SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Amm O.) "

Sökning: WFRF:(Amm O.)

  • Resultat 1-38 av 38
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Glasbey, JC, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  • Keiling, A., et al. (författare)
  • Magnetosphere-ionosphere coupling of global Pi2 pulsations
  • 2014
  • Ingår i: Journal of Geophysical Research A: Space Physics. - 2169-9380. ; 119:4, s. 2717-2739
  • Tidskriftsartikel (refereegranskat)abstract
    • Global Pi2 pulsations have mainly been associated with either low/middle latitudes or middle/high latitudes and, as a result, have been treated as two different types of Pi2 pulsations, either the plasmaspheric cavity resonance or the transient response of the substorm current wedge, respectively. However, in some reports, global Pi2 pulsations have a single period spanning low/middle/high latitudes. This super global type has not yet been satisfactorily explained. In particular, it has been a major challenge to identify the coupling between the source region and the ground. Here we report two consecutive super global Pi2 events which were observed over a wide latitudinal and longitudinal range. Using four spacecraft that were azimuthally spread out in the nightside and one spacecraft in the tail lobe, it was possible to follow the Pi2 signal along various paths with time delays from the magnetotail to the ground. Furthermore, it was found that the global pulsations were a combination of various modes including the transient Alfven and fast modes, field line resonance, and possibly a forced cavity-type resonance. As for the source of the Pi2 periodicity, oscillatory plasma flow inside the plasma sheet during flow braking (e.g., interchange oscillations) is a likely candidate. Such flow modulations, resembling the ground Pi2 pulsations, were recorded for both events.
  •  
13.
  •  
14.
  •  
15.
  • Nakamura, R., et al. (författare)
  • Low- altitude electron acceleration due to multiple flow bursts in themagnetotail
  • 2014
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 41:3, s. 777-784
  • Tidskriftsartikel (refereegranskat)abstract
    • At 10:00 UT on 25 February 2008, Cluster 1 spacecraft crossed the near-midnight auroral zone, at about 2R(E) altitude, while two of the Time History of Events and Macroscale Interactions During Substorms (THEMIS) spacecraft, THD and THE, observed multiple flow bursts on the near-conjugate plasma sheet field lines. The flow shear pattern at THEMIS was consistent with the vortical motion at duskside of a localized flow channel. Coinciding in time with the flow bursts, Cluster 1 observed bursts of counterstreaming electrons with mostly low energies (441eV), accompanied by short time scale (<5s) magnetic field disturbances embedded in flow-associated field-aligned current systems. This conjugate event not only confirms the idea that the plasma sheet flows are the driver of the kinetic Alfven waves accelerating the low-energy electrons but is a unique observation of disturbances in the high-altitude auroral region relevant to the multiple plasma sheet flows. Key Points First observation of multiple flow signatures on near-conjugate flux tubes Low-energy electron profile suggests Alfvenic acceleration due to fast flow Multiple flow bursts are obtained to extend over large radial distance in tail
  •  
16.
  •  
17.
  • Yordanova, Emiliya, et al. (författare)
  • Energy input from the exterior cusp into the ionosphere : Correlated ground-based and satellite observations
  • 2007
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 34:4, s. L04102-
  • Tidskriftsartikel (refereegranskat)abstract
    • The energy transport from the exterior cusp into the ionosphere is investigated using coordinated ground-based (EISCAT and MIRACLE) and satellite ( Cluster) observations. EISCAT and MIRACLE data are used to estimate the plasma heating in the F-region and the Joule heating in the E-region. Cluster measurements are used to derive the electromagnetic and particle energy fluxes at the high altitudes. These fluxes are then compared with the energy deposition into the ionospheric cusp during a 30 minutes long time interval in which Cluster and EISCAT are nearly conjugated. It is shown that the particles seen at about 9 Re in the exterior cusp carry an earthward energy flux that corresponds to the observed heating of the F-region. The estimated earthward Poynting flux is more than enough to account for the Joule heating in the E-region.
  •  
18.
  • Aikio, A. T., et al. (författare)
  • EISCAT and Cluster observations in the vicinity of the dynamical polar cap boundary
  • 2008
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 26:1, s. 87-105
  • Tidskriftsartikel (refereegranskat)abstract
    • The dynamics of the polar cap boundary and auroral oval in the nightside ionosphere are studied during late expansion and recovery of a substorm from the region between Tromso (66.6 degrees cgmLat) and Longyearbyen (75.2 degrees cgmLat) on 27 February 2004 by using the coordinated EISCAT incoherent scatter radar, MIRACLE magnetometer and Cluster satellite measurements. During the late substorm expansion/early recovery phase, the polar cap boundary (PCB) made zig-zag-type motion with amplitude of 2.5 degrees cgmLat and period of about 30 min near magnetic midnight. We suggest that the poleward motions of the PCB were produced by bursts of enhanced reconnection at the near-Earth neutral line (NENL). The subsequent equatorward motions of the PCB would then represent the recovery of the merging line towards the equilibrium state (Cowley and Lockwood, 1992). The observed bursts of enhanced westward electrojet just equatorward of the polar cap boundary during poleward expansions were produced plausibly by particles accelerated in the vicinity of the neutral line and thus lend evidence to the Cowley-Lockwood paradigm. During the substorm recovery phase, the footpoints of the Cluster satellites at a geocentric distance of 4.4 R-E mapped in the vicinity of EISCAT measurements. Cluster data indicate that outflow of H+ and O+ ions took place within the plasma sheet boundary layer (PSBL) as noted in some earlier studies as well. We show that in this case the PSBL corresponded to a region of enhanced electron temperature in the ionospheric F region. It is suggested that the ion outflow originates from the F region as a result of increased ambipolar diffusion. At higher altitudes, the ions could be further energized by waves, which at Cluster altitudes were observed as BBELF (broad band extra low frequency) fluctuations. The four-satellite configuration of Cluster revealed a sudden poleward expansion of the PSBL by 2 degrees during similar to 5 min. The beginning of the poleward motion of the PCB was associated with an intensification of the downward FAC at the boundary. We suggest that the downward FAC sheet at the PCB is the high-altitude counterpart of the Earthward flowing FAC produced in the vicinity of the magnetotail neutral line by the Hall effect (Sonnerup, 1979) during a short-lived reconnection pulse.
  •  
19.
  • Aikio, A. T., et al. (författare)
  • Temporal evolution of two auroral arcs as measured by the Cluster satellite and coordinated ground-based instruments
  • 2004
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 22:12, s. 4089-4101
  • Tidskriftsartikel (refereegranskat)abstract
    • The four Cluster s/c passed over Northern Scandinavia on 6 February 2001 from south-east to north-west at a radial distance of about 4.4 R-E in the post-midnight sector. When mapped along geomagnetic field lines, the separation of the spacecraft in the ionosphere was confined to within 110 km in latitude and 50 km in longitude. This constellation allowed us to study the temporal evolution of plasma with a time scale of a few minutes. Ground-based instrumentation used involved two all-sky cameras, magnetometers and the EISCAT radar. The main findings were as follows. Two auroral arcs were located close to the equatorward and poleward edge of a large-scale density cavity, respectively. These arcs showed a different kind of a temporal evolution. (1) As a response to a pseudo-breakup onset, both the up- and downward field-aligned current (FAC) sheets associated with the equatorward arc widened and the total amount of FAC doubled in a time scale of 1-2 min. (2) In the poleward arc, a density cavity formed in the ionosphere in the return (downward) current region. As a result of ionospheric feedback, a strongly enhanced ionospheric southward electric field developed in the region of decreased Pedersen conductance. Furthermore, the acceleration potential of ionospheric electrons, carrying the return current, increased from 200 to 1000 eV in 70 s, and the return current region widened in order to supply a constant amount of return current to the arc current circuit. Evidence of local acceleration of the electron population by dispersive Alfven waves was obtained in the upward FAC region of the poleward arc. However, the downward accelerated suprathermal electrons must be further energised below Cluster in order to be able to produce the observed visible aurora. Both of the auroral arcs were associated with broad-band ULF/ELF (BBELF) waves, but they were highly localised in space and time. The most intense BBELF waves were confined typically to the return current regions adjacent to the visual arc, but in one case also to a weak upward FAC region. BBELF waves could appear/disappear between s/c crossings of the same arc separated by about 1 min.
  •  
20.
  •  
21.
  • Amm, O., et al. (författare)
  • Towards understanding the electrodynamics of the 3-dimensional high-latitude ionosphere : present and future
  • 2008
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 26:12, s. 3913-3932
  • Forskningsöversikt (refereegranskat)abstract
    • Traditionally, due to observational constraints, ionospheric modelling and data analysis techniques have been devised either in one dimension (e. g. along a single radar beam), or in two dimensions (e. g. over a network of magnetometers). With new upcoming missions like the Swarm ionospheric multi-satellite project, or the EISCAT 3-D project, the time has come to take into account variations in all three dimensions simultaneously, as they occur in the real ionosphere. The link between ionospheric electrodynamics and the neutral atmosphere circulation which has gained increasing interest in the recent years also intrinsically requires a truly 3-dimensional (3-D) description. In this paper, we identify five major science questions that need to be addressed by 3-D ionospheric modelling and data analysis. We briefly review what proceedings in the young field of 3-D ionospheric electrodynamics have been made in the past to address these selected question, and we outline how these issues can be addressed in the future with additional observations and/or improved data analysis and simulation techniques. Throughout the paper, we limit the discussion to high-latitude and mesoscale ionospheric electrodynamics, and to directly data-driven (not statistical) data analysis.
  •  
22.
  • Apatenkov, S. V., et al. (författare)
  • Conjugate observation of sharp dynamical boundary in the inner magnetosphere by Cluster and DMSP spacecraft and ground network
  • 2008
  • Ingår i: Annales Geophysicae. - 0992-7689 .- 1432-0576. ; 26:9, s. 2771-2780
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate an unusual sharp boundary separating two plasma populations (inner magnetospheric plasma with high fluxes of energetic particles and plasma sheet) observed by the Cluster quartet near its perigee on 16 December 2003. Cluster was in a pearl-on-string configuration at 05:00 MLT and mapped along magnetic field lines to similar to 8-9 R-E in the equatorial plane. It was conjugate to the MIRACLE network and the DMSP F16 spacecraft passed close to Cluster footpoint. The properties of the sharp boundary, repeatedly crossed 7 times by five spacecraft during similar to 10 min, are: (1) upward FAC sheet at the boundary with similar to 30 nA/m(2) current density at Cluster and similar to 2000 nA/m(2) at DMSP; (2) the boundary had an embedded layered structure with different thickness scales, the electron population transition was at similar to 20 km scale at Cluster (<7 km at DMSP), proton population had a scale similar to 100 km, while the FAC sheet thickness was estimated to be similar to 500 km at Cluster (similar to 100 km at DMSP); (3) the boundary propagated in the earthward-eastward direction at similar to 8 km/s in situ (equatorward-eastward similar to 0.8 km/s in ionosphere), and then decelerated and/or stopped. We discuss the boundary formation by the collision of two different plasmas which may include dynamical three-dimensional field-aligned current loops.
  •  
23.
  •  
24.
  •  
25.
  • Frey, H. U., et al. (författare)
  • Small and meso-scale properties of a substorm onset auroral arc
  • 2010
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 115, s. A10209-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present small and meso-scale properties of a substorm onset arc observed simultaneously by the Reimei and THEMIS satellites together with ground-based observations by the THEMIS GBO system. The optical observations revealed the slow equatorward motion of the growth-phase arc and the development of a much brighter onset arc poleward of it. Both arcs showed the typical particle signature of electrostatic acceleration in an inverted-V structure together with a strong Alfven wave acceleration signature at the poleward edge of the onset arc. Two THEMIS spacecraft encountered earthward flow bursts around the times the expanding optical aurora reached their magnetic footprints in the ionosphere. The particle and field measurements allowed for the reconstruction of the field-aligned current system and the determination of plasma properties in the auroral source region. Auroral arc properties were extracted from the optical and particle measurements and were used to compare measured values to theoretical predictions of the electrodynamic model for the generation of auroral arcs. Good agreement could be reached for the meso-scale arc properties. A qualitative analysis of the internal structuring of the bright onset arc suggests the operation of the tearing instability which provides a 'rope-like' appearance due to advection of the current in the sheared flow across the arc. We also note that for the observed parameters ionospheric conductivity gradients due to electron precipitation will be unstable to the feedback instability in the ionospheric Alfven resonator that can drive structuring in luminosity over the range of scales observed.
  •  
26.
  • Janhunen, P, et al. (författare)
  • Characteristics of a stable arc based on FAST and MIRACLE observations
  • 2000
  • Ingår i: ANNALES GEOPHYSICAE-ATMOSPHERES HYDROSPHERES AND SPACE SCIENCES. - : SPRINGER VERLAG. - 0992-7689. ; 18:2, s. 152-160
  • Tidskriftsartikel (refereegranskat)abstract
    • A stable evening sector are is studied using observations from the FAST satellite at 1250 km altitude and the MIRACLE ground-based network, which contains all-sky cameras, coherent radars (STARE), and magnetometers. Both FAST and STARE observe a northward
  •  
27.
  • Kaurisitie, K., Syrjsuo, M., Amm, O., Viljanen, A., Pulkkinen, T.I. and Opgenoorth, H.J. (författare)
  • A statistical study of evening sectorarcs and electrojets.
  • 2001
  • Ingår i: Advances in Space Research. ; 28, s. 16045-1610
  • Tidskriftsartikel (refereegranskat)abstract
    • We present results of a statistical study of evening sector auroral arcs associated with electrojets. The study (including similar to 1000 all-sky camera (ASC) frames) is based on data of the MIRACLE instrument network. An automatic search engine is used
  •  
28.
  •  
29.
  •  
30.
  • Lockwood, M, et al. (författare)
  • Coordinated Cluster and ground-based instrument observations of transient changes in the magnetopause boundary layer during an interval of predominantly northward IMF : relation to reconnection pulses and FTE signatures
  • 2001
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 19:10-12, s. 1613-1640
  • Forskningsöversikt (refereegranskat)abstract
    • We study a series of transient entries into the low-latitude boundary layer (LLBL) of all four Cluster spacecraft during an outbound pass through the mid-afternoon magnetopause ([X(GSM), Y(GSM), Z(GSM)] approximate to [2, 7, 9] R(E)). The events take place during an interval of northward IMF, as seen in the data from the ACE satellite and lagged by a propagation delay of 75 min that is well-defined by two separate studies: (1) the magnetospheric variations prior to the northward turning (Lockwood et al., 2001, this issue) and (2) the field clock angle seen by Cluster after it had emerged into the magnetosheath (Opgenoorth et al., 2001, this issue). With an additional lag of 16.5 min, the transient LLBL events cor-relate well with swings of the IMF clock angle (in GSM) to near 90degrees. Most of this additional lag is explained by ground-based observations, which reveal signatures of transient reconnection in the pre-noon sector that then take 10-15 min to propagate eastward to 15 MLT, where they are observed by Cluster. The eastward phase speed of these signatures agrees very well with the motion deduced by the cross-correlation of the signatures seen on the four Cluster spacecraft. The evidence that these events are reconnection pulses includes: transient erosion of the noon 630 nm (cusp/cleft) aurora to lower latitudes; transient and travelling enhancements of the flow into the polar cap, imaged by the AMIE technique; and poleward-moving events moving into the polar cap, seen by the EISCAT Svalbard Radar (ESR). A pass of the DMSP-F15 satellite reveals that the open field lines near noon have been opened for some time: the more recently opened field lines were found closer to dusk where the flow transient and the poleward-moving event intersected the satellite pass. The events at Cluster have ion and electron characteristics predicted and observed by Lockwood and Hapgood (1998) for a Flux Transfer Event (FTE), with allowance for magnetospheric ion reflection at Alfvenic disturbances in the magnetopause reconnection layer. Like FTEs, the events are about 1 R(E) in their direction of motion and show a rise in the magnetic field strength, but unlike FTEs, in general, they show no pressure excess in their core and hence, no characteristic bipolar signature in the boundary-normal component. However, most of the events were observed when the magnetic field was southward, i.e. on the edge of the interior magnetic cusp, or when the field was parallel to the magnetic equatorial plane. Only when the satellite begins to emerge from the exterior boundary (when the field was northward), do the events start to show a pressure excess in their core and the consequent bipolar signature. We identify the events as the first observations of FTEs at middle altitudes.
  •  
31.
  •  
32.
  • Marklund, Göran T., et al. (författare)
  • Cluster multipoint study of the acceleration potential pattern and electrodynamics of an auroral surge and its associated horn arc
  • 2012
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 117:10, s. A10223-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cluster results are presented from the acceleration region of an auroral surge and connected horn arc, observed during an extended time period of substorm activity. The Cluster spacecraft crossed different magnetic local time (MLT) sectors of the surge and horn, with lag times of 2-10 min. Acceleration potential patterns are derived for the horn arc and for the double arc (surge and horn) at the surge front and deeper into the surge. The parallel potential drop of the horn arc ranged between 4 and 7 kV. At the surge front, two weakly coupled U-potentials with parallel potential drops of 8 (7) kV and 7 (5) kV were derived for the surge and horn, respectively, from the C3 (C4) data. A similar, more coupled pattern was derived for the region deeper into the surge. We also address how the field-aligned currents of the surge and horn system close in the ionosphere. The Cluster data allow almost simultaneous estimates of the latitudinal current closure at various MLT sectors. Significant net upward currents are derived for the horn and surge, whereas the currents at the surge front were found to be balanced. The net upward horn current is proposed to be fed by the zonal divergence of the westward Pedersen current in the horn, consistent with the acceleration potential decrease in the westward horn direction. The net upward surge current is proposed to be fed by the divergence of a westward electrojet and by localized downward currents adjacent to the surge.
  •  
33.
  • Nakamura, R., et al. (författare)
  • Flow bouncing and electron injection observed by Cluster
  • 2013
  • Ingår i: Journal of Geophysical Research-Space Physics. - : American Geophysical Union (AGU). - 2169-9380. ; 118:5, s. 2055-2072
  • Tidskriftsartikel (refereegranskat)abstract
    • Characteristics of particles and fields in the flow-bouncing region are studied based on multipoint observations from Cluster located at 13-15R(E) downtail during a substorm event around 12:50 UT on 7 September 2007. The Cluster spacecraft were separated by a distance of up to 10,000 km and allowed to determine the mesoscale evolution of the current sheet as well as the development of the dipolarization front. We show that the flow bouncing took place associated with a tailward-directed j x B force in a disturbed current sheet in addition to an enhanced tailward pressure gradient force. Multiple Earthward propagating dipolarization fronts accompanied by enhanced flux of energetic electrons were observed before the flow bouncing. The sequence of events started with a localized dipolarization front and ended with a large scale (>10R(E)) dipolarization front accompanied by a major increase in energetic electrons at all spacecraft and immediately followed by flow bouncing. Multiple dipolarization fronts result in the formation of compressed magnetic field with a plasma bulge bounded by thin ion-scale current layers, a favorable condition for flow bouncing. These observations suggest that to understand the flow bouncing and related acceleration of plasma in the near-Earth tail, both the large-scale MHD properties and the transient and small-scale effect of the plasma interaction with the Earth-dipole field need to be taken into account.
  •  
34.
  •  
35.
  • Palin, Laurianne, et al. (författare)
  • Modulation of the substorm current wedge by bursty bulk flows : 8 September 2002- Revisited
  • 2016
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 121:5, s. 4466-4482
  • Tidskriftsartikel (refereegranskat)abstract
    • The ultimate formation mechanism of the substorm current wedge (SCW) remains to date unclear. In this study, we investigate its relationship to plasma flows at substorm onset and throughout the following expansion phase. We revisit the case of 8 September 2002, which has been defined as one of the best textbook examples of a substorm because of its excellent coverage by both spacecraft in the magnetotail and ground-based observatories. We found that a dense sequence of arrival of nightside flux transfer events (NFTEs; which can be understood as the lobe magnetic signature due to a bursty bulk flow travelling earthward in the central plasma sheet) in the near-Earth tail leads to a modulation (and further step-like builtup) of the SCW intensity during the substorm expansion phase. In addition, we found that small SCWs are created also during the growth phase of the event in association with another less intense sequence of NFTEs. The differences between the sequence of NFTEs in the growth and expansion phase are discussed. We conclude that the envelope of the magnetic disturbances which we typically refer to as an intense magnetic substorm is the result of a group or sequence of more intense and more frequent NFTEs.
  •  
36.
  •  
37.
  •  
38.
  • Runov, A., et al. (författare)
  • Observations of an active thin current sheet
  • 2008
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 113:A7
  • Tidskriftsartikel (refereegranskat)abstract
    • We analyze observations of magnetotail current sheet dynamics during a substorm between 2330 and 2400 UT on 28 August 2005 when Cluster was in the plasma sheet at [-17.2, -4.49, 0.03] R-E (GSM) with the foot points near the IMAGE ground-based network. Observations from the Cluster spacecraft, ground-based magnetometers, and the IMAGE satellite showed that the substorm started in a localized region near midnight, expanding azimuthally. A thin current sheet with a thickness of less than 900 km and current density of about 30 nA/m(2) was observed during 5 min around the substorm onset. The thinning of the current sheet was accompanied by tailward plasma flow at a velocity of -700 km/s and subsequent reversal to earthward flow at V-x approximate to 500 km/s coinciding with a B-z turning from -5 to + 10 nT. The analysis of magnetic and electric fields behavior and particle distributions reveals signatures of impulsive (with similar to 1 min timescale) activations of the thin current sheet. These observations were interpreted in the framework of transient reconnection, although the data analysis reveals serious disagreements with the classical 2.5-D X line model.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-38 av 38

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy