7–20·8]), Alzheimer's and other dementias (10·4% [9·0–12·1]), and meningitis (7·9% [6·6–10·4]). For the combined neurological disorders, age-standardised DALY rates were significantly higher in males than in females (male-to-female ratio 1·12 [1·05–1·20]), but migraine, multiple sclerosis, and tension-type headache were more common and caused more burden in females, with male-to-female ratios of less than 0·7. The 84 risks quantified in GBD explain less than 10% of neurological disorder DALY burdens, except stroke, for which 88·8% (86·5–90·9) of DALYs are attributable to risk factors, and to a lesser extent Alzheimer's disease and other dementias (22·3% [11·8–35·1] of DALYs are risk attributable) and idiopathic epilepsy (14·1% [10·8–17·5] of DALYs are risk attributable).Interpretation: Globally, the burden of neurological disorders, as measured by the absolute number of DALYs, continues to increase. As populations are growing and ageing, and the prevalence of major disabling neurological disorders steeply increases with age, governments will face increasing demand for treatment, rehabilitation, and support services for neurological disorders. The scarcity of established modifiable risks for most of the neurological burden demonstrates that new knowledge is required to develop effective prevention and treatment strategies.Funding: Bill & Melinda Gates Foundation.
  •  
9.
  • Feigin, Valery L., et al. (author)
  • Global, regional, and national burden of stroke and its risk factors, 1990-2019 : a systematic analysis for the Global Burden of Disease Study 2019
  • 2021
  • In: Lancet Neurology. - : Elsevier. - 1474-4422 .- 1474-4465. ; 20:10, s. 795-820
  • Journal article (peer-reviewed)abstract
    • Background Regularly updated data on stroke and its pathological types, including data on their incidence, prevalence, mortality, disability, risk factors, and epidemiological trends, are important for evidence-based stroke care planning and resource allocation. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) aims to provide a standardised and comprehensive measurement of these metrics at global, regional, and national levels. Methods We applied GBD 2019 analytical tools to calculate stroke incidence, prevalence, mortality, disability-adjusted life-years (DALYs), and the population attributable fraction (PAF) of DALYs (with corresponding 95% uncertainty intervals [UIs]) associated with 19 risk factors, for 204 countries and territories from 1990 to 2019. These estimates were provided for ischaemic stroke, intracerebral haemorrhage, subarachnoid haemorrhage, and all strokes combined, and stratified by sex, age group, and World Bank country income level. Findings In 2019, there were 12.2 million (95% UI 11.0-13.6) incident cases of stroke, 101 million (93.2-111) prevalent cases of stroke, 143 million (133-153) DALYs due to stroke, and 6.55 million (6.00-7.02) deaths from stroke. Globally, stroke remained the second-leading cause of death (11.6% [10.8-12.2] of total deaths) and the third-leading cause of death and disability combined (5.7% [5.1-6.2] of total DALYs) in 2019. From 1990 to 2019, the absolute number of incident strokes increased by 70.0% (67.0-73.0), prevalent strokes increased by 85.0% (83.0-88.0), deaths from stroke increased by 43.0% (31.0-55.0), and DALYs due to stroke increased by 32.0% (22.0-42.0). During the same period, age-standardised rates of stroke incidence decreased by 17.0% (15.0-18.0), mortality decreased by 36.0% (31.0-42.0), prevalence decreased by 6.0% (5.0-7.0), and DALYs decreased by 36.0% (31.0-42.0). However, among people younger than 70 years, prevalence rates increased by 22.0% (21.0-24.0) and incidence rates increased by 15.0% (12.0-18.0). In 2019, the age-standardised stroke-related mortality rate was 3.6 (3.5-3.8) times higher in the World Bank low-income group than in the World Bank high-income group, and the age-standardised stroke-related DALY rate was 3.7 (3.5-3.9) times higher in the low-income group than the high-income group. Ischaemic stroke constituted 62.4% of all incident strokes in 2019 (7.63 million [6.57-8.96]), while intracerebral haemorrhage constituted 27.9% (3.41 million [2.97-3.91]) and subarachnoid haemorrhage constituted 9.7% (1.18 million [1.01-1.39]). In 2019, the five leading risk factors for stroke were high systolic blood pressure (contributing to 79.6 million [67.7-90.8] DALYs or 55.5% [48.2-62.0] of total stroke DALYs), high body-mass index (34.9 million [22.3-48.6] DALYs or 24.3% [15.7-33.2]), high fasting plasma glucose (28.9 million [19.8-41.5] DALYs or 20.2% [13.8-29.1]), ambient particulate matter pollution (28.7 million [23.4-33.4] DALYs or 20.1% [16.6-23.0]), and smoking (25.3 million [22.6-28.2] DALYs or 17.6% [16.4-19.0]). Interpretation The annual number of strokes and deaths due to stroke increased substantially from 1990 to 2019, despite substantial reductions in age-standardised rates, particularly among people older than 70 years. The highest age-standardised stroke-related mortality and DALY rates were in the World Bank low-income group. The fastest-growing risk factor for stroke between 1990 and 2019 was high body-mass index. Without urgent implementation of effective primary prevention strategies, the stroke burden will probably continue to grow across the world, particularly in low-income countries.
  •  
10.
  • Griswold, Max G., et al. (author)
  • Alcohol use and burden for 195 countries and territories, 1990-2016 : a systematic analysis for the Global Burden of Disease Study 2016
  • 2018
  • In: The Lancet. - : Elsevier. - 0140-6736 .- 1474-547X. ; 392:10152, s. 1015-1035
  • Journal article (peer-reviewed)abstract
    • Background: Alcohol use is a leading risk factor for death and disability, but its overall association with health remains complex given the possible protective effects of moderate alcohol consumption on some conditions. With our comprehensive approach to health accounting within the Global Burden of Diseases, Injuries, and Risk Factors Study 2016, we generated improved estimates of alcohol use and alcohol-attributable deaths and disability-adjusted life-years (DALYs) for 195 locations from 1990 to 2016, for both sexes and for 5-year age groups between the ages of 15 years and 95 years and older.Methods: Using 694 data sources of individual and population-level alcohol consumption, along with 592 prospective and retrospective studies on the risk of alcohol use, we produced estimates of the prevalence of current drinking, abstention, the distribution of alcohol consumption among current drinkers in standard drinks daily (defined as 10 g of pure ethyl alcohol), and alcohol-attributable deaths and DALYs. We made several methodological improvements compared with previous estimates: first, we adjusted alcohol sales estimates to take into account tourist and unrecorded consumption; second, we did a new meta-analysis of relative risks for 23 health outcomes associated with alcohol use; and third, we developed a new method to quantify the level of alcohol consumption that minimises the overall risk to individual health.Findings: Globally, alcohol use was the seventh leading risk factor for both deaths and DALYs in 2016, accounting for 2.2% (95% uncertainty interval [UI] 1.5-3.0) of age-standardised female deaths and 6.8% (5.8-8.0) of age-standardised male deaths. Among the population aged 15-49 years, alcohol use was the leading risk factor globally in 2016, with 3.8% (95% UI 3.2-4-3) of female deaths and 12.2% (10.8-13-6) of male deaths attributable to alcohol use. For the population aged 15-49 years, female attributable DALYs were 2.3% (95% UI 2.0-2.6) and male attributable DALYs were 8.9% (7.8-9.9). The three leading causes of attributable deaths in this age group were tuberculosis (1.4% [95% UI 1. 0-1. 7] of total deaths), road injuries (1.2% [0.7-1.9]), and self-harm (1.1% [0.6-1.5]). For populations aged 50 years and older, cancers accounted for a large proportion of total alcohol-attributable deaths in 2016, constituting 27.1% (95% UI 21.2-33.3) of total alcohol-attributable female deaths and 18.9% (15.3-22.6) of male deaths. The level of alcohol consumption that minimised harm across health outcomes was zero (95% UI 0.0-0.8) standard drinks per week.Interpretation: Alcohol use is a leading risk factor for global disease burden and causes substantial health loss. We found that the risk of all-cause mortality, and of cancers specifically, rises with increasing levels of consumption, and the level of consumption that minimises health loss is zero. These results suggest that alcohol control policies might need to be revised worldwide, refocusing on efforts to lower overall population-level consumption.
  •  
11.
  • Sepanlou, Sadaf G., et al. (author)
  • The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990-2017 : a systematic analysis for the Global Burden of Disease Study 2017
  • 2020
  • In: The Lancet Gastroenterology & Hepatology. - 2468-1253. ; 5:3, s. 245-266
  • Journal article (peer-reviewed)abstract
    • Background Cirrhosis and other chronic liver diseases (collectively referred to as cirrhosis in this paper) are a major cause of morbidity and mortality globally, although the burden and underlying causes differ across locations and demographic groups. We report on results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 on the burden of cirrhosis and its trends since 1990, by cause, sex, and age, for 195 countries and territories. Methods We used data from vital registrations, vital registration samples, and verbal autopsies to estimate mortality. We modelled prevalence of total, compensated, and decompensated cirrhosis on the basis of hospital and claims data. Disability-adjusted life-years (DALYs) were calculated as the sum of years of life lost due to premature death and years lived with disability. Estimates are presented as numbers and age-standardised or age-specific rates per 100 000 population, with 95% uncertainty intervals (UIs). All estimates are presented for five causes of cirrhosis: hepatitis B, hepatitis C, alcohol-related liver disease, non-alcoholic steatohepatitis (NASH), and other causes. We compared mortality, prevalence, and DALY estimates with those expected according to the Socio-demographic Index (SDI) as a proxy for the development status of regions and countries. Findings In 2017, cirrhosis caused more than 1.32 million (95% UI 1.27-1.45) deaths (440000 [416 000-518 000; 33.3%] in females and 883 000 [838 000-967 000; 66.7%] in males) globally, compared with less than 899 000 (829 000-948 000) deaths in 1990. Deaths due to cirrhosis constituted 2.4% (2.3-2.6) of total deaths globally in 2017 compared with 1.9% (1.8-2.0) in 1990. Despite an increase in the number of deaths, the age-standardised death rate decreased from 21.0 (19.2-22.3) per 100 000 population in 1990 to 16.5 (15.8-18-1) per 100 000 population in 2017. Sub-Saharan Africa had the highest age-standardised death rate among GBD super-regions for all years of the study period (32.2 [25.8-38.6] deaths per 100 000 population in 2017), and the high-income super-region had the lowest (10.1 [9.8-10-5] deaths per 100 000 population in 2017). The age-standardised death rate decreased or remained constant from 1990 to 2017 in all GBD regions except eastern Europe and central Asia, where the age-standardised death rate increased, primarily due to increases in alcohol-related liver disease prevalence. At the national level, the age-standardised death rate of cirrhosis was lowest in Singapore in 2017 (3.7 [3.3-4.0] per 100 000 in 2017) and highest in Egypt in all years since 1990 (103.3 [64.4-133.4] per 100 000 in 2017). There were 10.6 million (10.3-10.9) prevalent cases of decompensated cirrhosis and 112 million (107-119) prevalent cases of compensated cirrhosis globally in 2017. There was a significant increase in age-standardised prevalence rate of decompensated cirrhosis between 1990 and 2017. Cirrhosis caused by NASH had a steady age-standardised death rate throughout the study period, whereas the other four causes showed declines in age-standardised death rate. The age-standardised prevalence of compensated and decompensated cirrhosis due to NASH increased more than for any other cause of cirrhosis (by 33.2% for compensated cirrhosis and 54.8% for decompensated cirrhosis) over the study period. From 1990 to 2017, the number of prevalent cases snore than doubled for compensated cirrhosis due to NASH and more than tripled for decompensated cirrhosis due to NASH. In 2017, age-standardised death and DALY rates were lower among countries and territories with higher SDI. Interpretation Cirrhosis imposes a substantial health burden on many countries and this burden has increased at the global level since 1990, partly due to population growth and ageing. Although the age-standardised death and DALY rates of cirrhosis decreased from 1990 to 2017, numbers of deaths and DALYs and the proportion of all global deaths due to cirrhosis increased. Despite the availability of effective interventions for the prevention and treatment of hepatitis B and C, they were still the main causes of cirrhosis burden worldwide, particularly in low-income countries. The impact of hepatitis B and C is expected to be attenuated and overtaken by that of NASH in the near future. Cost-effective interventions are required to continue the prevention and treatment of viral hepatitis, and to achieve early diagnosis and prevention of cirrhosis due to alcohol-related liver disease and NASH.
  •  
12.
  • Ali, Kiran, et al. (author)
  • Rapid Identification of Common Secondary Metabolites of Medicinal Herbs Using High-Performance Liquid Chromatography with Evaporative Light Scattering Detector in Extracts
  • 2021
  • In: Metabolites. - : MDPI AG. - 2218-1989 .- 2218-1989. ; 11:8
  • Journal article (peer-reviewed)abstract
    • The discovery and identification of novel natural products of medicinal importance in the herbal medicine industry becomes a challenge. The complexity of this process can be reduced by dereplication strategies. The current study includes a method based on high-performance liquid chromatography (HPLC), using the evaporative light scattering detector (ELSD) to identify the 12 most common secondary metabolites in plant extracts. Twelve compounds including rutin, taxifolin, quercetin, apigenin, kaempferol, betulinic acid, oleanolic acid, betulin, lupeol, stigmasterol, and beta-sitosterol were analyzed simultaneously. The polarity of the compounds varied greatly from highly polar (flavonoids) to non-polar (triterpenes and sterols). This method was also tested for HPLC-DAD and HPLC-ESI-MS/MS analysis. Oleanolic acid and ursolic acid could not be separated in HPLC-ELSD analysis but were differentiated using LC-ESI-MS/MS analysis due to different fragment ions. The regression values (R-2 > 0.996) showed good linearity in the range of 50-1000 mu g/mL for all compounds. The range of LOD and LOQ values were 7.76-38.30 mu g/mL and 23.52-116.06 mu g/mL, respectively. %RSD and % trueness values of inter and intraday studies were mostly <10%. This method was applied on 10 species of medicinal plants. The dereplication strategy has the potential to facilitate and shorten the identification process of common secondary metabolites in complex plant extracts.
  •  
13.
  • Kazmi, Bilal, et al. (author)
  • Thermodynamic and economic assessment of cyano functionalized anion based ionic liquid for CO2 removal from natural gas integrated with, single mixed refrigerant liquefaction process for clean energy
  • 2022
  • In: Energy. - : Pergamon Press. - 0360-5442 .- 1873-6785. ; 239
  • Journal article (peer-reviewed)abstract
    • The study proposes a novel integrated process in which ionic liquid is utilized to control carbon dioxide (CO2) emissions from the natural gas combined with a single mixed refrigerant-based liquefaction process to assist safe transportation over long distances providing a sustainable and cleaner energy. Commercially amines are utilized for CO2 sequestration, but amines entail energy-intensive regeneration with elevated process costs. The present study offers a solvent screening mechanism based on important parameters such as heat of dissolution, viscosity, selectivity, working capacity, vapor pressure, corrosivity, and toxicity. The selected solvents' performance is computed by sensitivity analysis suggesting imidazolium-based cation 1-hexyl-3-methylimidazolium[Hmim] functionalized with tricyanomethanide(tcm) as anion a potential natural gas sweetening solvent in comparison with commercially used solvent monoethanoloamine(MEA), conventional ILs 1-butyl-3-methylimidazolium hexa-fluorophosphate [Bmim][Pf(6)] and 1-butyl-3-methylimidazolium methyl sulfate [Bmim][MeSO4]. The obtained sweet gas is liquefied using a single mixed refrigerant-based process providing 0.99 mol fraction of liquefied CH4 with less overall specific compression power requirement of 0.41 kW/kg of natural gas. Moreover, an exergy analysis demonstrates that the [Hmim][tcm] based process has lower total exergy destruction of 7.49 x 10(3) kW and is found to utilize less overall specific energy consumption 0.49 kWh/kg of NG in contrast to other studied solvents. Furthermore, a detailed economic analysis establishes [Hmim][tcm]-based CO2 integrated with liquefaction technology offers 50.7%, 74.4%, and 85.8% of total annualized cost (TAC) savings compared with the MEA-amim][Pf(6)]-, and [Bmim][MeSO4], respectively. Hence, [Hmim][tcm] for CO2 removal and integration with liquefaction process will incur unit cost based on the total annualized cost to be $2.2 x 10(4)/kmol of purified NG.
  •  
14.
  • Kumar, Raj, et al. (author)
  • Synthesis of Sheet Like Morphology of NiO for Sensitive and Selective Determination of Urea
  • 2017
  • In: Sensor Letters. - : American Scientific Publishers. - 1546-198X .- 1546-1971. ; 15:10, s. 803-810
  • Journal article (peer-reviewed)abstract
    • An efficient and simple method has been demonstrated for the synthesis of nickel oxide nanostructures using urea as a capping agent. The nanosheet-like morphology was confirmed by scanning electron microscopy, crystalline nature was studied by using the X-ray diffraction (XRD) and surface area of nanomaterial was investigated by automated sorption analyzer. Then synthesized NiO nanostructures were used to fabricate the surface of glassy carbon electrode (GCE). The electrocatalytic parameters of modified NiO/GCE electrode were investigated by using various techniques such as electrochemical impedance spectroscopy (EIS), square wave voltammetry (SWV), differential pulse voltammetry (DPV), normal pulse voltammetry (NPV) and cyclic voltammetry (CV) and chronoamperometry. Various working experimental conditions were optimized in order to attain the highest sensitivity for the determination of urea and the highest peak current 1032 μA of response were obtained at 100 μM concentration of urea. A linear calibration plot was obtained for peak current versus concentration of urea in the range of 10 μM urea to 80 μM urea with a good detection limit of 2 μM. The proposed working strategy was successfully employed for the estimation of urea in human urine samples and the obtained results are found satisfactory. The newly functional urea sensor can be exploited at large scale as an alternative analytical device beside to the other reported urea sensors
  •  
15.
  • Latif, Umar, et al. (author)
  • In situ growth of nickel ammonium phosphate ribbons on nickel foam for supercapacitor applications
  • 2023
  • In: Journal of Energy Storage. - : Elsevier. - 2352-152X .- 2352-1538. ; 73:Part B
  • Journal article (peer-reviewed)abstract
    • We report the in-situ growth of the nickel ammonium phosphate (NAP) ribbons on nickel (Ni) foam in a single step process using hydrothermal approach. The morphology, structure and elemental analysis of the NAP-ribbons grown on Ni foam were analyzed by scanning electron microscope (SEM), energy-dispersive x-ray analysis (EDX) and x-ray diffraction. The NAP-coated Ni foam sample was sonicated in ethanol and the obtained suspension was observed through AFM analysis to analyze the lateral dimensions of the NAP-ribbons. The obtained NAP ribbons powder was also characterized by x-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Further, the NAP ribbons based electrodes were electrochemically characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge discharge analysis (GCD). NAP ribbons grown on Ni foam as electrodes achieved a specific capacitance (Csp) of 1196 Fg- 1 at 1 mVs- 1 and 1188 Fg- 1 at 1 Ag-1. The charge storage mechanism was identified and quantified by evaluating the CV data in 1-10 mVs- 1 scan rate range. It was established that at low scan rate the charge was dominantly stored by diffusion of electrolyte ions within the gaps of the NAP ribbons resulting in high energy density of 105.5 WhKg-1 at 1 Ag-1. NAP electrodes also demonstrated good cyclic stability by showing 92 % charge retention after 5000 cycles. A symmetric 2-elec-trode device comprised of NAP ribbons electrodes gave Csp of 309 Fg-1 at 1 mVs- 1 with energy density of 42.06 Wh/Kg and power density of 0.5 KW/Kg at 1 A/g current density, which is an exceptional for a symmetric supercapacitor device. The study confirms that NAP ribbons have a promising potential to be employed in the next-generation energy storage devices.
  •  
16.
  • Minhaj, Syed Usama, et al. (author)
  • How SIC-enabled LoRa Fares under Imperfect Orthogonality?
  • 2021
  • In: IWCMC 2021. - : IEEE. - 9781728186160 ; , s. 729-734
  • Conference paper (peer-reviewed)abstract
    • With the increase of connected Internet-of-things (IoT) devices, the need for low-power wide-area networks (LP-WANs) is imminent, and LoRaWAN is one such technology that offers an elegant solution to the problem of long-range communication and battery consumption. A parameter of special interest in LoRaWAN is the spreading factor (SF), and it is often assumed that communication between different SFs is independent of each other. However, this claim has been practically debunked by many works, proving that SFs have imperfect orthogonality. To maximize connectivity and throughput, several techniques have been introduced, such as non-orthogonal-multiple-access (NOMA) and dynamic resource allocation. NOMA is getting a lot of attention recently, especially for IoT networks, because it embraces interference and tries to obtain desired information packets from corrupted ones. Furthermore, NOMA can be easily implemented on the base-station side by using the principle of successive interference cancellation (SIC). In this paper, we investigate how SIC, under the assumption of imperfect orthogonality of SF channels, can be used to increase the performance of the system. We find the expressions for success and coverage probability considering various SF allocation schemes and found the most efficient scheme for different scenarios.
  •  
17.
  • Minhaj, Syed Usama, et al. (author)
  • Intelligent Resource Allocation in LoRaWAN Using Machine Learning Techniques
  • 2023
  • In: IEEE Access. - 2169-3536. ; 11, s. 10092-10106
  • Journal article (peer-reviewed)abstract
    • With the ubiquitous growth of Internet-of-things (IoT) devices, current low-power wide-area network (LPWAN) technologies will inevitably face performance degradation due to congestion and interference. The rule-based approaches to assign and adapt the device parameters are insufficient in dynamic massive IoT scenarios. For example, the adaptive data rate (ADR) algorithm in LoRaWAN has been proven inefficient and outdated for large-scale IoT networks. Meanwhile, new solutions involving machine learning (ML) and reinforcement learning (RL) techniques are shown to be very effective in solving resource allocation in dense IoT networks. In this article, we propose a new concept of using two independent learning approaches for allocating spreading factor (SF) and transmission power to the devices using a combination of a decentralized and centralized approach. SF is allocated to the devices using RL for contextual bandit problem, while transmission power is assigned centrally by treating it as a supervised ML problem. We compare our approach with existing state-of-the-art algorithms, showing a significant improvement in both network level goodput and energy consumption, especially for large and highly congested networks. 
  •  
18.
  • Naqvi, Salman Raza, et al. (author)
  • Agro-industrial residue gasification feasibility in captive power plants : A South-Asian case study
  • 2021
  • In: Energy. - : Elsevier. - 0360-5442 .- 1873-6785. ; 214
  • Journal article (peer-reviewed)abstract
    • The objective of this study is to build knowledge on the potential of agro-industrial residue gasification (AIRG) for use in captive power generation through a comprehensive case study. In order to evaluate the economic viability, key performance indicators, such as net present value (NPV), levelized cost of electricity (LCOE), and operating costs etc. are studied. The major textile industry located in the Raiwind area of Punjab province of Pakistan has been selected. The effect and variations of the capacity factor has also been studied coupled with the levelized cost of electricity. The agricultural residue as feedstock to the gasifier is rice husk that is the abundantly available in South Asia. Furthermore, the impact of government subsidies on natural gas is also under the scope of the study. The agro-industrial residue gasification system is found to be a potential alternative to furnace oil (FO) or gas-based captive power plants (CPPs). The results of residue-based gasification system imply a large potential when comparing the cost of electricity with national grid electricity during the peak hours. Therefore, the proposed gasification system offers economic incentives when the textile industry potentially utilizes gasification-based electricity during peak hours and national grid electricity during off-peak hours. (C) 2020 Elsevier Ltd. All rights reserved.
  •  
19.
  • Ali, Salamat, et al. (author)
  • Experimental and Theoretical Aspects of MXenes-Based Energy Storage and Energy Conversion Devices
  • 2023
  • In: Journal of Chemistry and Environment. - : Science Research Publishers (SRP). - 2959-0132. ; 2:2, s. 54-81
  • Research review (peer-reviewed)abstract
    • Transition metal carbides, nitrides, and carbonitrides (MXenes) have become an appealing framework for developing various energy applications. MXenes with van der Waals (vdW) interactions are facile, highly efficient, affordable, and self-assembled features that improve energy density. MXenes exhibit large surface area, high electric conductivity, and excellent electrochemical characteristics for various energy applications. This review summarizes and emphasizes the current developments in MXene with improved performance for energy storage or conversion devices, including supercapacitors (SCs), various types of rechargeable batteries (RBs), solar cells, and fuel cells. We discuss the crystal structures of MXenes properties of MXenes and briefly discuss them for different types of energy applications. Finally, the critical outlook and perspective for the MXene progress for applications in energy applications are also described.
  •  
20.
  • Hameed, Zeeshan, et al. (author)
  • A Comprehensive Review on Thermal Coconversion of Biomass, Sludge, Coal, and Their Blends Using Thermogravimetric Analysis
  • 2020
  • In: Journal of Chemistry. - : Hindawi Publishing Corporation. - 2090-9063 .- 2090-9071. ; 2020
  • Research review (peer-reviewed)abstract
    • Lignocellulosic biomass is a vital resource for providing clean future energy with a sustainable environment. Besides lignocellulosic residues, nonlignocellulosic residues such as sewage sludge from industrial and municipal wastes are gained much attention due to its large quantities and ability to produce cheap and clean energy to potentially replace fossil fuels. These cheap and abundantly resources can reduce global warming owing to their less polluting nature. The low-quality biomass and high ash content of sewage sludge-based thermal conversion processes face several disadvantages towards its commercialization. Therefore, it is necessary to utilize these residues in combination with coal for improvement in energy conversion processes. As per author information, no concrete study is available to discuss the synergy and decomposition mechanism of residues blending. The objective of this study is to present the state-of-the-art review based on the thermal coconversion of biomass/sewage sludge, coal/biomass, and coal/sewage sludge blends through thermogravimetric analysis (TGA) to explore the synergistic effects of the composition, thermal conversion, and blending for bioenergy production. This paper will also contribute to detailing the operating conditions (heating rate, temperature, and residence time) of copyrolysis and cocombustion processes, properties, and chemical composition that may affect these processes and will provide a basis to improve the yield of biofuels from biomass/sewage sludge, coal/sewage sludge, and coal/biomass blends in thermal coconversion through thermogravimetric technique. Furthermore, the influencing factors and the possible decomposition mechanism are elaborated and discussed in detail. This study will provide recent development and future prospects for cothermal conversion of biomass, sewage, coal, and their blends.
  •  
21.
  • Khan, Syed Ishtiaq, et al. (author)
  • Mononuclear copper(i) complexes of triphenylphosphine and N,N′-disubstituted thioureas as potential DNA binding chemotherapeutics
  • 2021
  • In: New Journal of Chemistry. - : Royal Society of Chemistry. - 1144-0546 .- 1369-9261. ; 45:20, s. 8925-8935
  • Journal article (peer-reviewed)abstract
    • In this work, nine new mixed-ligand complexes with the general formula [CuBr(TPP)2Tu1–9] were synthesized. The copper(I) complexes of triphenylphosphine (TPP) and different N,N′-disubstituted thioureas (Tu) were characterized via spectroscopic techniques including Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (1H, 13C, and 31P NMR), and single-crystal X-ray diffraction (SC-XRD). The complexes were synthesized via the direct reaction of bromo(tris(triphenylphosphine)copper(I)) [BrCu(PPh3)3] precursor and thiourea ligand solution under ambient conditions. Complexes 1, 2 and 3 crystallized in a triclinic system with the P  space group. Each complex is mononuclear, and the copper atom is tetrahedrally attached to two TPP groups through the phosphorous atom, one thiourea molecule through the sulfur atom and one bromine atom. The synthesized compounds were docked with a DNA macromolecule to predict their binding site and it was found that all molecules showed favorable binding to the DNA minor grooves. The DNA interaction studies of the representative complexes demonstrated their efficient DNA binding affinities. Based on the docking and DNA interaction results, complex 7 was found to be the best binder with a docking affinity of 382.2 kJ mol−1 and binding constant of 3.96 × 104 M−1. This compound tends to interact with the minor groove through the bromine atom positioning the side triphenylphosphine rings along the X-axis of the groove while keeping the 1-(2-chlorobenzyl)-3-(3-(trifluoromethyl)phenyl)thiourea ring on the outside.
  •  
22.
  • Rahman, Saeedur, et al. (author)
  • Combining untargeted and targeted metabolomics approaches for the standardization of polyherbal formulations through UPLC-MS/MS
  • 2019
  • In: Metabolomics. - : SPRINGER. - 1573-3882 .- 1573-3890. ; 15:9
  • Journal article (peer-reviewed)abstract
    • Introduction Polyherbal formulations are an integral part of various indigenous medicinal systems such as Traditional Chinese Medicine (TCM) and Ayurveda. The presence of a very large number of compounds makes the quality control of polyherbal formulations very difficult. Objectives To overcome this problem, we have developed a comprehensive strategy for the dereplication of natural products in polyherbal formulations by using Adhatoda vasica as a case study. Methods The strategy is based on five major steps: the collection of plant samples from different locations to observe the effects of environmental variables; LC-ESI-MS/MS-based untargeted metabolite profiling of the plant samples to identify marker compounds using extensive chemometric analysis of the obtained data; the identification of marker compounds in polyherbal products; the isolation, purification and characterization of the marker compounds; and MRM-based quantitative analysis of the isolated marker compounds using LC-ESI-MS/MS. Results Using this strategy, we identified a total of 51 compounds in the methanolic extract of A. vasica plants from 14 accessions. Chemical fingerprinting of the plant led to the identification of characteristic peaks that were used to confirm the presence of A. vasica in complex polyherbal formulations. Four quinazoline alkaloids (marker compounds) were isolated, purified and quantified in various herbal formulations containing A. vasica. Conclusion This method demonstrates a comprehensive strategy based on untargeted and targeted metabolite analysis that can be used for the standardization of complex polyherbal formulations.
  •  
23.
  • Raza, Mohsin Ali, et al. (author)
  • Synthesis and characterization of zinc aluminate electrodes for supercapacitor applications
  • 2024
  • In: Electrochimica Acta. - : Elsevier. - 0013-4686 .- 1873-3859. ; 475
  • Journal article (peer-reviewed)abstract
    • We report, for the first time, the thorough electrochemical characterization of zinc aluminate spinel. Four different stoichiometric composition of zinc aluminate (ZnAl1.5O3.25, ZnAl2O4, ZnAl2.87O5.30, and ZnAl4O7) were prepared by solution combustion method. The obtained powders after calcination at 1000 °C were characterized through scanning electron microscope (SEM), energy dispersive x-ray spectroscopy (EDX) and x-ray diffraction to analyze the morphology, elemental composition and structure, respectively, of the zinc aluminate compositions. The electrodes were prepared by coating slurry of zinc aluminate, carbon black and polyvinylidene fluoride on nickel foam in a ratio of 8:1:1. The electrochemical characterization was carried out by cyclic voltammetry (CV), galvanostatic charge discharge (GCD) and electrochemical impedance spectroscopy (EIS). ZnAl1.5O3.25 exhibited the highest specific capacity of 546 C/g at 1 mV/s and 336 C/g at 1 A/g, as appraised by CV and GCD analysis, respectively. EIS test revealed that ZnAl1.5O3.25 had the modest impedance value. The energy density value for ZnAl1.5O3.25 sample was 16.79 Wh/kg at 1 A/g with a power density of 179.9 W/kg. The as developed electrodes showed predominantly pseudo-capacitive charge storage mechanism.
  •  
24.
  • Sartelli, Massimo, et al. (author)
  • Ten golden rules for optimal antibiotic use in hospital settings: the WARNING call to action
  • 2023
  • In: WORLD JOURNAL OF EMERGENCY SURGERY. - 1749-7922. ; 18:1
  • Research review (peer-reviewed)abstract
    • Antibiotics are recognized widely for their benefits when used appropriately. However, they are often used inappropriately despite the importance of responsible use within good clinical practice. Effective antibiotic treatment is an essential component of universal healthcare, and it is a global responsibility to ensure appropriate use. Currently, pharmaceutical companies have little incentive to develop new antibiotics due to scientific, regulatory, and financial barriers, further emphasizing the importance of appropriate antibiotic use. To address this issue, the Global Alliance for Infections in Surgery established an international multidisciplinary task force of 295 experts from 115 countries with different backgrounds. The task force developed a position statement called WARNING (Worldwide Antimicrobial Resistance National/International Network Group) aimed at raising awareness of antimicrobial resistance and improving antibiotic prescribing practices worldwide. The statement outlined is 10 axioms, or "golden rules," for the appropriate use of antibiotics that all healthcare workers should consistently adhere in clinical practice.
  •  
25.
  • Sumbal, Muhammad Saleem, et al. (author)
  • A framework to retain the knowledge of departing knowledge workers in the manufacturing industry
  • 2020
  • In: VINE. - : Emerald Group Publishing Limited. - 2059-5891. ; 50:4, s. 631-661
  • Journal article (peer-reviewed)abstract
    • Purpose: The purpose of this study is to develop a conceptual framework on knowledge loss in a manufacturing sector based on three aspects: likelihood of knowledge loss, critical areas of knowledge loss and relevance of each of these knowledge areas in terms of utilization and alignment with organizational goals and strategy. Such a conceptual framework can be helpful to the practicing managers in understanding the types of knowledge that is lost of a given departing employee and thus deciding on a measure to retain the critical employees or capture their knowledge before they leave. Design/methodology/approach: Using a case study approach, data has been collected from a multinational battery manufacturing company based in Hong Kong. Semi-structured interviews have been conducted and analyzed through CAQDAS ATLAS.ti to generate the themes which were then used to develop the conceptual framework. Findings: The findings revealed that the likelihood factors of knowledge loss in the manufacturing sector include layoffs, retirement, immigration and job change. The critical areas of knowledge loss comprise the knowledge of relationships and networks, especially with the customers and suppliers, the technical knowledge (battery and process technology) and knowledge of management, among others. The relevance of each of these knowledge areas needs to be determined through proper analysis whether these knowledge areas are needed in future projects, up to date and aligned with organizational goals and strategy along with other factors. Research limitations/implications: Using the developed conceptual framework, managers and executives can identify critical employees in the manufacturing sector and accordingly take some appropriate measures to retain their knowledge. Caution should be taken while applying the findings of this study in other industries and context. Originality/value: This paper is an attempt to reduce the dearth of empirical studies by exploring knowledge retention in the manufacturing sector, especially in the development of proper conceptual frameworks to assess the potential knowledge loss of employees.
  •  
26.
  • Ul Haq, Faraz, et al. (author)
  • Metabolite Profiling and Quantitation of Cucurbitacins in Cucurbitaceae Plants by Liquid Chromatography coupled to Tandem Mass Spectrometry
  • 2019
  • In: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 9
  • Journal article (peer-reviewed)abstract
    • Cucurbitaceae is an important plant family because many of its species are consumed as food, and used in herbal medicines, cosmetics, etc. It comprises annual vines and is rich in various bioactive principles which include the cucurbitacins. These steroidal natural products, derived from the triterpene cucurbitane, are mainly the bitter principles of the family Cucurbitaceae. Their biological activities include anti-inflammatory, hepatoprotective, and anti-cancer activities. A total of 10 species belonging to 6 genera of the Cucurbitaceae family along with Cissampelos pareira (Menispermaceae) were included in this study. A comprehensive profiling of certain natural products was developed using HPLC-QTOF-MS/MS analysis and a distribution profile of several major natural products in this family was obtained. A total of 51 natural products were detected in both positive and negative ionization modes, based on accurate masses and fragmentation patterns. Along with this, quantitation of four bioactive cucurbitacins, found in various important plants of the Cucurbitaceae family, was carried out using multiple reaction monitoring (MRM) approach on an ion trap mass spectrometer. Cucurbitacin Q was found to be the most abundant in C. pareira, while Citrullus colocynthis contained all four cucurbitacins in abundant quantities. The developed quantitation method is simple, rapid, and reproducible.
  •  
27.
  • Usman, Muhammad, et al. (author)
  • Evaluation of the chronic intoxication of fluoride on human serum metabolome using untargeted metabolomics
  • 2022
  • In: Arabian Journal of Chemistry. - : Elsevier BV. - 1878-5352 .- 1878-5379. ; 15:7
  • Journal article (peer-reviewed)abstract
    • Drinking water is the main source of fluoride intake for the human body and its regulated consumption helps in decreasing dental caries. However, excessive fluoride consumption over a prolonged time period causes fluorosis disease which adversely affects many tissues and organs of the body. This paper describes the evaluation of chronic intoxication of fluoride on human serum metabolome. The untargeted metabolomics approach using UPLC-QTOF-MS/MS is applied for metabolomic profiling, whereas the estimation of fluoride in serum samples was carried out using the ion-selective electrode (ISE). Fluoride concentration was found to be 0.16–1.25 mg/L in serum samples of 39 fluorosis patients and 0.008–0.045 mg/L in 20 healthy samples. A total of 47 metabolites were identified based on the high-resolution mass spectrometry analysis. A volcano plot was generated to discriminate features that are significantly different between the fluorosis and healthy groups at the probability of 0.05 and fold change ≥ 2. Among all identified metabolites, intensities of ten differential identified metabolites including inosine, α-linolenic acid, guanosine, octanoyl-L-carnitine, His-Trp, phytosphingosine, lauroyl-L-carnitine, hydrocortisone, deoxyinosine and dodecanedioic acid have been found altered in disease samples compared to healthy controls. Major pathways identified based on these metabolites include energy metabolism, fatty acid oxidation, purine degradation pathway, elevated protein degradation, and increased ω-6 fatty acid linoleate signatures were observed.
  •  
28.
  • Ahmad, Naveed, et al. (author)
  • The inter-relation of corporate social responsibility at employee level, servant leadership, and innovative work behavior in the time of crisis from the healthcare sector of pakistan
  • 2021
  • In: International Journal of Environmental Research and Public Health. - : MDPI AG. - 1661-7827 .- 1660-4601. ; 18:9
  • Journal article (peer-reviewed)abstract
    • Organizational crisis can serve as a base to provide an opportunity to an organization for enhancing individuals, organizations, and communities. The healthcare sector is one of those sectors that remains under continuous pressure to provide high-quality service delivery to the patients. Hence, the requirement of innovation for this sector is huge when compared to other sectors. The majority of the previous studies have investigated the phenomenon of CSR at the employee’s level (CSR-E) to influence employee behavior positively. However, the importance of CSR-E to enhance the innovative capability of the employees at the workplace is not well-explored in extant literature. Moreover, it is not clear from previous studies how the concept of servant leadership can explain the employee’s engagement towards innovative work behavior (EIB). Thus, the current survey aims to test the relationship of CSR-E and EIB in the healthcare sector of Pakistan with the mediating effect of servant leadership. The data of the current study were obtained through a self-administered (paper-pencil) survey and they were analyzed through the structural equation modeling (SEM) technique. The empirical results of SEM analysis revealed that CSR-E and EIB are positively related and servant leadership partially mediates this relationship. The findings of the current study will be helpful for policymakers to improve their understanding towards CSR-E to induce EIB in the time of crisis. At the same time, the current study also highlights the importance of servant leadership to the policymakers in encouraging the employees to display their innovative capability at the workplace to serve their organization during the time of crisis.
  •  
29.
  • Ahsan, Ali, et al. (author)
  • Formulation and evaluation of miconazole lipogel for enhanced drug permeation
  • 2024
  • In: Pakistan Journal of Pharmaceutical Sciences. - : UNIV KARACHI. - 1011-601X. ; 37:1, s. 95-105
  • Journal article (peer-reviewed)abstract
    • Hydrophilic drugs could be incorporated into the skin surface by manes of Lipogel. This study aimed to prepare miconazole lipogel with natural ingredients to enhance drug permeability using dimethyl Sulfoxide (DMSO). The miconazole lipogels, A1 (without DMSO) and A2 (with DMSO) were formulated and evaluated for organoleptic evaluation, pH, viscosity, stability studies, freeze -thawing, drug release profile and drug permeation enhancement. Results had stated that prepared lipogel's pH falls within the acceptable range required for topical delivery (4 to 6) while both formulations show good results in organoleptic evaluation. The A2 formulation containing DMSO shows better permeation of miconazole (84.76%) on the artificial skin membrane as compared to A1 lipogel formulation (50.64%). In in -vitro drug release studies, A2 for-mulation showed 87.48% drug release while A1 showed just 60.1% drug release from lipogel. Stability studies were performed on model formulations under environmental conditions and both showed good spreadibility, stable pH, free of grittiness and good consistency in formulation. The results concluded that A2 formulation containing DMSO shows better results as compared to DMSO-free drug lipogel.
  •  
30.
  • Ali Ahmad, Syed Ossama, et al. (author)
  • Application of two-dimensional materials in perovskite solar cells: recent progress, challenges, and prospective solutions
  • 2021
  • In: Journal of Materials Chemistry C. - : ROYAL SOC CHEMISTRY. - 2050-7526 .- 2050-7534. ; 9:40, s. 14065-14092
  • Research review (peer-reviewed)abstract
    • Perovskite solar cells (per-SCs) with high performance and cost-effective solution processing have been the center of interest for researchers in the past decade. Power conversion efficiencies (PCEs) have been gradually improved up to 25.2% with relatively improved stability, which is an unparalleled progress in all generations of solar cell (SC) technology. However, there are still some prevailing challenges regarding the stability and upscaling of these promising devices. Recently, 2D layered materials (LMs) have been extensively explored to overcome the prevailing challenges of poor stability (under moisture, light soaking and high temperature), halide segregation, hysteresis, involvement of toxic materials (i.e., lead), and upscaling of devices. A critical review addressing the recent developments in the use of 2D materials, especially transition metal dichalcogenides (TMDCs), is hence necessary. The development of novel synthesis and deposition techniques including liquid-metal synthesis and ultrasonic assisted spray pyrolysis has offered more efficient fabrication of 2D-LMs with controlled thickness and morphology. Effective functionalization approaches to increase the dispersability of 2D-LMs in non-polar solvents has boosted their potential application in solar cell technology as well. Moreover, compositing 2D TMDCs with suitable organic/inorganic compounds has enabled superior charge kinetics in all functional parts of per-SCs. In addition, newly developed materials such as graphyne and graphdyine along with 2D metal organic frameworks (MOFs) and covalent organic frameworks (COFs) have been employed in per-SCs to achieve PCEs up to 20%. This review summarizes the recent progress and challenges in the application of 2D-LMs in per-SCs and outlines the future pathways to further extend the PCE of per-SCs beyond 25%. This review particularly focuses on 2D-LMs as electrode materials and additives, the underlying charge (electron-hole) transport phenomenon in the functional layers, and their chemical and structural stability.
  •  
31.
  • Ali, Raja Hashim, 1985-, et al. (author)
  • VMCMC: a graphical and statistical analysis tool for Markov chain Monte Carlo traces
  • Other publication (other academic/artistic)abstract
    • Motivation: MCMC-based methods are important for Bayesian inference of phylogeny and related parameters. Although being computationally expensive, MCMC yields estimates of posterior distributions that are useful for estimating parameter values and are easy to use in subsequent analysis. There are, however, sometimes practical diculties with MCMC, relating to convergence assessment and determining burn-in, especially in large-scale analyses. Currently, multiple software are required to perform, e.g., convergence, mixing and interactive exploration of both continuous and tree parameters.Results: We have written a software called VMCMC to simplify post-processing of MCMC traces with, for example, automatic burn-in estimation. VMCMC can also be used both as a GUI-based application, supporting interactive exploration, and as a command-line tool suitable for automated pipelines. Availability: VMCMC is available for Java SE 6+ under the New BSD License. Executable jar les, tutorial manual and source code can be downloaded from https://bitbucket.org/rhali/visualmcmc/.
  •  
32.
  • Anees, Hafiz Muhammad, et al. (author)
  • A mathematical model-based approach for DC multi-microgrid performance evaluations considering intermittent distributed energy resources, energy storage, multiple load classes, and system components variations
  • 2021
  • In: Energy Science & Engineering. - : John Wiley & Sons. - 2050-0505. ; 9, s. 1919-1934
  • Journal article (peer-reviewed)abstract
    • The efficiency of DC microgrid needs investigation from a smart grid perspective, since their spread has expected to prevail in comparison with AC counterparts. Furthermore, there is a need to address the limitations (majorly to cater the intermittency of distributed energy resources (DERs) as well as the time dependency of systematic parameters etc.) in previous model and propose a new mathematical model to evaluate system efficiency for given parameters and scenarios. The core focus of current study aims at formulation of an improved (composite) mathematical model, that is capable of bridging issues and serve as a tool to address requirements of future DC systems including microgrids (MGs) and multi-microgrids (MMGs). This research work offers such a mathematical model that consists of 3D matrices based on newly derived set of discrete time dependent equations, which evaluates the system efficiency of residential DC-MMGs. Each DC-MG is embedded with intermittent DERs, storage, components (with efficiency variations), and multi-class load (with discrete time dependency), for evaluation across worst, normal, and best scenarios. A comprehensive sensitivity analysis across various cases and respective scenarios are also presented to evaluate overall system performance. Also, the impacts of system parameters on various system variables, states, and overall system efficiency have presented in this paper.
  •  
33.
  • Eqani, Syed Ali Musstjab Akber Shah, et al. (author)
  • Mercury contamination in deposited dust and its bioaccumulation patterns throughout Pakistan
  • 2016
  • In: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 569, s. 585-593
  • Journal article (peer-reviewed)abstract
    • Mercury (Hg) contamination of environment is a major threat to human health in developing countries like Pakistan. Human populations, particularly children, are continuously exposed to Hg contamination via dust particles due to the arid and semi-arid climate. However, a country wide Hg contamination data for dust particles is lacking for Pakistan and hence, human populations potentially at risk is largely unknown. We provide the first baseline data for total mercury (THg) contamination into dust particles and its bioaccumulation trends, using scalp human hair samples as biomarker, at 22 sites across five altitudinal zones of Pakistan. The human health risk of THg exposure via dust particles as well as the proportion of human population that are potentially at risk from Hg contamination were calculated. Our results indicated higher concentration of THg in dust particles and its bioaccumulation in the lower Indus-plain agricultural and industrial areas than the other areas of Pakistan. The highest THg contamination of dust particles (3000 ppb) and its bioaccumulation (2480 ppb) were observed for the Lahore district, while the highest proportion (>40%) of human population was identified to be potentially at risk from Hg contamination from these areas. In general, children were at higher risk of Hg exposure via dust particles than adults. Regression analysis identified the anthropogenic activities, such as industrial and hospital discharges, as the major source of Hg contamination of dust particles. Our results inform environmental management for Hg control and remediation as well as the disease mitigation on potential hotspots.
  •  
34.
  • Fakhar-e-Alam, Muhammad, et al. (author)
  • Sensitivity of A-549 human lung cancer cells to nanoporous zinc oxide conjugated with Photofrin
  • 2012
  • In: Lasers in Medical Science. - : Springer Verlag (Germany). - 0268-8921 .- 1435-604X. ; 27:3, s. 607-614
  • Journal article (peer-reviewed)abstract
    • In the present study, we demonstrated the use of nanoporous zinc oxide (ZnO NPs) in photodynamic therapy. The ZnO NPs structure possesses a high surface to volume ratio due to its porosity and ZnO NPs can be used as an efficient photosensitizer carrier system. We were able to grow ZnO NPs on the tip of borosilicate glass capillaries (0.5 mu m diameter) and conjugated this with Photofrin for efficient intracellular drug delivery. The ZnO NPs on the capillary tip could be excited intracellularly with 240 nm UV light, and the resultant 625 nm red light emitted in the presence of Photofrin activated a chemical reaction that produced reactive oxygen species (ROS). The procedure was tested in A-549 cells and led to cell death within a few minutes. The morphological changes in necrosed cells were examined by microscopy. The viability of control and treated A-549 cells with the optimum dose of UV/visible light was assessed using the MTT assay, and ROS were detected using a fluorescence microscopy procedure.
  •  
35.
  • Kamarudin, Kamarulzaman, et al. (author)
  • Integrating SLAM and gas distribution mapping (SLAM-GDM) for real-time gas source localization
  • 2018
  • In: Advanced Robotics. - : Taylor & Francis Group. - 0169-1864 .- 1568-5535. ; 32:17, s. 903-917
  • Journal article (peer-reviewed)abstract
    • Gas distribution mapping (GDM) learns models of the spatial distribution of gas concentrations across 2D/3D environments, among others, for the purpose of localizing gas sources. GDM requires run-time robot positioning in order to associate measurements with locations in a global coordinate frame. Most approaches assume that the robot has perfect knowledge about its position, which does not necessarily hold in realistic scenarios. We argue that the simultaneous localization and mapping (SLAM) algorithm should be used together with GDM to allow operation in an unknown environment. This paper proposes an SLAM-GDM approach that combines Hector SLAM and Kernel DM+V through a map merging technique. We argue that Hector SLAM is suitable for the SLAM-GDM approach since it does not perform loop closure or global corrections, which in turn would require to re-compute the gas distribution map. Real-time experiments were conducted in an environment with single and multiple gas sources. The results showed that the predictions of gas source location in all trials were often correct to around 0.5-1.5 m for the large indoor area being tested. The results also verified that the proposed SLAM-GDM approach and the designed system were able to achieve real-time operation.
  •  
36.
  • Kashif, Muhammad, et al. (author)
  • Structural and impedance spectroscopy study of Al-doped ZnO nanorods grown by sol-gel method
  • 2012
  • In: Microelectronics international. - : Emerald. - 1356-5362 .- 1758-812X. ; 29:3, s. 131-135
  • Journal article (peer-reviewed)abstract
    • Purpose - The purpose of this paper is to investigate the electrical transport mechanism of the Al-doped ZnO nanorods at different temperatures by employing impedance spectroscopy. less thanbrgreater than less thanbrgreater thanDesign/methodology/approach - Al-doped ZnO nanorods were grown on silicon substrate using step sol-gel method. For the seed solution preparation Zinc acetate dihydrate, 2-methoxyethanol, monoethanolannine and aluminum nitrite nano-hydrate were used as a solute, solvent, stabilizer and dopant, respectively. Prior to the deposition, P-type Si (100) wafer was cut into pieces of 1 cm x 2 cm. The samples were then cleaned in an ultrasonic bath with acetone, ethanol, and de-ionized (DI) water for 5 min. The prepared seed solution was coated on silicon substrate using spin coater at spinning speed of 3000 rpm for 30s and then dried at 250 degrees C for 10 min followed by annealing at 550 degrees C for 1 h. The hydrothermal growth was carried out in a solution of zinc nitrate hexahydrate (0.025M), Hexamethyltetramine (0.025M) in DI water. less thanbrgreater than less thanbrgreater thanFindings - Al-doped ZnO nanorods were characterized using scanning electron microscope (SEM), X-ray diffraction (XRD) and impedance spectroscopy. The impedance measurements were carried out at various temperatures (100 degrees C-325 degrees C). The impedance results showed that temperature has great influence on the impedance; the impedance value decreased as the temperature increased. This decrement is attributed to the increase of the mobility of the defects, especially the oxygen vacancies. The surface morphology of the samples was measured by SEM and X-ray diffraction. The SEM images show that the high density of Al-doped ZnO nanorods covers the silicon substrate, whereas the XRD pattern shows the (002) crystal orientation. less thanbrgreater than less thanbrgreater thanOriginality/value - This paper demonstrates the electron transport mechanism of Al-doped ZnO nanorods, at different temperatures, to understand the charge transport model.
  •  
37.
  • Kazmi, Bilal, et al. (author)
  • Process system analysis on oil processing facility and economic viability from oil well-to-tank
  • 2021
  • In: SN Applied Sciences. - : Springer Science and Business Media LLC. - 2523-3963 .- 2523-3971. ; 3:7
  • Journal article (peer-reviewed)abstract
    • Hydrocarbon processing from extraction to the final product is an important aspect that needs an optimised technology for consumption-led market growth. This study investigated real data from the oil processing facility and analysed the simulation model for the entire crude oil processing unit based on the process system engineering aspect using Aspen HYSYS. The study mainly emphasises the process optimisation in processing the hydrocarbon for the maximum yield of the product with less energy consumption. The investigation also includes a thorough economic analysis of the processing facility. The datasets for oil properties are obtained from a modern petroleum refinery. The investigation comprises of varying transient conditions, such as well shutdowns using three oil reservoirs (low, intermediate, and heavy oil). The impact of various conditions, including process heating, well shutdown, oil combinations, presence of water on the production, is analysed. The results indicate that the factors involving crude oil processing are significantly affected by the process conditions, such as pressure, volume, and temperature. The vapour recovery unit is integrated with the oil processing model to recover the separator's gas. The optimisation analysis is performed to maximise the liquid recovery with Reid vapour pressure of 7 and minimum water content in oil around 0.5%. Economic analysis provided an overall capital cost of $ 9.7 x 10(6) and an operating cost of $2.1 x 10(6) for the process configuration. The model results further investigate the constraints that maximise the overall energy consumption of the process and reduce the operational cost.
  •  
38.
  • Kumari, Sindhia, et al. (author)
  • Metabolomics approach to understand the hepatitis C virus induced hepatocellular carcinoma using LC-ESI-MS/MS
  • 2021
  • In: Arabian Journal of Chemistry. - : Elsevier. - 1878-5352 .- 1878-5379. ; 14:1
  • Journal article (peer-reviewed)abstract
    • Hepatocellular carcinoma (HCC) is a typical cancer that has region specified analysis with the incidence of hepatitis C virus (HCV) infection. This study was conducted to improve the understanding of metabolic alterations associated with HCV induced HCC which can open up new strategies to monitor the high risk of HCC. Samples of the subjects with HCV, HCV induced chronic liver disease (CLD), HCV induced HCC, and healthy controls (HS) were collected after complete blood count (CBC), hepatitis viral load, st-fetoprotein (AFP), liver function tests, and albumin. A total of 147 serum samples including HCC (n = 11), CLD (n = 24), HCV (n = 71), and HS (n = 41) were analyzed by LC-ESI-MS/MS. The 21 compounds were found to be responsible for group discrimination after the application of chemometric tools. Nfructosyl tyrosine and hydroxyindoleacetic acid showed an increase in level whereas L-aspartylL-phenylalanine and thyroxine showed a consistent decrease in the progression of HCV to HCC in comparison with HS indicating their importance for early detection. The biological pathways such as glycerophospholipid metabolism, phenylalanine, tyrosine, and tryptophan biosynthesis, phenylalanine metabolism and tryptophan metabolism showed alteration in some metabolites. The method was internally validated by ROC plot showing AUC value for HS, HCV, CLD, and HCC as 0.99, 1, 1, and 0.89, respectively; while 16 blind samples were also validated with 93% specificity. The untargeted metabolomics investigation of HCV, CLD, and HCC can help to understand the progression of HCV-induced HCC. It reveals significant differences in metabolites to predict prognostic and diagnostic markers. (C) 2020 The Author(s). Published by Elsevier B.V. on behalf of King Saud University.
  •  
39.
  • Naqvi, Salman Raza, et al. (author)
  • Pyrolysis of high ash sewage sludge : Kinetics and thermodynamic analysis using Coats-Redfern method
  • 2019
  • In: Renewable energy. - : Elsevier Ltd. - 0960-1481 .- 1879-0682. ; 131, s. 854-860
  • Journal article (peer-reviewed)abstract
    • This study aims to investigate the thermo-kinetics of high-ash sewage sludge using thermogravimetric analysis. Sewage sludge was dried, pulverized and heated non-isothermally from 25 to 800 °C at different heating rates (5, 10 and 20 °C/min) in N2 atmosphere. TG and DTG results indicate that the sewage sludge pyrolysis may be divided into three stages. Coats-Redfern integral method was applied in the 2nd and 3rd stage to estimate the activation energy and pre-exponential factor from mass loss data using five major reaction mechanisms. The low-temperature stable components (LTSC) of the sewage sludge degraded in the temperature regime of 250–450 °C while high-temperature stable components (HTSC) decomposed in the temperature range of 450–700 °C. According to the results, first-order reaction model (F1) showed higher Ea with better R2 for all heating rates. D3, N1, and S1 produced higher Ea at higher heating rates for LTSC pyrolysis and lower Ea with the increase of heating rates for HTSC pyrolysis. All models showed positive ΔH except F1.5. Among all models, Diffusion (D1, D2, D3) and phase interfacial models (S1, S2) showed higher ΔG as compared to reaction, nucleation, and power-law models in section I and section II.
  •  
40.
  • Qadri, Azam Mehmood, et al. (author)
  • Heart failure survival prediction using novel transfer learning based probabilistic features
  • 2024
  • In: PeerJ Computer Science. - : PEERJ INC. - 2376-5992. ; 10
  • Journal article (peer-reviewed)abstract
    • Heart failure is a complex cardiovascular condition characterized by the heart's inability to pump blood effectively, leading to a cascade of physiological changes. Predicting survival in heart failure patients is crucial for optimizing patient care and resource allocation. This research aims to develop a robust survival prediction model for heart failure patients using advanced machine learning techniques. We analyzed data from 299 hospitalized heart failure patients, addressing the issue of imbalanced data with the Synthetic Minority Oversampling (SMOTE) method. Additionally, we proposed a novel transfer learning-based feature engineering approach that generates a new probabilistic feature set from patient data using ensemble trees. Nine fine-tuned machine learning models are built and compared to evaluate performance in patient survival prediction. Our novel transfer learning mechanism applied to the random forest model outperformed other models and state-of-the-art studies, achieving a remarkable accuracy of 0.975. All models underwent evaluation using 10-fold crossvalidation and tuning through hyperparameter optimization. The findings of this study have the potential to advance the field of cardiovascular medicine by providing more accurate and personalized prognostic assessments for individuals with heart failure.
  •  
41.
  • Sohail, Muhammad, et al. (author)
  • Persistent organic pollutant emission via dust deposition throughout Pakistan : Spatial patterns, regional cycling and their implication for human health risks
  • 2018
  • In: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 618, s. 829-837
  • Journal article (peer-reviewed)abstract
    • In the current study, Persistent Organic Pollutants (POPs) in outdoor dustfall was monitored for the first time along the Indus river system of Pakistan. Among the studied OCPs (ng/g, dry weight), DDTs (0.16-62) were the predominant contaminants identified in deposited dust followed by HCHs (0.1-10.2), HCB (0.09-7.4) and chlordanes (0.1-2.8). The indicative diagnostic ratio for DDTs and HCHs suggested recent emission of DDTs as well as historical emission of both chemicals in regions where they were used for crop protection and malarial control. The levels of Sigma(31)PCBs (ng/g, dry weight) in dust ranged from 0.95-125, and compositional profiles suggested arochlor-1248, -1254 commercial mixtures as source. A few exceptions were samples from urban areas that reflected the use of aroclor-1260, and-1262 and/or unintentional leakage from several industrial processes. The WHO05-TEQ values for dioxin-like PCBs (with major contributions of PCB-126) were found to be 0.07-34.5 (median; 1.87) pg TEQ g(-1) dw for all the studied samples. Correlation analysis identified that DDTs, HCHs, HCB and PCBs were significantly associated (r = 90; p < 0.01) with dusts collected in proximity to urban centers with widespread anthropogenic activities in these areas. A few cases where high levels of POPs from remote mountain highlands were detected, point to the potential for long range transport of these chemicals. Human risk assessment analysis of contaminated dust showed that DDTs and PCBs are major constituent chemicals of concern with regard to the development of cancer in children, with ingestion being the main route of exposure of dust-borne DDTs (0.12-1.03 x 10(-6)) and PCBs (0.86-12.43 x 10(-6)).
  •  
42.
  • Tariq, Imran, et al. (author)
  • Ameliorative delivery of docetaxel and curcumin using PEG decorated lipomers : A cutting-edge in-vitro/ in-vivo appraisal
  • 2024
  • In: Journal of Drug Delivery Science and Technology. - : Elsevier. - 1773-2247. ; 97
  • Journal article (peer-reviewed)abstract
    • The development of a PEG-decorated lipid-polymer hybrid system camouflaged with natural and synthetic chemotherapeutic moieties is an influential approach melding the biomimetic properties of long-circulating vesicles to utilize different mechanisms to dwindle the tumor growth. Therefore, a safe and efficient lipid-coated nano-particulate system (LCNPs) was proposed to investigate the in-vitro, ex-vivo and in-vivo demeanors of such amalgamation.Docetaxel loaded PLGA nanoparticles (DTX-NPs) were prepared by solvent evaporation while curcumin liposomes were mapped out using the film hydration method. Physicochemical characterizations were executed in terms of size, surface morphology, differential scanning calorimetry (DSC) and fourier-transform infrared spectroscopy (FTIR). In-vitro cytotoxicity was effectuated using MCF-7 cell line. Hemolysis, erythrocyte aggregation and acute in-vivo toxicity were carried out to establish the biocompatibility. The hydrodynamic diameters of samples were in the nano-range and corresponded to the findings of scanning electron microscopy (SEM) and atomic force microscopy (AFM). The absence of distinctive peaks of DTX-NPs in FTIR and DSC analysis of LCNPs depicts the shielding of the lipid bilayer over the nanoparticle. Cytotoxicity induced by the LCNPs represented the efficient delivery of cargo to the tumor cells. LCNPs also exhibited the least toxicity under ex-vivo and in-vivo circumstances compared to free drugs. Additionally, histological studies showed no evidence of substantial necrosis. Additionally, histological studies showed no evidence of notable necrosis.
  •  
43.
  • Umer, Muhammad, et al. (author)
  • Analysis of STAR-RIS Assisted Downlink CoMP-NOMA Multi-Cell Networks under Nakagami-m Fading
  • 2024
  • In: IEEE Communications Letters. - : IEEE. - 1089-7798 .- 1558-2558. ; 28:5, s. 1009-1013
  • Journal article (peer-reviewed)abstract
    • In this letter, we conduct a thorough analytical assessment of a simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) assisted non-orthogonal multiple access (NOMA) enhanced coordinated multipoint (CoMP) multi-cell network under Nakagami-m fading. Using the central limit theorem (CLT) and moment-matching based Gamma approximation method, we derive the distributions of effective and cascaded channel gains. Subsequently, leveraging these results, we formulate tractable equations for ergodic rates and outage probabilities across all users in the network. Our analytical results correlate with the simulation results, affirming the efficacy of analytical methodology. Furthermore, the results demonstrate a significant performance improvement of STAR-RIS assisted CoMP-NOMA networks compared to conventional systems. 
  •  
44.
  • Willander, Magnus, et al. (author)
  • Applications of Zinc Oxide Nanowires for Bio-photonics and Bio-electronics
  • 2011
  • In: Proceedings of SPIE Volume 7940. - Bellingham, Washington, USA : SPIE - International Society for Optical Engineering. - 9780819484772
  • Conference paper (other academic/artistic)abstract
    • Using zinc oxide (ZnO) nanostructures, nanorods (NRs) and nanoparticles (NPs) grown on different substrates (sub-micrometer glass pipettes, thin silver wire and on plastic substrate) different bio-sensors were demonstrated. The demonstrated sensors are based on potentiometric approach and are sensitive to the ionic metals and biological analyte in question. For each case a selective membrane or enzyme was used. The measurements were performed for intracellular environment as well as in some cases (cholesterol and uric acid). The selectivity in each case is tuned according to the element to be sensed. Moreover we also developed photodynamic therapy approach based on the use of ZnO NRs and NPs. Necrosis/apoptosis was possible to achieve for different types of cancerous cell. The results indicate that the ZnO with its UV and white band emissions is beneficial to photodynamic therapy technology.
  •  
45.
  • Abbas, Shahrukh, et al. (author)
  • Impact Analysis of Large-Scale Wind Farms Integration in Weak Transmission Grid from Technical Perspectives
  • 2020
  • In: Energies. - : MDPI. - 1996-1073. ; 13:20
  • Journal article (peer-reviewed)abstract
    • The integration of commercial onshore large-scale wind farms into a national grid comes with several technical issues that predominately ensure power quality in accordance with respective grid codes. The resulting impacts are complemented with the absorption of larger amounts of reactive power by wind generators. In addition, seasonal variations and inter-farm wake effects further deteriorate the overall system performance and restrict the optimal use of available wind resources. This paper presented an assessment framework to address the power quality issues that have arisen after integrating large-scale wind farms into weak transmission grids, especially considering inter-farm wake effect, seasonal variations, reactive power depletion, and compensation with a variety of voltage-ampere reactive (Var) devices. Herein, we also proposed a recovery of significant active power deficits caused by the wake effect via increasing hub height of wind turbines. For large-scale wind energy penetration, a real case study was considered for three wind farms with a cumulative capacity of 154.4 MW integrated at a Nooriabad Grid in Pakistan to analyze their overall impacts. An actual test system was modeled in MATLAB Simulink for a composite analysis. Simulations were performed for various scenarios to consider wind intermittency, seasonal variations across four seasons, and wake effect. The capacitor banks and various flexible alternating current transmission systems (FACTS) devices were employed for a comparative analysis with and without considering the inter-farm wake effect. The power system parameters along with active and reactive power deficits were considered for comprehensive analysis. Unified power flow controller (UPFC) was found to be the best compensation device through comparative analysis, as it maintained voltage at nearly 1.002 pu, suppressed frequency transient in a range of 49.88-50.17 Hz, and avoided any resonance while maintaining power factors in an allowable range. Moreover, it also enhanced the power handling capability of the power system. The 20 m increase in hub height assisted the recovery of the active power deficit to 48%, which thus minimized the influence of the wake effect.
  •  
46.
  • Akhtar, Muhammad Waseem, et al. (author)
  • Exploiting NOMA for Radio Resource Efficient Traffic Steering Use-case in O-RAN
  • 2022
  • In: 2022 IEEE Global Communications Conference, GLOBECOM 2022 - Proceedings. - : IEEE conference proceedings. - 9781665435406 ; , s. 5771-5776
  • Conference paper (peer-reviewed)abstract
    • In this work, we consider the design of a radio resource management (RRM) solution for traffic steering (TS) use-case in the open radio access network (O-RAN). The O-RAN TS deals with the quality-of-service (QoS)-aware steering of the traffic by connectivity management (e.g., device-to-cell association, radio spectrum, and power allocation) for emerging heterogeneous networks (HetNets) in 5G-and-beyond systems. However, TS in HetNets is a complex problem in terms of efficiently assigning/utilizing the radio resources while satisfying the diverse QoS requirements of especially the cell-edge users due to their poor signal-to-interference-plus-noise ratio (SINR). In this respect, we propose an intelligent non-orthogonal multiple access (NOMA)-based RRM technique for a small cell base station (SBS) within a macro gNB. A Q-learning-assisted algorithm is designed to allocate the transmit power and frequency sub-bands at the O-RAN control layer such that interference from macro gNB to SBS devices is minimized while ensuring the QoS of the maximum number of devices. The numerical results show that the proposed method enhances the overall spectral efficiency of the NOMA-based TS use case without adding to the system's complexity or cost compared to traditional HetNet topologies such as co-channel deployments and dedicated channel deployments. 
  •  
47.
  • Ali, Raja Hashim, et al. (author)
  • VMCMC: a graphical and statistical analysis tool for Markov chain Monte Carlo traces
  • 2017
  • In: Bmc Bioinformatics. - : Springer Science and Business Media LLC. - 1471-2105. ; 18
  • Journal article (peer-reviewed)abstract
    • Background: MCMC-based methods are important for Bayesian inference of phylogeny and related parameters. Although being computationally expensive, MCMC yields estimates of posterior distributions that are useful for estimating parameter values and are easy to use in subsequent analysis. There are, however, sometimes practical difficulties with MCMC, relating to convergence assessment and determining burn-in, especially in large-scale analyses. Currently, multiple software are required to perform, e.g., convergence, mixing and interactive exploration of both continuous and tree parameters. Results: We have written a software called VMCMC to simplify post-processing of MCMC traces with, for example, automatic burn-in estimation. VMCMC can also be used both as a GUI-based application, supporting interactive exploration, and as a command-line tool suitable for automated pipelines. Conclusions: VMCMC is a free software available under the New BSD License. Executable jar files, tutorial manual and source code can be downloaded from https://bitbucket. org/rhali/visualmcmc/.
  •  
48.
  • Ali Soomro, Razium, et al. (author)
  • Development of sensitive non-enzymatic glucose sensor using complex nanostructures of cobalt oxide
  • 2015
  • In: Materials Science in Semiconductor Processing. - : Elsevier. - 1369-8001 .- 1873-4081. ; 34, s. 373-381
  • Journal article (peer-reviewed)abstract
    • The study reports the synthesis of cobalt oxide (Co3O4) nanostructures and their application in enzyme free electrochemical sensing of glucose. The synthesized nanostructures were elaborately characterized via number of analytical techniques including scanning electron microscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The as-synthesized nanostructures of Co3O4 were found to exhibited nanodisc like morphology with the size dimension in range of 300-500 nm. The obtained morphological features were evaluated for their electrochemical potential towards oxidation of glucose which enabled development of sensitive (27.33 mu A mM(-1) cm(-2)), and stable enzyme free glucose sensor. In addition, the developed sensor showed excellent linearity (r(2)=0.9995), wide detection range (0.5-5.0 mM), lower detection limit (0.8 mu M) and extreme selectivity towards glucose in the presence of common interferents like dopamine (DP), ascorbic acid (AA) and uric acid (UA). The successfully application of developed sensor for real blood glucose analysis further reflects its capability for routine glucose measurement.
  •  
49.
  • Ali Soomro, Razium, et al. (author)
  • Glycine-assisted preparation of Co3O4 nanoflakes with enhanced performance for non-enzymatic glucose sensing
  • 2015
  • In: MATERIALS EXPRESS. - : AMER SCIENTIFIC PUBLISHERS. - 2158-5849. ; 5:5, s. 437-444
  • Journal article (peer-reviewed)abstract
    • In this study a simple, inexpensive and efficient route is proposed to synthesise attractive cobalt oxide (Co3O4) nanostructures using glycine as an effective growth controller and regulator. The as-synthesised Co3O4 nanostructures were observed to possess unique nanoflake shape morphological features with highly dense distribution. The formation of Co3O4 nanoflakes (Co3O4 NFKs) was elaborately explored using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Scanning electron microscopy (SEM) respectively. The unique Co3O4 nanoflakes were known to possess excellent electro-catalytic potential for the oxidation of glucose in alkaline medium. This potential property allowed successful development of highly sensitive (1180 mu A mM(-1) cm(-2)), selective and stable non-enzymatic glucose sensor. In addition, the developed sensor had a wide working range (0.1-5.0 mM), low limit of detection (0.7 mu M), and excellent reproducibility, besides the capability of analysing real blood glucose samples.
  •  
50.
  • Ali Soomro, Razium, et al. (author)
  • Practice of diclofenac sodium for the hydrothermal growth of NiO nanostructures and their application for enzyme free glucose biosensor
  • 2016
  • In: Microsystem Technologies. - : SPRINGER. - 0946-7076 .- 1432-1858. ; 22:10, s. 2549-2557
  • Journal article (peer-reviewed)abstract
    • In this study diclofenac sodium (DFS), an analgesic drug has been employed as an effective template for the synthesis of NiO nanostructures. The NiO nanostructures were synthesised using low temperature hydrothermal growth method, both in the presence and absence of the DFS drug. The synthesised nanostructures were studied for their structural, compositional and electrochemical properties using scanning electron microscopy, X-ray diffraction and cyclic voltammetry. The synthesised nanostructures were then utilised for the modification of glassy carbon electrode which were then utilised for the electro-catalytic enzyme free glucose sensing in alkaline media. The competitive experiments suggested that although, both nanostructures possess excellent capability of glucose sensing, the NiO nanoflakes modified electrode was found to be twice as much as sensitive (2584 A mu A mM(-1) cm(-2)) as nanoflowers based electrode (1154 A mu A mM(-1) cm(-2)). The NiO nanoflakes based sensor further demonstrated excellent anti-interference potential in the presence of common interferents like uric acid, ascorbic acid and dopamine. In addition, the successful application NiO nanoflakes based sensor to determine real blood glucose concentration further suggest its feasibility for real sample analysis.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 81
Type of publication
journal article (63)
conference paper (12)
research review (5)
other publication (1)
Type of content
peer-reviewed (77)
other academic/artistic (3)
pop. science, debate, etc. (1)
Author/Editor
Willander, Magnus (13)
Kim, Yun Jin (10)
Koyanagi, Ai (9)
Hay, Simon I. (9)
Farzadfar, Farshad (9)
Jonas, Jost B. (9)
show more...
Malekzadeh, Reza (9)
Mokdad, Ali H. (9)
Sepanlou, Sadaf G. (9)
Tran, Bach Xuan (9)
Yonemoto, Naohiro (9)
Majeed, Azeem (9)
Mirrakhimov, Erkin M ... (9)
Rawaf, Salman (9)
Banach, Maciej (9)
Fischer, Florian (9)
Mohammed, Shafiu (9)
Alvis-Guzman, Nelson (9)
Bijani, Ali (9)
Dharmaratne, Samath ... (9)
Gill, Paramjit Singh (9)
Irvani, Seyed Sina N ... (9)
Jha, Ravi Prakash (9)
Hassan, Syed Ali (8)
Naqvi, Muhammad, 198 ... (8)
Gidlund, Mikael, 197 ... (8)
Sheikh, Aziz (8)
Bensenor, Isabela M. (8)
Hamidi, Samer (8)
Hassen, Hamid Yimam (8)
Khader, Yousef Saleh (8)
Lotufo, Paulo A. (8)
Mendoza, Walter (8)
Miller, Ted R. (8)
Naghavi, Mohsen (8)
Werdecker, Andrea (8)
Xu, Gelin (8)
Yu, Chuanhua (8)
Murray, Christopher ... (8)
Bennett, Derrick A. (8)
Singh, Jasvinder A. (8)
Carvalho, Félix (8)
Musa, Kamarul Imran (8)
Fernandes, Eduarda (8)
Castañeda-Orjuela, C ... (8)
Butt, Zahid A. (8)
Daryani, Ahmad (8)
Filip, Irina (8)
Jurisson, Mikk (8)
Kisa, Adnan (8)
show less...
University
Linköping University (15)
Uppsala University (12)
Karlstad University (11)
Mid Sweden University (10)
Karolinska Institutet (10)
Stockholm University (8)
show more...
Lund University (8)
Högskolan Dalarna (8)
Umeå University (6)
Chalmers University of Technology (6)
Luleå University of Technology (5)
RISE (5)
Blekinge Institute of Technology (5)
Mälardalen University (4)
University of Gothenburg (3)
Royal Institute of Technology (3)
Södertörn University (2)
University of Skövde (2)
Linnaeus University (2)
Kristianstad University College (1)
Halmstad University (1)
Örebro University (1)
show less...
Language
English (81)
Research subject (UKÄ/SCB)
Engineering and Technology (33)
Natural sciences (31)
Medical and Health Sciences (17)
Social Sciences (3)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view