SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Amouzgar Kaveh 1980 ) "

Sökning: WFRF:(Amouzgar Kaveh 1980 )

  • Resultat 1-15 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Amouzgar, Kaveh, 1980-, et al. (författare)
  • A framework for simulation-based multi-objective optimization and knowledge discovery of machining process
  • 2018
  • Ingår i: The International Journal of Advanced Manufacturing Technology. - : Springer Science and Business Media LLC. - 0268-3768 .- 1433-3015. ; 98:9-12, s. 2469-2486
  • Tidskriftsartikel (refereegranskat)abstract
    • The current study presents an effective framework for automated multi-objective optimization (MOO) of machining processes by using finite element (FE) simulations. The framework is demonstrated by optimizing a metal cutting process in turning AISI-1045, using an uncoated K10 tungsten carbide tool. The aim of the MOO is to minimize tool-chip interface temperature and tool wear depth, that are extracted from FE simulations, while maximizing the material removal rate. The effect of tool geometry parameters, i.e., clearance angle, rake angle, and cutting edge radius, and process parameters, i.e., cutting speed and feed rate on the objective functions are explored. Strength Pareto Evolutionary Algorithm (SPEA2) is adopted for the study. The framework integrates and connects several modules to completely automate the entire MOO process. The capability of performing the MOO in parallel is also enabled by adopting the framework. Basically, automation and parallel computing, accounts for the practicality of MOO by using FE simulations. The trade-off solutions obtained by MOO are presented. A knowledge discovery study is carried out on the trade-off solutions. The non-dominated solutions are analyzed using a recently proposed data mining technique to gain a deeper understanding of the turning process.
  •  
2.
  • Amouzgar, Kaveh, 1980-, et al. (författare)
  • An approach towards generating surrogate models by using RBFN with a priori bias
  • 2014
  • Ingår i: Proceedings of the ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, 2014, Vol. 2B. - New York, USA : ASME Press. - 9780791846322
  • Konferensbidrag (refereegranskat)abstract
    • In this paper, an approach to generate surrogate modelsconstructed by radial basis function networks (RBFN) with a prioribias is presented. RBFN as a weighted combination of radialbasis functions only, might become singular and no interpolationis found. The standard approach to avoid this is to add a polynomialbias, where the bias is defined by imposing orthogonalityconditions between the weights of the radial basis functionsand the polynomial basis functions. Here, in the proposed a prioriapproach, the regression coefficients of the polynomial biasare simply calculated by using the normal equation without anyneed of the extra orthogonality prerequisite. In addition to thesimplicity of this approach, the method has also proven to predictthe actual functions more accurately compared to the RBFNwith a posteriori bias. Several test functions, including Rosenbrock,Branin-Hoo, Goldstein-Price functions and two mathematicalfunctions (one large scale), are used to evaluate the performanceof the proposed method by conducting a comparisonstudy and error analysis between the RBFN with a priori and aposteriori known biases. Furthermore, the aforementioned approachesare applied to an engineering design problem, that ismodeling of the material properties of a three phase sphericalgraphite iron (SGI) . The corresponding surrogate models arepresented and compared
  •  
3.
  • Amouzgar, Kaveh, 1980-, et al. (författare)
  • Metamodel based multi-objective optimization of a turning process by using finite element simulation
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • This study investigates the advantages and potentials of the metamodelbased multi-objective optimization (MOO) of a turning operation through the application of finite element simulations and evolutionary algorithms to a metal cutting process. The objectives are minimizing the interface temperature and tool wear depth obtained from FE simulations using DEFORM2D software, and maximizing the material removal rate. Tool geometry and process parameters are considered as the input variables. Seven metamodelling methods are employed and evaluated, based on accuracy and suitability. Radial basis functions with a priori bias and Kriging are chosen to model tool–chip interface temperature and tool wear depth, respectively. The non-dominated solutions are found using the strength Pareto evolutionary algorithm SPEA2 and compared with the non-dominated front obtained from pure simulation-based MOO. The metamodel-based MOO method is not only advantageous in terms of reducing the computational time by 70%, but is also able to discover 31 new non-dominated solutions over simulation-based MOO.
  •  
4.
  • Amouzgar, Kaveh, 1980-, et al. (författare)
  • Metamodel based multi-objective optimization of a turning process by using finite element simulation
  • 2020
  • Ingår i: Engineering optimization (Print). - : Taylor & Francis Group. - 0305-215X .- 1029-0273. ; 52:7, s. 1261-1278
  • Tidskriftsartikel (refereegranskat)abstract
    • This study investigates the advantages and potentials of the metamodelbased multi-objective optimization (MOO) of a turning operation through the application of finite element simulations and evolutionary algorithms to a metal cutting process. The objectives are minimizing the interface temperature and tool wear depth obtained from FE simulations using DEFORM2D software, and maximizing the material removal rate. Tool geometry and process parameters are considered as the input variables. Seven metamodelling methods are employed and evaluated, based on accuracy and suitability. Radial basis functions with a priori bias and Kriging are chosen to model tool–chip interface temperature and tool wear depth, respectively. The non-dominated solutions are found using the strength Pareto evolutionary algorithm SPEA2 and compared with the non-dominated front obtained from pure simulation-based MOO. The metamodel-based MOO method is not only advantageous in terms of reducing the computational time by 70%, but is also able to discover 31 new non-dominated solutions over simulation-based MOO.
  •  
5.
  • Amouzgar, Kaveh, 1980- (författare)
  • Metamodel Based Multi-Objective Optimization with Finite-Element Applications
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • As a result of the increase in accessibility of computational resources and the increase of computer power during the last two decades, designers are able to create computer models to simulate the behavior of complex products. To address global competitiveness, companies are forced to optimize the design of their products and production processes. Optimizing the design and production very often need several runs of computationally expensive simulation models. Therefore, integrating metamodels, as an efficient and sufficiently accurate approximate of the simulation model, with optimization algorithms is necessary. Furthermore, in most of engineering problems, more than one objective function has to be optimized, leading to multi-objective optimization(MOO). However, the urge to employ metamodels in MOO, i.e., metamodel based MOO (MB-MOO), is more substantial.Radial basis functions (RBF) is one of the most popular metamodeling methods. In this thesis, a new approach to constructing RBF with the bias to beset a priori by using the normal equation is proposed. The performance of the suggested approach is compared to the classic RBF and four other well-known metamodeling methods, in terms of accuracy, efficiency and, most importantly, suitability for integration with MOO evolutionary algorithms. It has been found that the proposed approach is accurate in most of the test functions, and it was the fastest compared to other methods. Additionally, the new approach is the most suitable method for MB-MOO, when integrated with evolutionary algorithms. The proposed approach is integrated with the strength Pareto evolutionary algorithm (SPEA2) and applied to two real-world engineering problems: MB-MOO of the disk brake system of a heavy truck, and the metal cutting process in a turning operation. Thereafter, the Pareto-optimal fronts are obtained and the results are presented. The MB-MOO in both case studies has been found to be an efficient and effective method. To validate the results of the latter MB-MOO case study, a framework for automated finite element (FE) simulation based MOO (SB-MOO) of machining processes is developed and presented by applying it to the same metal cutting process in a turning operation. It has been proved that the framework is effective in achieving the MOO of machining processes based on actual FE simulations.
  •  
6.
  • Amouzgar, Kaveh, 1980-, et al. (författare)
  • Multi-objective optimisation of tool indexing problem : a mathematical model and a modified genetic algorithm
  • 2021
  • Ingår i: International Journal of Production Research. - : Taylor & Francis Group. - 0020-7543 .- 1366-588X. ; 59:12, s. 3572-3590
  • Tidskriftsartikel (refereegranskat)abstract
    • Machining process efficiencies can be improved by minimising the non-machining time, thereby resulting in short operation cycles. In automatic-machining centres, this is realised via optimum cutting tool allocation on turret-magazine indices – the “tool-indexing problem”. Extant literature simplifies TIP as a single-objective optimisation problem by considering minimisation of only the tool-indexing time. In contrast, this study aims to address the multi-objective optimisation tool indexing problem (MOOTIP) by identifying changes that must be made to current industrial settings as an additional objective. Furthermore, tool duplicates and lifespan have been considered. In addition, a novel mathematical model is proposed for solving MOOTIP. Given the complexity of the problem, the authors suggest the use of a modified strength Pareto evolutionary algorithm combined with a customised environment-selection mechanism. The proposed approach attained a uniform distribution of solutions to realise the above objectives. Additionally, a customised solution representation was developed along with corresponding genetic operators to ensure the feasibility of solutions obtained. Results obtained in this study demonstrate the realization of not only a significant (70%) reduction in non-machining time but also a set of tradeoff solutions for decision makers to manage their tools more efficiently compared to current practices. 
  •  
7.
  • Amouzgar, Kaveh, 1980-, et al. (författare)
  • Multi-objective optimization of a disc brake system by using SPEA2 and RBFN
  • 2013
  • Ingår i: ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. - New York : ASME Press. - 9780791855898
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Many engineering design optimization problems involve multiple conflicting objectives, which today often are obtained by computational expensive finite element simulations. Evolutionary multi-objective optimization (EMO) methods based on surrogate modeling is one approach of solving this class of problems. In this paper, multi-objective optimization of a disc brake system to a heavy truck by using EMO and radial basis function networks (RBFN) is presented. Three conflicting objectives are considered. These are: 1) minimizing the maximum temperature of the disc brake, 2) maximizing the brake energy of the system and 3) minimizing the mass of the back plate of the brake pad. An iterative Latin hypercube sampling method is used to construct the design of experiments (DoE) for the design variables. Next, thermo-mechanical finite element analysis of the disc brake, including frictional heating between the pad and the disc, is performed in order to determine the values of the first two objectives for the DoE. Surrogate models for the maximum temperature and the brake energy are created using RBFN with polynomial biases. Different radial basis functions are compared using statistical errors and cross validation errors (PRESS) to evaluate the accuracy of the surrogate models and to select the most accurate radial basis function. The multi-objective optimization problem is then solved by employing EMO using the strength Pareto evolutionary algorithm (SPEA2). Finally, the Pareto fronts generated by the proposed methodology are presented and discussed.
  •  
8.
  • Amouzgar, Kaveh, 1980-, et al. (författare)
  • Multi-objective optimization of material model parameters of an adhesive layer by using SPEA2
  • 2015
  • Ingår i: Advances in structural and multidisciplinary optimization. - : The International Society for Structural and Multidisciplinary Optimization (ISSMO). - 9780646943947 ; , s. 249-254
  • Konferensbidrag (refereegranskat)abstract
    • The usage of multi material structures in industry, especially in the automotive industry are increasing. To overcome the difficulties in joining these structures, adhesives have several benefits over traditional joining methods. Therefore, accurate simulations of the entire process of fracture including the adhesive layer is crucial. In this paper, material parameters of a previously developed meso mechanical finite element (FE) model of a thin adhesive layer are optimized using the Strength Pareto Evolutionary Algorithm (SPEA2). Objective functions are defined as the error between experimental data and simulation data. The experimental data is provided by previously performed experiments where an adhesive layer was loaded in monotonically increasing peel and shear. Two objective functions are dependent on 9 model parameters (decision variables) in total and are evaluated by running two FEsimulations, one is loading the adhesive layer in peel and the other in shear. The original study converted the two objective functions into one function that resulted in one optimal solution. In this study, however, a Pareto frontis obtained by employing the SPEA2 algorithm. Thus, more insight into the material model, objective functions, optimal solutions and decision space is acquired using the Pareto front. We compare the results and show good agreement with the experimental data.
  •  
9.
  • Amouzgar, Kaveh, 1980-, et al. (författare)
  • Optimizing index positions on CNC tool magazines considering cutting tool life and duplicates
  • 2020
  • Ingår i: Procedia CIRP. - : Elsevier. - 2212-8271. ; 93, s. 1508-1513
  • Tidskriftsartikel (refereegranskat)abstract
    • Minimizing the non-machining time of CNC machines requires optimal positioning of cutting tools on indexes (stations) of CNC machine turret magazine. This work presents a genetic algorithm with a novel solution representation and genetic operators to find the best possible index positions while tool duplicates and tools life are taken in to account during the process. The tool allocation in a machining process of a crankshaft with 10 cutting operations, on a 45-index magazine, is optimized for the entire life of the tools on the magazine. The tool-indexing time is considerably reduced compared to the current index positions being used in an automotive factory. 
  •  
10.
  • Amouzgar, Kaveh, 1980-, et al. (författare)
  • Radial basis functions as surrogate models with a priori bias in comparison with a posteriori bias
  • 2017
  • Ingår i: Structural and multidisciplinary optimization (Print). - : Springer Science and Business Media LLC. - 1615-147X .- 1615-1488. ; 55:4, s. 1453-1469
  • Tidskriftsartikel (refereegranskat)abstract
    • In order to obtain a robust performance, the established approach when using radial basis function networks (RBF) as metamodels is to add a posteriori bias which is defined by extra orthogonality constraints. We mean that this is not needed, instead the bias can simply be set a priori by using the normal equation, i.e. the bias becomes the corresponding regression model. In this paper we demonstrate that the performance of our suggested approach with a priori bias is in general as good as, or even for many test examples better than, the performance of RBF with a posteriori bias. Using our approach, it is clear that the global response is modelled with the bias and that the details are captured with radial basis functions. The accuracy of the two approaches are investigated by using multiple test functions with different degrees of dimensionality. Furthermore, several modeling criteria, such as the type of radial basis functions used in the RBFs, dimension of the test functions, sampling techniques and size of samples, are considered to study their affect on the performance of the approaches. The power of RBF with a priori bias for surrogate based design optimization is also demonstrated by solving an established engineering benchmark of a welded beam and another benchmark for different sampling sets generated by successive screening, random, Latin hypercube and Hammersley sampling, respectively. The results obtained by evaluation of the performance metrics, the modeling criteria and the presented optimal solutions, demonstrate promising potentials of our RBF with a priori bias, in addition to the simplicity and straight-forward use of the approach.
  •  
11.
  • Amouzgar, Kaveh, 1980-, et al. (författare)
  • Radial basis functions with a priori bias as surrogate models : A comparative study
  • 2018
  • Ingår i: Engineering applications of artificial intelligence. - : Elsevier. - 0952-1976 .- 1873-6769. ; 71, s. 28-44
  • Tidskriftsartikel (refereegranskat)abstract
    • Radial basis functions are augmented with a posteriori bias in order to perform robustly when used as metamodels. Recently, it has been proposed that the bias can simply be set a priori by using the normal equation, i.e., the bias becomes the corresponding regression model. In this study, we demonstrate the performance of the suggested approach (RBFpri) with four other well-known metamodeling methods; Kriging, support vector regression, neural network and multivariate adaptive regression. The performance of the five methods is investigated by a comparative study, using 19 mathematical test functions, with five different degrees of dimensionality and sampling size for each function. The performance is evaluated by root mean squared error representing the accuracy, rank error representing the suitability of metamodels when coupled with evolutionary optimization algorithms, training time representing the efficiency and variation of root mean squared error representing the robustness. Furthermore, a rigorous statistical analysis of performance metrics is performed. The results show that the proposed radial basis function with a priori bias achieved the best performance in most of the experiments in terms of all three metrics. When considering the statistical analysis results, the proposed approach again behaved the best, while Kriging was relatively as accurate and support vector regression was almost as fast as RBFpri. The proposed RBF is proven to be the most suitable method in predicting the ranking among pairs of solutions utilized in evolutionary algorithms. Finally, the comparison study is carried out on a real-world engineering optimization problem.
  •  
12.
  •  
13.
  • Morshedzadeh, Iman, 1979-, et al. (författare)
  • Management of virtual models with provenance information in the context of product lifecycle management : industrial case studies
  • 2019. - 1
  • Ingår i: Product Lifecycle Management (Volume 4). - Cham : Springer. - 9783030161330 - 9783030161347 ; , s. 153-170
  • Bokkapitel (refereegranskat)abstract
    • Using virtual models instead of physical models can help industries reduce the time and cost of developments, despite the time consuming process of building virtual models. Therefore, reusing previously built virtual models instead of starting from scratch can eliminate a large amount of work from users. Is having a virtual model enough to reuse it in another study or task? In most cases, not. Information about the history of that model makes it clear for the users to decide if they can reuse this model or to what extent the model is needed to be modified. A provenance management system (PMS) has been designed to manage provenance information, and it has been used with product lifecycle management system (PLM) and computer-aided technologies (CAx) to save and present historical information about a virtual model. This chapter presents a sequence-based framework of the CAx-PLM-PMS chain and two application case studies considering the implementation of this framework.
  •  
14.
  • Morshedzadeh, Iman, 1979- (författare)
  • Managing virtual factory artifacts in extended product lifecycle management systems
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Reusing previously designed virtual models and the knowledge extracted from running them can reduce time and costs. Since these models are representations of physical artifacts, they have been built based on some criteria, assumptions, and limitations. Being aware of these criteria, assumptions, and limitations, as well as having information regarding things like the purpose of the virtual model, can help a user evaluate the model for reuse in another study. The knowledge gained by generating and using virtual models also offers a significant advantage when making decisions about whether to reuse them and how to reuse them in new studies and experiments. This historical information and knowledge can be derived from the engineering activities performed when creating and using those virtual models. The research presented in this dissertation deals with the management of virtual factory artifacts, including virtual models, their related data, and historical information and knowledge in product lifecycle management (PLM) platforms. Since PLM systems are developed to manage product- and production-related data, they are suitable for managing virtual models as well, but they are incapable of handling the knowledge generated without appropriate extension. Therefore this research focuses on extending PLM systems so that they can manage historical information related to virtual models, in addition to managing the data and knowledge generated, together with related engineering activities. This management will be based on various requirements, including saving, searching, and retrieving virtual factory artifacts in different projects, studies, and engineering activities. A new information model was developed taking into account four aspects of management, namely: (1) hierarchical structures in PLM systems and manufacturing data; (2) the lifecycle of manufacturing systems; (3) projects, studies, and experiments; and (4) engineering activities, provenance data, and knowledge management. In addition to managing knowledge extracted from virtual models and their utilization, ontology-based knowledge management for virtual models and engineering activities is also provided to build up an ontology in this domain. Ultimately, the developed information model was implemented in several application studies in the industry. These studies cover different types of virtual models from various levels of manufacturing systems. The applicability of the invented information model in these application studies has confirmed its capability to manage and link virtual factory artifacts in a PLM context.
  •  
15.
  • Schmitt, Thomas, et al. (författare)
  • Augmented reality for machine monitoring in industrial manufacturing : framework and application development
  • 2023
  • Ingår i: Procedia CIRP. - : Elsevier. - 2212-8271 .- 2212-8271. ; , s. 1327-1332
  • Tidskriftsartikel (refereegranskat)abstract
    • Enhancing data visualization on the shop floor provides support for dealing with the increasing complexity of production and the need for progressing towards emerging goals like energy efficiency. It enables personnel to make informed decisions based on real-time data displayed on user-friendly interfaces. Augmented reality (AR) technology provides a promising solution to this problem by allowing for the visualization of data in a more immersive and interactive way. The aim of this study is to present a framework to visualize live and historic data about energy consumption in AR, using Power BI and Unity, and discuss the applications' capabilities. The study demonstrated that both Power BI and Unity can effectively visualize near-real-time machine data with the aid of appropriate data pipelines. While both applications have their respective strengths and limitations, they can support informed decision-making and proactive measures to improve energy utilization. Additional research is needed to examine the correlation between energy consumption and production dynamics, as well as to assess the user-friendliness of the data presentation for effective decision-making support. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-15 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy