SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Almendros Isaac) "

Sökning: WFRF:(Almendros Isaac)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Almendros, Isaac, et al. (författare)
  • Early Career Members at the ERS Lung Science Conference: cell-matrix interactions in lung disease and regeneration: Early career forum
  • 2018
  • Ingår i: Breathe. - : European Respiratory Society (ERS). - 1810-6838 .- 2073-4735. ; 14:2, s. 78-83
  • Tidskriftsartikel (refereegranskat)abstract
    • The 16th ERS Lung Science Conference (LSC) took place on March 8–11, 2018, in Estoril, Portugal, with around 200 delegates from all over the world. This year’s topic was “Cell-matrix interactions in lung disease and regeneration” and involved excellent presentations by leading experts in the field covering everything from exploratory studies on how the matrix functions, matrix remodelling and biomarkers in disease, to more technical knowledge described in the field of lung bioengineering. As in previous years, the Saturday afternoon was reserved for a programme dedicated to early career delegates, which this year focussed on “Maximising your publication output”. In this article, we summarise the Early Career Member highlights of this year’s LSC.
  •  
2.
  •  
3.
  •  
4.
  • Falcones, Bryan, et al. (författare)
  • hLMSC Secretome Affects Macrophage Activity Differentially Depending on Lung-Mimetic Environments
  • 2022
  • Ingår i: Cells. - : MDPI AG. - 2073-4409. ; 11:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Mesenchymal stromal cell (MSC)-based therapies for inflammatory diseases rely mainly on the paracrine ability to modulate the activity of macrophages. Despite recent advances, there is scarce information regarding changes of the secretome content attributed to physiomimetic cultures and, especially, how secretome content influence on macrophage activity for therapy. hLMSCs from human donors were cultured on devices developed in house that enabled lung-mimetic strain. hLMSC secretome was analyzed for typical cytokines, chemokines and growth factors. RNA was analyzed for the gene expression of CTGF and CYR61. Human monocytes were differentiated to macrophages and assessed for their phagocytic capacity and for M1/M2 subtypes by the analysis of typical cell surface markers in the presence of hLMSC secretome. CTGF and CYR61 displayed a marked reduction when cultured in lung-derived hydrogels (L-Hydrogels). The secretome showed that lung-derived scaffolds had a distinct secretion while there was a large overlap between L-Hydrogel and the conventionally (2D) cultured samples. Additionally, secretome from L-Scaffold showed an HGF increase, while IL-6 and TNF-α decreased in lung-mimetic environments. Similarly, phagocytosis decreased in a lung-mimetic environment. L-Scaffold showed a decrease of M1 population while stretch upregulated M2b subpopulations. In summary, mechanical features of the lung ECM and stretch orchestrate anti-inflammatory and immunosuppressive outcomes of hLMSCs.
  •  
5.
  • Kahn, Nicolas, et al. (författare)
  • Early Career Members at the ERS International Congress 2017 : highlights from the Assemblies.
  • 2017
  • Ingår i: Breathe. - : European Respiratory Society (ERS). - 1810-6838 .- 2073-4735. ; 13:4, s. e121-e129
  • Tidskriftsartikel (refereegranskat)abstract
    • The 2017 ERS International Congress was, as always, well organised, providing participants with a good mixture of translational and clinical science. Early career members were very well represented in thematic poster, poster discussion and oral presentation sessions and were also actively involved in chairing sessions. The efforts of the Early Career Members Committee (ECMC) to increase the number of early career members included in the competence list (the list of early career members with an interest in being more actively involved in the society) paid off immensely, because the number of early career members registered improved hugely across all assemblies after the Congress. Several newly registered early career members have collated some highlights of the Congress for their assemblies, which should be of interest to all members. As assemblies 12 and 13 are new, there is no report from assembly 12 as there is not yet, at the time of writing, an early career member representative for this newly created assembly.
  •  
6.
  • Marhuenda, Esther, et al. (författare)
  • Development of a physiomimetic model of acute respiratory distress syndrome by using ECM hydrogels and organ-on-a-chip devices
  • 2022
  • Ingår i: Frontiers in Pharmacology. - : Frontiers Media SA. - 1663-9812. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Acute Respiratory Distress Syndrome is one of the more common fatal complications in COVID-19, characterized by a highly aberrant inflammatory response. Pre-clinical models to study the effect of cell therapy and anti-inflammatory treatments have not comprehensively reproduced the disease due to its high complexity. This work presents a novel physiomimetic in vitro model for Acute Respiratory Distress Syndrome using lung extracellular matrix-derived hydrogels and organ-on-a-chip devices. Monolayres of primary alveolar epithelial cells were cultured on top of decellullarized lung hydrogels containing primary lung mesenchymal stromal cells. Then, cyclic stretch was applied to mimic breathing, and an inflammatory response was induced by using a bacteriotoxin hit. Having simulated the inflamed breathing lung environment, we assessed the effect of an anti-inflammatory drug (i.e., dexamethasone) by studying the secretion of the most relevant inflammatory cytokines. To better identify key players in our model, the impact of the individual factors (cyclic stretch, decellularized lung hydrogel scaffold, and the presence of mesenchymal stromal cells) was studied separately. Results showed that developed model presented a more reduced inflammatory response than traditional models, which is in line with what is expected from the response commonly observed in patients. Further, from the individual analysis of the different stimuli, it was observed that the use of extracellular matrix hydrogels obtained from decellularized lungs had the most significant impact on the change of the inflammatory response. The developed model then opens the door for further in vitro studies with a better-adjusted response to the inflammatory hit and more robust results in the test of different drugs or cell therapy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy