SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Andang Michael) "

Sökning: WFRF:(Andang Michael)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Boström, Johan, et al. (författare)
  • Comparative cell cycle transcriptomics reveals synchronization of developmental transcription factor networks in cancer cells
  • 2017
  • Ingår i: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 12:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The cell cycle coordinates core functions such as replication and cell division. However, cell-cycle-regulated transcription in the control of non-core functions, such as cell identity maintenance through specific transcription factors (TFs) and signalling pathways remains unclear. Here, we provide a resource consisting of mapped transcriptomes in unsynchro-nized HeLa and U2OS cancer cells sorted for cell cycle phase by Fucci reporter expression. We developed a novel algorithm for data analysis that enables efficient visualization and data comparisons and identified cell cycle synchronization of Notch signalling and TFs associated with development. Furthermore, the cell cycle synchronizes with the circadian clock, providing a possible link between developmental transcriptional networks and the cell cycle. In conclusion we find that cell cycle synchronized transcriptional patterns are temporally compartmentalized and more complex than previously anticipated, involving genes, which control cell identity and development.
  •  
2.
  • Kitambi, Satish Srinivas, et al. (författare)
  • Vulnerability of Glioblastoma Cells to Catastrophic Vacuolization and Death Induced by a Small Molecule
  • 2014
  • Ingår i: Cell. - : Elsevier BV. - 0092-8674 .- 1097-4172. ; 157:2, s. 313-328
  • Tidskriftsartikel (refereegranskat)abstract
    • Glioblastoma multiforme (GBM) is the most aggressive form of brain cancer with marginal life expectancy. Based on the assumption that GBM cells gain functions not necessarily involved in the cancerous process, patient-derived glioblastoma cells (GCs) were screened to identify cellular processes amenable for development of targeted treatments. The quinine-derivative NSC13316 reliably and selectively compromised viability. Synthetic chemical expansion reveals delicate structure-activity relationship and analogs with increased potency, termed Vacquinols. Vacquinols stimulate death by membrane ruffling, cell rounding, massive macropinocytic vacuole accumulation, ATP depletion, and cytoplasmic membrane rupture of GCs. The MAP kinase MKK4, identified by a shRNA screen, represents a critical signaling node. Vacquinol-1 displays excellent in vivo pharmacokinetics and brain exposure, attenuates disease progression, and prolongs survival in a GBM animal model. These results identify a vulnerability to massive vacuolization that can be targeted by small molecules and point to the possible exploitation of this process in the design of anticancer therapies.
  •  
3.
  • Niklasson, Mia, et al. (författare)
  • Membrane-Depolarizing Channel Blockers Induce Selective Glioma Cell Death by Impairing Nutrient Transport and Unfolded Protein/Amino Acid Responses
  • 2017
  • Ingår i: Cancer Research. - : AMER ASSOC CANCER RESEARCH. - 0008-5472 .- 1538-7445. ; 77:7, s. 1741-1752
  • Tidskriftsartikel (refereegranskat)abstract
    • Glioma-initiating cells (GIC) are considered the underlying cause of recurrences of aggressive glioblastomas, replenishing the tumor population and undermining the efficacy of conventional chemotherapy. Here we report the discovery that inhibiting T-type voltage-gated Ca2+ and KCa channels can effectively induce selective cell death of GIC and increase host survival in an orthotopic mouse model of human glioma. At present, the precise cellular pathways affected by the drugs affecting these channels are unknown. However, using cell-based assays and integrated proteomics, phosphoproteomics, and transcriptomics analyses, we identified the downstreamsignaling events these drugs affect. Changes in plasma membrane depolarization and elevated intracellular Na+, which compromised Na+-dependent nutrient transport, were documented. Deficits in nutrient deficit acted in turn to trigger the unfolded protein response and the amino acid response, leading ultimately to nutrient starvation and GIC cell death. Our results suggest new therapeutic targets to attack aggressive gliomas.
  •  
4.
  • Wee, Shimei, et al. (författare)
  • Selective Calcium Sensitivity in Immature Glioma Cancer Stem Cells
  • 2014
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Tumor-initiating cells are a subpopulation in aggressive cancers that exhibit traits shared with stem cells, including the ability to self-renew and differentiate, commonly referred to as stemness. In addition, such cells are resistant to chemo- and radiation therapy posing a therapeutic challenge. To uncover stemness-associated functions in glioma-initiating cells (GICs), transcriptome profiles were compared to neural stem cells (NSCs) and gene ontology analysis identified an enrichment of Ca2+ signaling genes in NSCs and the more stem-like (NSC-proximal) GICs. Functional analysis in a set of different GIC lines regarding sensitivity to disturbed homeostasis using A23187 and Thapsigargin, revealed that NSC-proximal GICs were more sensitive, corroborating the transcriptome data. Furthermore, Ca2+ drug sensitivity was reduced in GICs after differentiation, with most potent effect in the NSC-proximal GIC, supporting a stemness-associated Ca2+ sensitivity. NSCs and the NSC-proximal GIC line expressed a larger number of ion channels permeable to potassium, sodium and Ca2+. Conversely, a higher number of and higher expression levels of Ca2+ binding genes that may buffer Ca2+, were expressed in NSC-distal GICs. In particular, expression of the AMPA glutamate receptor subunit GRIA1, was found to associate with Ca2+ sensitive NSC-proximal GICs, and decreased as GICs differentiated along with reduced Ca2+ drug sensitivity. The correlation between high expression of Ca2+ channels (such as GRIA1) and sensitivity to Ca2+ drugs was confirmed in an additional nine novel GIC lines. Calcium drug sensitivity also correlated with expression of the NSC markers nestin (NES) and FABP7 (BLBP, brain lipid-binding protein) in this extended analysis. In summary, NSC-associated NES+/FABP7(+)/GRIA1(+) GICs were selectively sensitive to disturbances in Ca2+ homeostasis, providing a potential target mechanism for eradication of an immature population of malignant cells.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy