SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ameur A) "

Sökning: WFRF:(Ameur A)

  • Resultat 1-18 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wang, Z., et al. (författare)
  • Genome-wide association analyses of physical activity and sedentary behavior provide insights into underlying mechanisms and roles in disease prevention
  • 2022
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 54:9, s. 1332-1344
  • Tidskriftsartikel (refereegranskat)abstract
    • Although physical activity and sedentary behavior are moderately heritable, little is known about the mechanisms that influence these traits. Combining data for up to 703,901 individuals from 51 studies in a multi-ancestry meta-analysis of genome-wide association studies yields 99 loci that associate with self-reported moderate-to-vigorous intensity physical activity during leisure time (MVPA), leisure screen time (LST) and/or sedentary behavior at work. Loci associated with LST are enriched for genes whose expression in skeletal muscle is altered by resistance training. A missense variant in ACTN3 makes the alpha-actinin-3 filaments more flexible, resulting in lower maximal force in isolated type IIA muscle fibers, and possibly protection from exercise-induced muscle damage. Finally, Mendelian randomization analyses show that beneficial effects of lower LST and higher MVPA on several risk factors and diseases are mediated or confounded by body mass index (BMI). Our results provide insights into physical activity mechanisms and its role in disease prevention. Multi-ancestry meta-analyses of genome-wide association studies for self-reported physical activity during leisure time, leisure screen time, sedentary commuting and sedentary behavior at work identify 99 loci associated with at least one of these traits.
  •  
2.
  • Birney, Ewan, et al. (författare)
  • Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project
  • 2007
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 447:7146, s. 799-816
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function.
  •  
3.
  • Ameur, Adam, et al. (författare)
  • Genetic Adaptation of Fatty-Acid Metabolism : A Human-Specific Haplotype Increasing the Biosynthesis of Long-Chain Omega-3 and Omega-6 Fatty Acids
  • 2012
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 90:5, s. 809-820
  • Tidskriftsartikel (refereegranskat)abstract
    • Omega-3 and omega-6 long-chain polyunsaturated fatty acids (LC-PUFAs) are essential for the development and function of the human brain. They can be obtained directly from food, e.g., fish, or synthesized from precursor molecules found in vegetable oils. To determine the importance of genetic variability to fatty-acid biosynthesis, we studied FADS1 and FADS2, which encode rate-limiting enzymes for fatty-acid conversion. We performed genome-wide genotyping (n = 5,652 individuals) and targeted resequencing (n = 960 individuals) of the FADS region in five European population cohorts. We also analyzed available genomic data from human populations, archaic hominins, and more distant primates. Our results show that present-day humans have two common FADS haplotypes-defined by 28 closely linked SNPs across 38.9 kb-that differ dramatically in their ability to generate LC-PUFAs. No independent effects on FADS activity were seen for rare SNPs detected by targeted resequencing. The more efficient, evolutionarily derived haplotype appeared after the lineage split leading to modern humans and Neanderthals and shows evidence of positive selection. This human-specific haplotype increases the efficiency of synthesizing essential long-chain fatty acids from precursors and thereby might have provided an advantage in environments with limited access to dietary LC-PUFAs. In the modern world, this haplotype has been associated with lifestyle-related diseases, such as coronary artery disease.
  •  
4.
  • Eisfeldt, J., et al. (författare)
  • Discovery of novel Viking sequences in Swedish genomes
  • 2019
  • Ingår i: European Journal of Human Genetics. - : NATURE PUBLISHING GROUP. - 1018-4813 .- 1476-5438. ; 27, s. 1766-1766
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
5.
  • Johansson, J., et al. (författare)
  • Gustavson syndrome is caused by an in-frame deletion in RBMX associated with potentially disturbed SH3 domain interactions
  • 2024
  • Ingår i: European Journal of Human Genetics. - : SPRINGERNATURE. - 1018-4813 .- 1476-5438. ; 32:3, s. 333-341
  • Tidskriftsartikel (refereegranskat)abstract
    • RNA binding motif protein X-linked (RBMX) encodes the heterogeneous nuclear ribonucleoprotein G (hnRNP G) that regulates splicing, sister chromatid cohesion and genome stability. RBMX knock down experiments in various model organisms highlight the gene's importance for brain development. Deletion of the RGG/RG motif in hnRNP G has previously been associated with Shashi syndrome, however involvement of other hnRNP G domains in intellectual disability remain unknown. In the current study, we present the underlying genetic and molecular cause of Gustavson syndrome. Gustavson syndrome was first reported in 1993 in a large Swedish five-generation family presented with profound X-linked intellectual disability and an early death. Extensive genomic analyses of the family revealed hemizygosity for a novel in-frame deletion in RBMX in affected individuals (NM_002139.4; c.484_486del, p.(Pro162del)). Carrier females were asymptomatic and presented with skewed X-chromosome inactivation, indicating silencing of the pathogenic allele. Affected individuals presented minor phenotypic overlap with Shashi syndrome, indicating a different disease-causing mechanism. Investigation of the variant effect in a neuronal cell line (SH-SY5Y) revealed differentially expressed genes enriched for transcription factors involved in RNA polymerase II transcription. Prediction tools and a fluorescence polarization assay imply a novel SH3-binding motif of hnRNP G, and potentially a reduced affinity to SH3 domains caused by the deletion. In conclusion, we present a novel in-frame deletion in RBMX segregating with Gustavson syndrome, leading to disturbed RNA polymerase II transcription, and potentially reduced SH3 binding. The results indicate that disruption of different protein domains affects the severity of RBMX-associated intellectual disabilities.
  •  
6.
  • Pinese, Mark, et al. (författare)
  • The Medical Genome Reference Bank contains whole genome and phenotype data of 2570 healthy elderly
  • 2020
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Population health research is increasingly focused on the genetic determinants of healthy ageing, but there is no public resource of whole genome sequences and phenotype data from healthy elderly individuals. Here we describe the first release of the Medical Genome Reference Bank (MGRB), comprising whole genome sequence and phenotype of 2570 elderly Australians depleted for cancer, cardiovascular disease, and dementia. We analyse the MGRB for single-nucleotide, indel and structural variation in the nuclear and mitochondrial genomes. MGRB individuals have fewer disease-associated common and rare germline variants, relative to both cancer cases and the gnomAD and UK Biobank cohorts, consistent with risk depletion. Age-related somatic changes are correlated with grip strength in men, suggesting blood-derived whole genomes may also provide a biologic measure of age-related functional deterioration. The MGRB provides a broadly applicable reference cohort for clinical genetics and genomic association studies, and for understanding the genetics of healthy ageing. Healthspan and healthy aging are areas of research with potential socioeconomic impact. Here, the authors present the Medical Genome Reference Bank (MGRB) which consist of over 4,000 individuals aged 70 years and older without a history of the major age-related diseases and report on results from whole-genome sequencing and association analyses.
  •  
7.
  • Sällman Almén, Markus, et al. (författare)
  • Determination of the obesity-associated gene variants within the entire FTO gene by ultra-deep targeted sequencing in obese and lean children.
  • 2013
  • Ingår i: International Journal of Obesity. - : Springer Science and Business Media LLC. - 0307-0565 .- 1476-5497. ; 37:3, s. 424-431
  • Tidskriftsartikel (refereegranskat)abstract
    • Background:The Fat mass and obesity-associated gene (FTO) was the first gene reliably associated with body mass index in genome-wide association studies on a population level. At present, the genetic variations within the FTO gene are still the common variants that have the largest influence on body mass index.Methods:In the current study, we amplified the entire FTO gene, in total 412 Kbp, in over 200 long-range PCR fragments from each individual, from 524 severely obese and 527 lean Swedish children, and sequenced the products as two DNA pools using massive parallel sequencing (SOLiD).Results:The sequencing achieved very high coverage (median 18 000 reads) and we detected and estimated allele frequencies for 705 single nucleotide polymorphisms (SNPs) (19 novel) and 40 indels (24 novel) using a sophisticated statistical approach to remove false-positive SNPs. We identified 19 obesity-associated SNPs within intron one of the FTO gene, and validated our findings with genotyping. Ten of the validated obesity-associated SNPs have a stronger obesity association (P<0.007) than the commonly studied rs9939609 SNP (P<0.012).Conclusions:This study provides a comprehensive obesity-associated variation map of FTO, identifies novel lead SNPs and evaluates putative causative variants. We conclude that intron one is the only region within the FTO gene associated with obesity, and finally, we establish next generation sequencing of pooled DNA as a powerful method to investigate genetic association with complex diseases and traits.
  •  
8.
  •  
9.
  • Ameur, Adam, et al. (författare)
  • Comprehensive profiling of the vaginal microbiome in HIV positive women using massive parallel semiconductor sequencing
  • 2014
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 4, s. 4398-
  • Tidskriftsartikel (refereegranskat)abstract
    • Infections by HIV increase the risk of acquiring secondary viral and bacterial infections and methods are needed to determine the spectrum of co-infections for proper treatment. We used rolling circle amplification (RCA) and Ion Proton sequencing to investigate the vaginal microbiome of 20 HIV positive women from South Africa. A total of 46 different human papillomavirus (HPV) types were found, many of which are not detected by existing genotyping assays. Moreover, the complete genomes of two novel HPV types were determined. Abundance of HPV infections was highly correlated with real-time PCR estimates, indicating that the RCA-Proton method can be used for quantification of individual pathogens. We also identified a large number of other viral, bacterial and parasitic co-infections and the spectrum of these co-infections varied widely between individuals. Our method provides rapid detection of a broad range of pathogens and the ability to reconstruct complete genomes of novel infectious agents.
  •  
10.
  •  
11.
  • Dumanski, Jan P., et al. (författare)
  • Immune cells lacking Y chromosome show dysregulation of autosomal gene expression
  • 2021
  • Ingår i: Cellular and Molecular Life Sciences (CMLS). - : Springer. - 1420-682X .- 1420-9071. ; 78:8, s. 4019-4033
  • Tidskriftsartikel (refereegranskat)abstract
    • Epidemiological investigations show that mosaic loss of chromosome Y (LOY) in leukocytes is associated with earlier mortality and morbidity from many diseases in men. LOY is the most common acquired mutation and is associated with aberrant clonal expansion of cells, yet it remains unclear whether this mosaicism exerts a direct physiological effect. We studied DNA and RNA from leukocytes in sorted- and single-cells in vivo and in vitro. DNA analyses of sorted cells showed that men diagnosed with Alzheimer’s disease was primarily affected with LOY in NK cells whereas prostate cancer patients more frequently displayed LOY in CD4 + T cells and granulocytes. Moreover, bulk and single-cell RNA sequencing in leukocytes allowed scoring of LOY from mRNA data and confirmed considerable variation in the rate of LOY across individuals and cell types. LOY-associated transcriptional effect (LATE) was observed in ~ 500 autosomal genes showing dysregulation in leukocytes with LOY. The fraction of LATE genes within specific cell types was substantially larger than the fraction of LATE genes shared between different subsets of leukocytes, suggesting that LOY might have pleiotropic effects. LATE genes are involved in immune functions but also encode proteins with roles in other diverse biological processes. Our findings highlight a surprisingly broad role for chromosome Y, challenging the view of it as a “genetic wasteland”, and support the hypothesis that altered immune function in leukocytes could be a mechanism linking LOY to increased risk for disease.
  •  
12.
  •  
13.
  • Höijer, Ida, et al. (författare)
  • Detailed analysis of HTT repeat elements in human blood using targeted amplification-free long-read sequencing
  • 2018
  • Ingår i: Human Mutation. - : Hindawi Limited. - 1059-7794 .- 1098-1004. ; 39:9, s. 1262-1272
  • Tidskriftsartikel (refereegranskat)abstract
    • Amplification of DNA is required as a mandatory step during library preparation in most targeted sequencing protocols. This can be a critical limitation when targeting regions that are highly repetitive or with extreme guanine-cytosine (GC) content, including repeat expansions associated with human disease. Here, we used an amplification-free protocol for targeted enrichment utilizing the CRISPR/Cas9 system (No-Amp Targeted sequencing) in combination with single molecule, real-time (SMRT) sequencing for studying repeat elements in the huntingtin (HTT) gene, where an expanded CAG repeat is causative for Huntington disease. We also developed a robust data analysis pipeline for repeat element analysis that is independent of alignment of reads to a reference genome. The method was applied to 11 diagnostic blood samples, and for all 22 alleles the resulting CAG repeat count agreed with previous results based on fragment analysis. The amplification-free protocol also allowed for studying somatic variability of repeat elements in our samples, without the interference of PCR stutter. In summary, with No-Amp Targeted sequencing in combination with our analysis pipeline, we could accurately study repeat elements that are difficult to investigate using PCR-based methods.
  •  
14.
  • Mattisson, Jonas, 1994- (författare)
  • The role of hematopoietic chromosome Y loss in health and disease
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Mosaic loss of chromosome Y (mLOY) is the most common somatic mutation, and affected men have increased risk for all major causes of death, including cardiovascular diseases and cancer. As a male specific mutation, it helps explain why men live shorter lives than women. However, the causality is debated, and contrasting models have been proposed to explain how Y loss in blood could be linked with disease in other organs. In this thesis, I provide results contributing to this debate.In Paper I, we identify 156 loci associated with genetic susceptibility for mLOY. Enrichment of loci involved in processes such as cell-cycle regulation and cancer susceptibility suggest that mLOY could be viewed as a barometer of genomic instability. In Paper II, we used the mLOY-associated variants identified in Paper I to calculate a PRS for mLOY in an independent cohort. We found that men with high PRS displayed a five-fold increased risk in an age dependent manner.In Paper III, we showed that mLOY and CHIP driving SNVs often co-occur in leukocytes. Considering that they share clinical manifestations, further studies are necessary to elucidate how these mutations contributes to disease risk.  In Paper IV, we studied transcriptional effects of mLOY in leukocytes and identified almost 500 dysregulated autosomal genes, varying between cell types. We also report that mLOY in specific leukocytes might be linked with different types of disease.  In Paper V, regulatory T cells are shown to be affected with Y loss to a greater extent than other CD4+ T lymphocytes. We propose that mLOY might drive T lymphocytes towards the regulatory phenotype, known to exhibit immunosuppressive functions. In Paper VI, we used CITE-seq to show that expression and cell surface abundance of the immunoprotein CD99 is lower in leukocytes with Y loss. This finding provides a possible explanation how mLOY could influence normal immune response, since CD99 is essential is for the mobility and cell-to-cell interactions of leukocytes. In Paper VII, it is shown that hematological mLOY cause disease directly in other organs. Mice with mLOY was shown to have a reduced survival, increased fibrosis and cardiac dysfunction, while men in UK biobank with mLOY in blood was found to die from diseases of the circulatory system in a dose dependent manner. Treatment with TGFβ1-inhibitors could restore cardiac function in mLOY-mice. Together, the presented results show that mLOY both reflect genomic instability overall, while also causing disease directly.
  •  
15.
  • Najjari, Afef, et al. (författare)
  • Physiological and genomic insights into abiotic stress of halophilic archaeon Natrinema altunense 4.1R isolated from a saline ecosystem of Tunisian desert
  • 2023
  • Ingår i: Genetica. - : Springer Science and Business Media LLC. - 1573-6857 .- 0016-6707. ; 151:2, s. 133-152
  • Tidskriftsartikel (refereegranskat)abstract
    • Halophilic archaea are polyextremophiles with the ability to withstand fluctuations in salinity, high levels of ultraviolet radiation, and oxidative stress, allowing them to survive in a wide range of environments and making them an excellent model for astrobiological research. Natrinema altunense 4.1R is a halophilic archaeon isolated from the endorheic saline lake systems, Sebkhas, located in arid and semi-arid regions of Tunisia. It is an ecosystem characterized by periodic flooding from subsurface groundwater and fluctuating salinities. Here, we assess the physiological responses and genomic characterization of N. altunense 4.1R to UV-C radiation, as well as osmotic and oxidative stresses. Results showed that the 4.1R strain is able to survive up to 36% of salinity, up to 180 J/m2 to UV-C radiation, and at 50 mM of H2O2, a resistance profile similar to Halobacterium salinarum, a strain often used as UV-C resistant model. In order to understand the genetic determinants of N. altunense 4.1R survival strategy, we sequenced and analyzed its genome. Results showed multiple gene copies of osmotic stress, oxidative stress, and DNA repair response mechanisms supporting its survivability at extreme salinities and radiations. Indeed, the 3D molecular structures of seven proteins related to responses to UV-C radiation (excinucleases UvrA, UvrB, and UvrC, and photolyase), saline stress (trehalose-6-phosphate synthase OtsA and trehalose-phosphatase OtsB), and oxidative stress (superoxide dismutase SOD) were constructed by homology modeling. This study extends the abiotic stress range for the species N. altunense and adds to the repertoire of UV and oxidative stress resistance genes generally known from haloarchaeon.
  •  
16.
  • Rask-Andersen, Mathias, et al. (författare)
  • Determination of obesity associated gene variants related to TMEM18 through ultra-deep targeted re-sequencing in a case-control cohort for pediatric obesity.
  • 2015
  • Ingår i: Genetical Research. - 0016-6723 .- 1469-5073. ; 97
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWAS) have revealed association of a locus approximately 25b downstream of the TMEM18 gene with body mass and obesity. We utilized targeted re-sequencing of the body mass associated locus in proximity of TMEM18 in a case-control population of severely obese children and adolescents from the Stockholm area. We expanded our study to include the TMEM18 gene itself, with the aim of identifying body mass associated genetic variants. Sequencing was performed on the SOLiD platform, on long-range PCR fragments generated through targeted amplification of the regions of interest. Candidate single nucleotide polymorphisms (SNPs) were validated by TaqMan genotyping. We were able to observe 131 SNPs across the re-sequenced regions. Chi squared tests comparing the allele frequencies between cases and controls revealed 57 SNPs as candidates for association with obesity. Validation and replication genotyping revealed robust associations for SNPs within the haplotype block region located downstream from the TMEM18 gene. This study provides a high resolution map of the genetic variation pattern in the TMEM18 gene, as well as the associated haplotype block, and further strengthens the association of variants within the proximal haplotype block with obesity and body mass.
  •  
17.
  • Riaz, Moeen, et al. (författare)
  • A polygenic risk score predicts mosaic loss of chromosome Y in circulating blood cells
  • 2021
  • Ingår i: Cell & Bioscience. - : Springer Nature. - 2045-3701. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Mosaic loss of Y chromosome (LOY) is the most common somatic change that occurs in circulating white blood cells of older men. LOY in leukocytes is associated with increased risk for all-cause mortality and a range of common disease such as hematological and non-hematological cancer, Alzheimer’s disease, and cardiovascular events. Recent genome-wide association studies identified up to 156 germline variants associated with risk of LOY. The objective of this study was to use these variants to calculate a novel polygenic risk score (PRS) for LOY, and to assess the predictive performance of this score in a large independent population of older men.Results: We calculated a PRS for LOY in 5131 men aged 70 years and older. Levels of LOY were estimated using microarrays and validated by whole genome sequencing. After adjusting for covariates, the PRS was a significant predictor of LOY (odds ratio [OR] = 1.74 per standard deviation of the PRS, 95% confidence intervals [CI] 1.62–1.86, p < 0.001). Men in the highest quintile of the PRS distribution had > fivefold higher risk of LOY than the lowest (OR = 5.05, 95% CI 4.05–6.32, p < 0.001). Adding the PRS to a LOY prediction model comprised of age, smoking and alcohol consumption significantly improved prediction (AUC = 0.628 [CI 0.61–0.64] to 0.695 [CI 0.67–0.71], p < 0.001).Conclusions: Our results suggest that a PRS for LOY could become a useful tool for risk prediction and targeted intervention for common disease in men.
  •  
18.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-18 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy