SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Amend Sarah R.) "

Search: WFRF:(Amend Sarah R.)

  • Result 1-11 of 11
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Gatenby, Robert A., et al. (author)
  • Lung adenocarcinomas without driver genes converge to common adaptive strategies through diverse genetic, epigenetic, and niche construction evolutionary pathways
  • 2024
  • In: Medical Oncology. - 1357-0560. ; 41:6
  • Journal article (peer-reviewed)abstract
    • Somatic evolution selects cancer cell phenotypes that maximize survival and proliferation in dynamic environments. Although cancer cells are molecularly heterogeneous, we hypothesized convergent adaptive strategies to common host selection forces can be inferred from patterns of epigenetic and genetic evolutionary selection in similar tumors. We systematically investigated gene mutations and expression changes in lung adenocarcinomas with no common driver genes (n = 313). Although 13,461 genes were mutated in at least one sample, only 376 non-synonymous mutations evidenced positive evolutionary selection with conservation of 224 genes, while 1736 and 2430 genes exhibited ≥ two-fold increased and ≥ 50% decreased expression, respectively. Mutations under positive selection are more frequent in genes with significantly altered expression suggesting they often “hardwire” pre-existing epigenetically driven adaptations. Conserved genes averaged 16-fold higher expression in normal lung tissue compared to those with selected mutations demonstrating pathways necessary for both normal cell function and optimal cancer cell fitness. The convergent LUAD phenotype exhibits loss of differentiated functions and cell–cell interactions governing tissue organization. Conservation with increased expression is found in genes associated with cell cycle, DNA repair, p53 pathway, epigenetic modifiers, and glucose metabolism. No canonical driver gene pathways exhibit strong positive selection, but extensive down-regulation of membrane ion channels suggests decreased transmembrane potential may generate persistent proliferative signals. NCD LUADs perform niche construction generating a stiff, immunosuppressive microenvironment through selection of specific collagens and proteases. NCD LUADs evolve to a convergent phenotype through a network of interconnected genetic, epigenetic, and ecological pathways.
  •  
3.
  • Brown, Joel S., et al. (author)
  • Updating the Definition of Cancer
  • 2023
  • In: Molecular cancer research : MCR. - 1557-3125. ; 21:11, s. 1142-1147
  • Journal article (peer-reviewed)abstract
    • Most definitions of cancer broadly conform to the current NCI definition: "Cancer is a disease in which some of the body's cells grow uncontrollably and spread to other parts of the body." These definitions tend to describe what cancer "looks like" or "does" but do not describe what cancer "is" or "has become." While reflecting past insights, current definitions have not kept pace with the understanding that the cancer cell is itself transformed and evolving. We propose a revised definition of cancer: Cancer is a disease of uncontrolled proliferation by transformed cells subject to evolution by natural selection. We believe this definition captures the essence of the majority of previous and current definitions. To the simplest definition of cancer as a disease of uncontrolled proliferation of cells, our definition adds in the adjective "transformed" to capture the many tumorigenic processes that cancer cells adopt to metastasize. To the concept of uncontrolled proliferation of transformed cells, our proposed definition then adds "subject to evolution by natural selection." The subject to evolution by natural selection modernizes the definition to include the genetic and epigenetic changes that accumulate within a population of cancer cells that lead to the lethal phenotype. Cancer is a disease of uncontrolled proliferation by transformed cells subject to evolution by natural selection.
  •  
4.
  • Bukkuri, Anuraag, et al. (author)
  • A life history model of the ecological and evolutionary dynamics of polyaneuploid cancer cells
  • 2022
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 12:1
  • Journal article (peer-reviewed)abstract
    • Therapeutic resistance is one of the main reasons for treatment failure in cancer patients. The polyaneuploid cancer cell (PACC) state has been shown to promote resistance by providing a refuge for cancer cells from the effects of therapy and by helping them adapt to a variety of environmental stressors. This state is the result of aneuploid cancer cells undergoing whole genome doubling and skipping mitosis, cytokinesis, or both. In this paper, we create a novel mathematical framework for modeling the eco-evolutionary dynamics of state-structured populations and use this framework to construct a model of cancer populations with an aneuploid and a PACC state. Using in silico simulations, we explore how the PACC state allows cancer cells to (1) survive extreme environmental conditions by exiting the cell cycle after S phase and protecting genomic material and (2) aid in adaptation to environmental stressors by increasing the cancer cell’s ability to generate heritable variation (evolvability) through the increase in genomic content that accompanies polyploidization. In doing so, we demonstrate the ability of the PACC state to allow cancer cells to persist under therapy and evolve therapeutic resistance. By eliminating cells in the PACC state through appropriately-timed PACC-targeted therapies, we show how we can prevent the emergence of resistance and promote cancer eradication.
  •  
5.
  • Bukkuri, Anuraag, et al. (author)
  • A mathematical investigation of polyaneuploid cancer cell memory and cross-resistance in state-structured cancer populations
  • 2023
  • In: Scientific Reports. - 2045-2322. ; 13:1
  • Journal article (peer-reviewed)abstract
    • The polyaneuploid cancer cell (PACC) state promotes cancer lethality by contributing to survival in extreme conditions and metastasis. Recent experimental evidence suggests that post-therapy PACC-derived recurrent populations display cross-resistance to classes of therapies with independent mechanisms of action. We hypothesize that this can occur through PACC memory, whereby cancer cells that have undergone a polyaneuploid transition (PAT) reenter the PACC state more quickly or have higher levels of innate resistance. In this paper, we build on our prior mathematical models of the eco-evolutionary dynamics of cells in the 2N+ and PACC states to investigate these two hypotheses. We show that although an increase in innate resistance is more effective at promoting cross-resistance, this trend can also be produced via PACC memory. We also find that resensitization of cells that acquire increased innate resistance through the PAT have a considerable impact on eco-evolutionary dynamics and extinction probabilities. This study, though theoretical in nature, can help inspire future experimentation to tease apart hypotheses surrounding how cross-resistance in structured cancer populations arises.
  •  
6.
  • Bukkuri, Anuraag, et al. (author)
  • Modeling cancer’s ecological and evolutionary dynamics
  • 2023
  • In: Medical Oncology. - : Springer Science and Business Media LLC. - 1357-0560 .- 1559-131X. ; 40:4
  • Journal article (peer-reviewed)abstract
    • In this didactic paper, we present a theoretical modeling framework, called the G-function, that integrates both the ecology and evolution of cancer to understand oncogenesis. The G-function has been used in evolutionary ecology, but has not been widely applied to problems in cancer. Here, we build the G-function framework from fundamental Darwinian principles and discuss how cancer can be seen through the lens of ecology, evolution, and game theory. We begin with a simple model of cancer growth and add on components of cancer cell competition and drug resistance. To aid in exploration of eco-evolutionary modeling with this approach, we also present a user-friendly software tool. By the end of this paper, we hope that readers will be able to construct basic G function models and grasp the usefulness of the framework to understand the games cancer plays in a biologically mechanistic fashion.
  •  
7.
  • Bukkuri, Anuraag, et al. (author)
  • Stochastic models of Mendelian and reverse transcriptional inheritance in state-structured cancer populations
  • 2022
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 12:1
  • Journal article (peer-reviewed)abstract
    • Recent evidence suggests that a polyaneuploid cancer cell (PACC) state may play a key role in the adaptation of cancer cells to stressful environments and in promoting therapeutic resistance. The PACC state allows cancer cells to pause cell division and to avoid DNA damage and programmed cell death. Transition to the PACC state may also lead to an increase in the cancer cell’s ability to generate heritable variation (evolvability). One way this can occur is through evolutionary triage. Under this framework, cells gradually gain resistance by scaling hills on a fitness landscape through a process of mutation and selection. Another way this can happen is through self-genetic modification whereby cells in the PACC state find a viable solution to the stressor and then undergo depolyploidization, passing it on to their heritably resistant progeny. Here, we develop a stochastic model to simulate both of these evolutionary frameworks. We examine the impact of treatment dosage and extent of self-genetic modification on eco-evolutionary dynamics of cancer cells with aneuploid and PACC states. We find that under low doses of therapy, evolutionary triage performs better whereas under high doses of therapy, self-genetic modification is favored. This study generates predictions for teasing apart these biological hypotheses, examines the implications of each in the context of cancer, and provides a modeling framework to compare Mendelian and non-traditional forms of inheritance.
  •  
8.
  • Bukkuri, Anuraag, et al. (author)
  • The contribution of evolvability to the eco-evolutionary dynamics of competing species
  • 2023
  • In: Ecology and Evolution. - 2045-7758. ; 13:10
  • Journal article (peer-reviewed)abstract
    • Evolvability is the capacity of a population to generate heritable variation that can be acted upon by natural selection. This ability influences the adaptations and fitness of individual organisms. By viewing this capacity as a trait, evolvability is subject to natural selection and thus plays a critical role in eco-evolutionary dynamics. Understanding this role provides insight into how species respond to changes in their environment and how species coexistence can arise and be maintained. Here, we create a G-function model of competing species, each with a different evolvability. We analyze population and strategy (= heritable phenotype) dynamics of the two populations under clade initiation (when species are introduced into a population), evolutionary tracking (constant, small changes in the environment), adaptive radiation (availability of multiple ecological niches), and evolutionary rescue (extreme environmental disturbances). We find that when species are far from an eco-evolutionary equilibrium, faster-evolving species reach higher population sizes, and when species are close to an equilibrium, slower-evolving species are more successful. Frequent, minor environmental changes promote the extinction of species with small population sizes, regardless of their evolvability. When several niches are available for a species to occupy, coexistence is possible, though slower-evolving species perform slightly better than faster-evolving ones due to the well-recognized inherent cost of evolvability. Finally, disrupting the environment at intermediate frequencies can result in coexistence with cyclical population dynamics of species with different rates of evolution.
  •  
9.
  • Hammarlund, Emma U., et al. (author)
  • The issues with tissues : the wide range of cell fate separation enables the evolution of multicellularity and cancer
  • 2020
  • In: Medical Oncology. - : Springer Science and Business Media LLC. - 1357-0560 .- 1559-131X. ; 37:7
  • Journal article (peer-reviewed)abstract
    • Our understanding of the rises of animal and cancer multicellularity face the same conceptual hurdles: what makes the clade originate and what makes it diversify. Between the events of origination and diversification lies complex tissue organization that gave rise to novel functionality for organisms and, unfortunately, for malignant transformation in cells. Tissue specialization with distinctly separated cell fates allowed novel functionality at organism level, such as for vertebrate animals, but also involved trade-offs at the cellular level that are potentially disruptive. These trade-offs are under-appreciated and here we discuss how the wide separation of cell phenotypes may contribute to cancer evolution by (a) how factors can reverse differentiated cells into a window of phenotypic plasticity, (b) the reversal to phenotypic plasticity coupled with asexual reproduction occurs in a way that the host cannot adapt, and (c) the power of the transformation factor correlates to the power needed to reverse tissue specialization. The role of reversed cell fate separation for cancer evolution is strengthened by how some tissues and organisms maintain high cell proliferation and plasticity without developing tumours at a corresponding rate. This demonstrates a potential proliferation paradox that requires further explanation. These insights from the cancer field, which observes tissue evolution in real time and closer than any other field, allow inferences to be made on evolutionary events in animal history. If a sweet spot of phenotypic and reproductive versatility is key to transformation, factors stimulating cell fate separation may have promoted also animal diversification on Earth.
  •  
10.
  • Pienta, Kenneth J, et al. (author)
  • Convergent Evolution, Evolving Evolvability, and the Origins of Lethal Cancer
  • 2020
  • In: Molecular cancer research : MCR. - 1557-3125. ; 18:6, s. 801-810
  • Research review (peer-reviewed)abstract
    • Advances in curative treatment to remove the primary tumor have increased survival of localized cancers for most solid tumor types, yet cancers that have spread are typically incurable and account for >90% of cancer-related deaths. Metastatic disease remains incurable because, somehow, tumors evolve resistance to all known compounds, including therapies. In all of these incurable patients, de novo lethal cancer evolves capacities for both metastasis and resistance. Therefore, cancers in different patients appear to follow the same eco-evolutionary path that independently manifests in affected patients. This convergent outcome, that always includes the ability to metastasize and exhibit resistance, demands an explanation beyond the slow and steady accrual of stochastic mutations. The common denominator may be that cancer starts as a speciation event when a unicellular protist breaks away from its multicellular host and initiates a cancer clade within the patient. As the cancer cells speciate and diversify further, some evolve the capacity to evolve: evolvability. Evolvability becomes a heritable trait that influences the available variation of other phenotypes that can then be acted upon by natural selection. Evolving evolvability may be an adaptation for cancer cells. By generating and maintaining considerable heritable variation, the cancer clade can, with high certainty, serendipitously produce cells resistant to therapy and cells capable of metastasizing. Understanding that cancer cells can swiftly evolve responses to novel and varied stressors create opportunities for adaptive therapy, double-bind therapies, and extinction therapies; all involving strategic decision making that steers and anticipates the convergent coevolutionary responses of the cancers.
  •  
11.
  • Pienta, Kenneth J., et al. (author)
  • Poly-aneuploid cancer cells promote evolvability, generating lethal cancer
  • 2020
  • In: Evolutionary Applications. - : Wiley. - 1752-4563 .- 1752-4571. ; 13:7, s. 1626-1634
  • Journal article (peer-reviewed)abstract
    • Cancer cells utilize the forces of natural selection to evolve evolvability allowing a constant supply of heritable variation that permits a cancer species to evolutionary track changing hazards and opportunities. Over time, the dynamic tumor ecosystem is exposed to extreme, catastrophic changes in the conditions of the tumor—natural (e.g., loss of blood supply) or imposed (therapeutic). While the nature of these catastrophes may be varied or unique, their common property may be to doom the current cancer phenotype unless it evolves rapidly. Poly-aneuploid cancer cells (PACCs) may serve as efficient sources of heritable variation that allows cancer cells to evolve rapidly, speciate, evolutionarily track their environment, and most critically for patient outcome and survival, permit evolutionary rescue, therapy resistance, and metastasis. As a conditional evolutionary strategy, they permit the cancer cells to accelerate evolution under stress and slow down the generation of heritable variation when conditions are more favorable or when the cancer cells are closer to an evolutionary optimum. We hypothesize that they play a critical and outsized role in lethality by their increased capacity for invasion and motility, for enduring novel and stressful environments, and for generating heritable variation that can be dispensed to their 2N+ aneuploid progeny that make up the bulk of cancer cells within a tumor, providing population rescue in response to therapeutic stress. Targeting PACCs is essential to cancer therapy and patient cure—without the eradication of the resilient PACCs, cancer will recur in treated patients.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-11 of 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view