SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Andersen Josefine) "

Sökning: WFRF:(Andersen Josefine)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersen, Josefine, et al. (författare)
  • Insights into localization, energy ordering, and substituent effect in excited states of azobenzenes from coupled cluster calculations of nuclear spin-induced circular dichroism
  • 2024
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 26:12, s. 9179-9196
  • Tidskriftsartikel (refereegranskat)abstract
    • Nuclear spin-induced circular dichroism (NSCD) is a molecular effect of differential absorption of left- and right-circularly polarized light due to nuclear spins in the molecule. In this work, new tools for its calculation are presented. Specifically, analytic expressions for the computation of the 000000001111110000 000001110000001100 000010000000110110 000010001001100010 000100001011000100 000010010011001100 000001100110110000 000000001110001000 011000001100011000 011100011100011000 000010110100110000 000011100011100000 K term of NSCD have been derived and implemented for the second-order coupled cluster singles and doubles (CC2) model. NSCD results obtained thereby for three derivatives of azobenzenes have been compared with results from time-dependent density functional theory (TD-DFT). The complementary information that could be obtained from NSCD measurements compared to NMR for these three species is discussed. Due to its sensitivity to the local electronic structure, nuclear spin-induced circular dichroism can be used to gain insight into properties of excited states. New computational tools for its calculation are presented.
  •  
2.
  • Bustamante, Mariona, et al. (författare)
  • A genome-wide association meta-analysis of diarrhoeal disease in young children identifies FUT2 locus and provides plausible biological pathways.
  • 2016
  • Ingår i: Human molecular genetics. - : Oxford University Press (OUP). - 1460-2083 .- 0964-6906. ; 25:18, s. 4127-4142
  • Tidskriftsartikel (refereegranskat)abstract
    • More than a million childhood diarrhoeal episodes occur worldwide each year, and in developed countries a considerable part of them are caused by viral infections. In this study, we aimed to search for genetic variants associated with diarrhoeal disease in young children by meta-analyzing genome-wide association studies, and to elucidate plausible biological mechanisms. The study was conducted in the context of the Early Genetics and Lifecourse Epidemiology (EAGLE) consortium. Data about diarrhoeal disease in two time windows (around 1 year of age and around 2 years of age) was obtained via parental questionnaires, doctor interviews or medical records. Standard quality control and statistical tests were applied to the 1000 Genomes imputed genotypic data. The meta-analysis (N=5758) followed by replication (N=3784) identified a genome-wide significant association between rs8111874 and diarrhoea at age 1 year. Conditional analysis suggested that the causal variant could be rs601338 (W154X) in the FUT2 gene. Children with the A allele, which results in a truncated FUT2 protein, had lower risk of diarrhoea. FUT2 participates in the production of histo-blood group antigens and has previously been implicated in the susceptibility to infections, including Rotavirus and Norovirus Gene-set enrichment analysis suggested pathways related to the histo-blood group antigen production, and the regulation of ion transport and blood pressure. Among others, the gastrointestinal tract, and the immune and neuro-secretory systems were detected as relevant organs. In summary, this genome-wide association meta-analysis suggests the implication of the FUT2 gene in diarrhoeal disease in young children from the general population.
  •  
3.
  • Khoomrung, Sakda, 1978, et al. (författare)
  • Metabolic Profiling and Compound-Class Identification Reveal Alterations in Serum Triglyceride Levels in Mice Immunized with Human Vaccine Adjuvant Alum
  • 2020
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3907 .- 1535-3893. ; 19:1, s. 269-278
  • Tidskriftsartikel (refereegranskat)abstract
    • Alum has been widely used as an adjuvant for human vaccines; however, the impact of Alum on host metabolism remains largely unknown. Herein, we applied mass spectrometry (MS) (liquid chromatography-MS)-based metabolic and lipid profiling to monitor the effects of the Alum adjuvant on mouse serum at 6, 24, 72, and 168 h post-vaccination. We propose a new strategy termed subclass identification and annotation for metabolomics for class-wise identification of untargeted metabolomics data generated from high-resolution MS. Using this approach, we identified and validated the levels of several lipids in mouse serum that were significantly altered following Alum administration. These lipids showed a biphasic response even 168 h after vaccination. The majority of the lipids were triglycerides (TAGs), where TAGs with long-chain unsaturated fatty acids (FAs) decreased at 24 h and TAGs with short-chain FAs decreased at 168 h. To our knowledge, this is the first report on the impact of human vaccine adjuvant Alum on the host metabolome, which may provide new insights into the mechanism of action of Alum. ©
  •  
4.
  • Olafsdottir, Torunn, et al. (författare)
  • Comparative Systems Analyses Reveal Molecular Signatures of Clinically tested Vaccine Adjuvants
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322 .- 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • A better understanding of the mechanisms of action of human adjuvants could inform a rational development of next generation vaccines for human use. Here, we exploited a genome wide transcriptomics analysis combined with a systems biology approach to determine the molecular signatures induced by four clinically tested vaccine adjuvants, namely CAF01, IC31, GLA-SE and Alum in mice. We report signature molecules, pathways, gene modules and networks, which are shared by or otherwise exclusive to these clinical-grade adjuvants in whole blood and draining lymph nodes of mice. Intriguingly, co-expression analysis revealed blood gene modules highly enriched for molecules with documented roles in T follicular helper (TFH) and germinal center (GC) responses. We could show that all adjuvants enhanced, although with different magnitude and kinetics, TFH and GC B cell responses in draining lymph nodes. These results represent, to our knowledge, the first comparative systems analysis of clinically tested vaccine adjuvants that may provide new insights into the mechanisms of action of human adjuvants.
  •  
5.
  • Vono, M., et al. (författare)
  • C-type lectin receptor agonists elicit functional IL21-expressing Tfh cells and induce primary B cell responses in neonates
  • 2023
  • Ingår i: FRONTIERS IN IMMUNOLOGY. - : Frontiers Media SA. - 1664-3224. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: C-type lectin receptor (CLR) agonists emerged as superior inducers of primary B cell responses in early life compared with Toll-like receptor (TLR) agonists, while both types of adjuvants are potent in adults. Methods: Here, we explored the mechanisms accounting for the differences in neonatal adjuvanticity between a CLR-based (CAF (R) 01) and a TLR4-based (GLA-SE) adjuvant administered with influenza hemagglutinin (HA) in neonatal mice, by using transcriptomics and systems biology analyses. Results: On day 7 after immunization, HA/CAF01 increased IL6 and IL21 levels in the draining lymph nodes, while HA/GLA-SE increased IL10. CAF01 induced mixed Th1/Th17 neonatal responses while T cell responses induced by GLA-SE had a more pronounced Th2-profile. Only CAF01 induced T follicular helper (Tfh) cells expressing high levels of IL21 similar to levels induced in adult mice, which is essential for germinal center (GC) formation. Accordingly, only CAF01-induced neonatal Tfh cells activated adoptively transferred hen egg lysozyme (HEL)specific B cells to form HEL+ GC B cells in neonatal mice upon vaccination with HEL-OVA. Discussion: Collectively, the data show that CLR-based adjuvants are promising neonatal and infant adjuvants due to their ability to harness Tfh responses in early life.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy