SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Almtoft Klaus Pagh) "

Sökning: WFRF:(Almtoft Klaus Pagh)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alshammari, Hatem, et al. (författare)
  • Antimicrobial Potential of Strontium-Functionalized Titanium Against Bacteria Associated With Peri-Implantitis
  • 2024
  • Ingår i: Clinical and Experimental Dental Research. - : John Wiley & Sons. - 2057-4347. ; 10:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: To explore the antimicrobial potential of strontium (Sr)-functionalized wafers against multiple bacteria associated with per-implant infections, in both mono- and multispecies biofilms. Materials and Methods: The bactericidal and bacteriostatic effect of silicon wafers functionalized with a strontium titanium oxygen coating (Sr-Ti-O) or covered only with Ti (controls) against several bacteria, either grown as a mono-species or multispecies biofilms, was assessed using a bacterial viability assay and a plate counting method. Mono-species biofilms were assessed after 2 and 24 h, while the antimicrobial effect on multispecies biofilms was assessed at Days 1, 3, and 6. The impact of Sr functionalization on the total percentage of Porphyromonas gingivalis in the multispecies biofilm, using qPCR, and gingipain activity was also assessed. Results: Sr-functionalized wafers, compared to controls, were associated with statistically significant less viable cells in both mono- and multispecies tests. The number of colony forming units (CFUs) within the biofilm was significantly less in Sr-functionalized wafers, compared to control wafers, for Staphylococcus aureus at all time points of evaluation and for Escherichia coli at Day 1. Gingipain activity was less in Sr-functionalized wafers, compared to control wafers, and the qPCR showed that P. gingivalis remained below detection levels at Sr-functionalized wafers, while it consisted of 15% of the total biofilm on control wafers at Day 6. Conclusion: Sr functionalization displayed promising antimicrobial potential, possessing bactericidal and bacteriostatic ability against bacteria associated with peri-implantitis grown either as mono-species or mixed in a multispecies consortium with several common oral microorganisms.
  •  
2.
  • Hsu, Tun-Wei, 1991-, et al. (författare)
  • Effects of substrate rotation during AlSi-HiPIMS/Ti-DCMS co-sputtering growth of TiAlSiN coatings on phase content, microstructure, and mechanical properties
  • 2023
  • Ingår i: Surface & Coatings Technology. - : Elsevier. - 0257-8972 .- 1879-3347. ; 453
  • Tidskriftsartikel (refereegranskat)abstract
    • A combined high-power impulse and dc magnetron co-sputtering (HiPIMS/DCMS) technique is used to deposit Ti0.6Al0.32Si0.08N films with 1-fold substrate table rotation. Layers are grown at two different substrate-target separations, two different rotational speeds, and with different values of substrate bias. The aim is to study the role of (1) overlap between ion and neutral fluxes generated from HiPIMS and DCMS sources, respectively, and (2) the subplantation range of low-mass ions. Results from X-ray diffractometry highlight the necessity of flux intermixing in the formation of the metastable B1-structured TiAlSiN solid solutions. All films grown at short target-to-substrate distance contain the hexagonal AlN phase, as there is essentially no overlap between HiPIMS and DCMS fluxes, thus the Al+ and Si+ subplantation is very limited. Under conditions of high flux intermixing corresponding to larger target-to-substrate distance, no w-AlN forms irrespective of rotational speed (1 or 3 rpm) and bias amplitude (120 or 480 V), indicating that the role of Al+/Si+ and Ti flux overlap is crucial for the phase formation during film growth by HiPIMS/DCMS with substrate rotation. This conclusion is further supported by the fact that the reduction of the bilayer thickness with increasing the target-to-substrate distance (hence increasing flux overlap) is larger for films grown with higher amplitude of the substrate bias, indicative of more efficient Al+/Si+ subplantation into the c-TiN phase. Single-phase films with the hardness close to that of layers grown with stationary substrate table can be achieved, however, at the expense of higher compressive stress.
  •  
3.
  • Sønderby, Steffen, et al. (författare)
  • Strontium diffusion in magnetron sputtered gadolinia-doped ceria thin film barrier coatings for solid oxide fuel cells
  • 2013
  • Ingår i: Advanced Energy Materials. - : John Wiley & Sons. - 1614-6840 .- 1614-6832. ; 3:7, s. 923-929
  • Tidskriftsartikel (refereegranskat)abstract
    • Strontium (Sr) diffusion in magnetron sputtered gadolinia-doped ceria (CGO) thin films is investigated. For this purpose, a model system consisting of a screen printed (La,Sr)(Co,Fe)O3−δ (LSCF) layer, and thin films of CGO and yttria-stabilized zirconia (YSZ) is prepared to simulate a solid oxide fuel cell. This setup allows observation of Sr diffusion by observing SrZrO3 formation using X-ray diffraction while annealing. Subsequent electron microscopy confirms the results. This approach presents a simple method for assessing the quality of CGO barriers without the need for a complete fuel cell test setup. CGO films with thicknesses ranging from 250 nm to 1.2 μm are tested at temperatures from 850 °C to 950 °C which yields an in-depth understanding of Sr diffusion through CGO thin films that may be of high scientific and technical interest for implementation of novel fuel cell materials. Sr is found to diffuse along column/grain boundaries in the CGO films but by modifying the film thickness and microstructure the breaking temperature of the barrier can be increased.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy