SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Aminzadeh Selda) "

Sökning: WFRF:(Aminzadeh Selda)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aminzadeh, Selda, et al. (författare)
  • A possible explanation for the structural inhomogeneity of lignin in LCC networks
  • 2017
  • Ingår i: Wood Science and Technology. - : SPRINGER. - 0043-7719 .- 1432-5225. ; 51:6, s. 1365-1376
  • Tidskriftsartikel (refereegranskat)abstract
    • Lignin has a very complex structure, and this is partly due to the monomers being connected by many different types of covalent bonds. Furthermore, there are multiple covalent bonds between lignin and polysaccharides in wood, and it is known that the structure of lignin covalently bound to the hemicellulose xylan is different to lignin bound to the hemicellulose glucomannan. Here, synthetic lignin (DHP) is synthesized at different pH and it is shown that lignin made at lower pH has a structure more similar to the lignin bound to xylan, i.e., having higher relative content of beta-O-4 ethers. It is hypothesized that xylan due to its carboxylic acids forms a locally lower pH and thus "direct" the lignin structure to have more beta-O-4 ethers. The biological significance of these results is discussed.
  •  
2.
  •  
3.
  • Aminzadeh, Selda, 1984, et al. (författare)
  • Membrane filtration of kraft lignin: Structural charactristics and antioxidant activity of the low-molecular-weight fraction
  • 2018
  • Ingår i: Industrial Crops and Products. - : Elsevier BV. - 0926-6690 .- 1872-633X. ; 112, s. 200-209
  • Tidskriftsartikel (refereegranskat)abstract
    • Lignin, which is the second most abundant biomass component and has carbon-rich phenolic content, is a promising renewable raw material for multiple applications, such as carbon fibers, adhesives, and emulsifiers. To use lignin efficiently, it is important to ensure its purity and homogeneity. As a result, the separation of lignin into fractions with high purity and narrow molecular-weight distributions is likely a prerequisite for several applications. Ultrafiltration using ceramic membranes has many advantages, including enabling direct lignin extraction from Kraft pulp cooking liquors without pH and temperature adjustment. One challenge with membrane filtration using such a system is the potential for reduced membrane performance over time, which is associated with fouling. In this study, LignoBoost Kraft lignin was fractionated using a ceramic membrane with a molecular weight cut-off of 1 kDa. The separation behavior during ultrafiltration fractionation was investigated and the antioxidant properties of the recovered low-molecular-weight (low-MW) lignin samples were evaluated. Using this model system, the permeate fluxes were unstable during the 100 h of membrane operation. However, a decrease in the average MW in the permeate over time was observed. The shift in MW was most pronounced for virgin membranes, while a more stable MW distribution was evident for membranes subjected to multiple cleaning cycles. According to 2D NMR analysis, low-MW lignin that was recovered after 100 h of operation, consisted of smaller lignin fragments, such as dimers and oligomers, with a high content of methoxy-groups. This was confirmed using the size exclusion chromatography method, which indicated an weigh average molecular weight in the range of 450–500 Da. 31P NMR spectroscopy showed that, despite the lower total content of phenolic OH groups, the low-MW sample had a higher proportion of non-condensed phenolic OH groups. The results of the antioxidant tests demonstrated the strong potential of lignin and its low-MW fraction as a natural antioxidant, particularly for lipid-containing systems. The low-MW lignin fraction showed better antioxidant activity than the non-fractionated LignoBoost lignin in the kinetic oxygen radical absorbance capacity (ORAC) test and demonstrated three-fold stronger inhibition of the substrate (fluorescein) than the reference antioxidant Trolox (a water-soluble derivative of vitamin E).
  •  
4.
  •  
5.
  • Aminzadeh, Selda (författare)
  • Valorization of Kraft Lignin by Fractionation and Chemical Modifications for Different Applications
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • AbstractLignin is one of the most abundant biopolymers. Approximately 70 million tons of technical lignin is generated annually, but only little is used for products other than energy. The complexity of lignin hinders full utilization in high-value products and materials. In spite of the large recent progress of knowledge of lignin structure and biosynthesis, much is still not fully understood, including structural inhomogeneity. We made synthetic lignin at different pH’s and obtained structural differences that might explain the structural inhomogeneity of lignin.Technical lignins from the chemical pulping are available in large scale, but the processes result in alterations, such as oxidation and condensation. Therefore, to utilize technical lignin, modifications, such as fractionation and/or chemical modifications are necessary. Fractionation with ceramic membranes is one way to lower the polydispersity of lignin. The main advantage is their tolerance towards high temperature and harsh conditions. We demonstrated that low Mw lignin was extracted from industrially produced LignoBoost lignin aiming: i) to investigate the performance of the membrane over time; ii) to analyze the antioxidant properties of the low Mw lignin.Chemical modification can also improve the properties of lignin. By adding moieties, different properties can be obtained. Amination and methacrylation of kraft lignin were performed, as well as lignin-silica hybrid materials with potential for the adsorption were produced and investigated.Non-modified and methacrylated lignin were used to synthesize lignin-St-DVB porous microspheres to be utilized as a sorbent for organic pollutants. The possibility to substitute styrene with methacrylated lignin was evaluated, demonstrating that interaction between lignin and DVB, and porosity increased.Lignin has certain antibacterial properties. Un-modified and modified (aminated) lignin samples and sphere nanoparticles of lignin were tested for their effect against gram-positive and gram-negative bacteria’s and an injectable hydrogel was developed with encapsulated lignin for being used as an injectable gel for the open wounds. Results demonstrated promising antibacterial efficiency of lignins against gram-positive, more especially better inhibition with aminated lignins against gram-positive and negative bacterium.  
  •  
6.
  • Budnyak, Tetyana M., et al. (författare)
  • Methylene Blue dye sorption by hybrid materials from technical lignins
  • 2018
  • Ingår i: Journal of Environmental Chemical Engineering. - : Elsevier. - 2213-3437. ; 6:4, s. 4997-5007
  • Tidskriftsartikel (refereegranskat)abstract
    • New hybrid sorbents were synthesized from technical lignins and silica and were applied for the removal of Methylene Blue dye (MB) from aqueous solution. Kraft softwood lignins from LignoBoost (LBL) and CleanFlowBlack (CFBL) processes were used to understand the influence of molecular weight and functionality of initial lignins on the properties of the final hybrids. The synthesized materials were applied as adsorbents for the removal of MB from aqueous solutions. The effects of parameters such as contact time, initial concentration of dye and initial pH on the adsorption capacity were evaluated. The hybrids exhibited higher adsorption capacity than the initial macromolecules of lignin with respect to MB. The hybrid based on CFBL exhibited an adsorption capacity of 60 mg/g; this value was 30% higher than the capacity of the hybrid based on LBL, which was 41.6 mg/g. Lignin hybrid materials extract 80-99% of the dye in a pH range from 3 to 10. The equilibrium and kinetic characteristics of MB uptake by the hybrids followed the Langmuir isotherm model and pseudosecond-order model, rather than the Freundlich and Temkin models, the pseudo-first-order or the intraparticle diffusion model. The attachment of the dye to the hybrid surface was confirmed via FE-SEM and FTIR spectroscopy. The mechanism for MB adsorption was proposed. Due to the high values of regeneration efficiency of the surface of both lignin-silica hybrid materials in 0.1 M HCl (up to 75%) and ethanol (99%), they could be applied as effective sorbents in industrial wastewater treatment processes.
  •  
7.
  • Budnyak, Tetyana, et al. (författare)
  • Peculiarities of synthesis and properties of lignin-silica nanocomposites prepared by sol-gel method
  • 2018
  • Ingår i: Nanomaterials. - : MDPI. - 2079-4991. ; 8:11, s. 1-18
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of advanced hybrid materials based on polymers from biorenewable sources and mineral nanoparticles is currently of high importance. In this paper, we applied softwood kraft lignins for the synthesis of lignin/SiO2 nanostructured composites. We described the peculiarities of composites formation in the sol-gel process through the incorporation of the lignin into a silica network during the hydrolysis of tetraethoxysilane (TEOS). The initial activation of lignins was achieved by means of a Mannich reaction with 3-aminopropyltriethoxysilane (APTES). In the study, we present a detailed investigation of the physicochemical characteristics of initial kraft lignins and modified lignins on each step of the synthesis. Thus, 2D-NMR, P-31-NMR, size-exclusion chromatography (SEC) and dynamic light scattering (DLS) were applied to analyze the characteristics of pristine lignins and lignins in dioxan:water solutions. X-Ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) were used to confirm the formation of the lignin-silica network and characterize the surface and bulk structures of the obtained hybrids. Termogravimetric analysis (TGA) in nitrogen and air atmosphere were applied to a detailed investigation of the thermal properties of pristine lignins and lignins on each step of modification. SEM confirmed the nanostructure of the obtained composites. As was demonstrated, the activation of lignin is crucial for the sol-gel formation of a silica network in order to create novel hybrid materials from lignins and alkoxysilanes (e.g., TEOS). It was concluded that the structure of the lignin had an impact on its reactivity during the activation reaction, and consequently affected the properties of the final hybrid materials.
  •  
8.
  • Goliszek, M., et al. (författare)
  • Synthesis and structure characterization of polymeric nanoporous microspheres with lignin
  • 2018
  • Ingår i: Cellulose. - : Springer Nature. - 0969-0239 .- 1572-882X. ; 25:10, s. 5843-5862
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanoporous microspheres with divinylbenzene (DVB), styrene (St), and lignin were synthesized by an emulsion-suspension polymerization method. Several types of lignins were used: (1) kraft lignin before (L-unmod) and after modification with methacryloyl chloride (L-Met) and (2) low-molecular-weight kraft lignin unmodified (LWL-unmod) and modified with methacrylic anhydride (LWL-Met). LWL was prepared by ultrafiltration of industrial black liquor using a ceramic membrane with a molecular weight (Mw) cut-off of 5 kDa. The synthesis was optimized by addition of different amounts of lignins. The microsphere texture was characterized using low-temperature nitrogen adsorption and small angle X-ray scattering analyses. The microspheres were nano- and mesoporous with a specific surface area in the range of 0.1-409 m(2)/g. The morphology of the copolymers was studied using field emission scanning electron microscopy and atomic force microscopy. The thermal properties were studied using differential scanning calorimetry and thermogravimetric analysis methods. A significant difference in the microsphere roughness is affected by lignins due to the presence of lignin nanoparticles at the surface of the microspheres. Molecular modeling was used to predict the sorption properties of the copolymers affected by various fields around the particles. The particle size, polydispersity and zeta potential of the St + DVB, L-Met + St + DVB and L-unmod + St + DVB samples were measured by dynamic light scattering. Additionally, the point of zero charge of the samples was determined using potentiometric titration. The materials studied have a great potential for sorption processes due to their developed porosity and the presence of a number of active surface functionalities. [GRAPHICS] .
  •  
9.
  •  
10.
  • van Chinh, Tran, et al. (författare)
  • Utilizing native lignin as redox-active material in conductive wood for electronic and energy storage applications
  • 2022
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 10:29, s. 15677-15688
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanostructured wood veneer with added electroactive functionality combines structural and functional properties into eco-friendly, low-cost nanocomposites for electronics and energy technologies. Here, we report novel conducting polymer-impregnated wood veneer electrodes where the native lignin is preserved, but functionalized for redox activity and used as an active component. The resulting electrodes display a well-preserved structure, redox activity, and high conductivity. Wood samples were sodium sulfite-treated under neutral conditions at 165 °C, followed by the tailored distribution of PEDOT:PSS, not previously used for this purpose. The mild sulfite process introduces sulfonic acid groups inside the nanostructured cell wall, facilitating electrostatic interaction on a molecular level between the residual lignin and PEDOT. The electrodes exhibit a conductivity of up to 203 S m−1 and a specific pseudo-capacitance of up to 38 mF cm−2, with a capacitive contribution from PEDOT:PSS and a faradaic component originating from lignin. We also demonstrate an asymmetric wood pseudo-capacitor reaching a specific capacitance of 22.9 mF cm−2 at 1.2 mA cm−2 current density. This new wood composite design and preparation scheme will support the development of wood-based materials for use in electronics and energy storage.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy