SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Andersson C Evalena) "

Search: WFRF:(Andersson C Evalena)

  • Result 1-11 of 11
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  • Andersson, C. Evalena, 1973- (author)
  • Structure-Function Studies of Enzymes from Ribose Metabolism
  • 2004
  • Doctoral thesis (other academic/artistic)abstract
    • In the pentose phosphate pathway, carbohydrates such as glucose and ribose are degraded with production of reductive power and energy. Another important function is to produce essential pentoses, such as ribose 5-phosphate, which later can be used in biosynthesis of nucleic acids and cofactors. This thesis presents structural and functional studies on three enzymes involved in ribose metabolism in Escherichia coli. Ribokinase is an enzyme that phosphorylates ribose in the presence of ATP and magnesium, as the first step of exogenous ribose metabolism. Two important aspects of ribokinase function, not previously known, have been elucidated. Ribokinase was shown to be activated by monovalent cations, specifically potassium. Structural analysis of the monovalent ion binding site indicates that the ion has a structural rather than catalytic role; a mode of activation involving a conformational change has been suggested. Product inhibition studies suggest that ATP is the first substrate to bind the enzyme. Independent Kd measurements with the ATP analogue AMP-PCP support this. The results presented here will have implications for several enzymes in the protein family to which ribokinase belongs, in particular the medically interesting enzyme adenosine kinase. Ribose 5-phosphate isomerases convert ribose 5-phosphate into ribulose 5-phosphate or vice versa. Structural studies on the two genetically distinct isomerases in E. coli have shown them to be fundamentally different in many aspects, including active site architecture. However, a kinetic study has demonstrated both enzymes to be efficient in terms of catalysis. Sequence searches of completed genomes show ribose 5-phosphate isomerase B to be the sole isomerase in many bacteria, although ribose 5-phosphate isomerase A is a nearly universal enzyme. All genomes contain at least one of the two enzymes. These results confirm that both enzymes must be independently capable of supporting ribose metabolism, a fact that had not previously been established.
  •  
5.
  • Nordqvist, Anneli, et al. (author)
  • Evaluation of the amino acid binding site of Mycobacterium tuberculosis glutamine synthetase for drug discovery
  • 2008
  • In: Bioorganic & Medicinal Chemistry. - : Elsevier BV. - 0968-0896 .- 1464-3391. ; 16:10, s. 5501-5513
  • Journal article (peer-reviewed)abstract
    • A combination of a literature survey, structure-based virtual screening and synthesis of a small library was performed to identify hits to the potential antimycobacterial drug target, glutamine synthetase. The best inhibitor identified from the literature survey was (2S,5R)-2,6-diamino-5-hydroxyhexanoic acid (4, IC(50) of 610+/-15microM). In the virtual screening 46,400 compounds were docked and subjected to a pharmacophore search. Of these compounds, 29 were purchased and tested in a biological assay, allowing three novel inhibitors containing an aromatic scaffold to be identified. Based on one of the hits from the virtual screening a small library of 15 analogues was synthesized producing four compounds that inhibited glutamine synthetase.
  •  
6.
  •  
7.
  • Saupe, Falk, et al. (author)
  • Development of a novel therapeutic vaccine carrier that sustains high antibody titers against several targets simultaneously
  • 2017
  • In: The FASEB Journal. - 0892-6638 .- 1530-6860. ; 31:3, s. 1204-1214
  • Journal article (peer-reviewed)abstract
    • With the aim to improve the efficacy of therapeutic vaccines that target self-antigens, we have developed a novel fusion protein vaccine on the basis of the C-terminal multimerizing end of the variable lymphocyte receptor B (VLRB), the Ig equivalent in jawless fishes. Recombinant vaccines were produced in Escherichia coli by fusing the VLRB sequence to 4 different cancer-associated target molecules. The anti-self-immune response generated in mice that were vaccinated with VLRB vaccines was compared with the response in mice that received vaccines that contained bacterial thioredoxin (TRX), previously identified as an efficient carrier. The anti-self-Abswere analyzed with respect to titers, binding properties, and duration of response. VLRB-vaccinatedmice displayed a 2-to 10-fold increase in anti-self-Ab titers and a substantial decrease in Abs against the foreign part of the fusion protein compared with the response in TRX-vaccinated mice (P < 0.01). VLRB-generated Ab response had duration similar to the corresponding TRX-generatedAbs, but displayed a higher diversity in binding characteristics. Of importance, VLRB vaccines could sustain an immune response against several targets simultaneously. VLRB vaccines fulfill several key criteria for an efficient therapeutic vaccine that targets self-antigens as a result of its small size, its multimerizing capacity, and nonexposed foreign sequences in the fusion protein.- Saupe, F., Reichel, M., Huijbers, E. J. M., Femel, J., Markgren, P.- O., Andersson, C. E., Deindl, S., Danielson, U. H., Hellman, L. T., Olsson, A.- K. Development of a novel therapeutic vaccine carrier that sustains high antibody titers against several targets simultaneously.
  •  
8.
  • Zhang, Rong guang, et al. (author)
  • Structure of Escherichia coli ribose-5-phosphate isomerase : a ubiquitous enzyme of the pentose phosphate pathway and the Calvin cycle
  • 2003
  • In: Structure. - 0969-2126 .- 1878-4186. ; 11:1, s. 31-42
  • Journal article (peer-reviewed)abstract
    • Ribose-5-phosphate isomerase A (RpiA; EC 5.3.1.6) interconverts ribose-5-phosphate and ribulose-5-phosphate. This enzyme plays essential roles in carbohydrate anabolism and catabolism; it is ubiquitous and highly conserved. The structure of RpiA from Escherichia coli was solved by multiwavelength anomalous diffraction (MAD) phasing, and refined to 1.5 A resolution (R factor 22.4%, R(free) 23.7%). RpiA exhibits an alpha/beta/(alpha/beta)/beta/alpha fold, some portions of which are similar to proteins of the alcohol dehydrogenase family. The two subunits of the dimer in the asymmetric unit have different conformations, representing the opening/closing of a cleft. Active site residues were identified in the cleft using sequence conservation, as well as the structure of a complex with the inhibitor arabinose-5-phosphate at 1.25 A resolution. A mechanism for acid-base catalysis is proposed.
  •  
9.
  •  
10.
  • Zhang, Rong-Guang, et al. (author)
  • The 2.2 A resolution structure of RpiB/AlsB from Escherichia coli illustrates a new approach to the ribose-5-phosphate isomerase reaction
  • 2003
  • In: Journal of Molecular Biology. - : Elsevier BV. - 0022-2836 .- 1089-8638. ; 332:5
  • Journal article (peer-reviewed)abstract
    • Ribose-5-phosphate isomerases (EC 5.3.1.6) interconvert ribose 5-phosphate and ribulose 5-phosphate. This reaction permits the synthesis of ribose from other sugars, as well as the recycling of sugars from nucleotide breakdown. Two unrelated types of enzyme can catalyze the reaction. The most common, RpiA, is present in almost all organisms (including Escherichia coli), and is highly conserved. The second type, RpiB, is present in some bacterial and eukaryotic species and is well conserved. In E.coli, RpiB is sometimes referred to as AlsB, because it can take part in the metabolism of the rare sugar, allose, as well as the much more common ribose sugars. We report here the structure of RpiB/AlsB from E.coli, solved by multi-wavelength anomalous diffraction (MAD) phasing, and refined to 2.2A resolution. RpiB is the first structure to be solved from pfam02502 (the RpiB/LacAB family). It exhibits a Rossmann-type alphabetaalpha-sandwich fold that is common to many nucleotide-binding proteins, as well as other proteins with different functions. This structure is quite distinct from that of the previously solved RpiA; although both are, to some extent, based on the Rossmann fold, their tertiary and quaternary structures are very different. The four molecules in the RpiB asymmetric unit represent a dimer of dimers. Active-site residues were identified at the interface between the subunits, such that each active site has contributions from both subunits. Kinetic studies indicate that RpiB is nearly as efficient as RpiA, despite its completely different catalytic machinery. The sequence and structural results further suggest that the two homologous components of LacAB (galactose-6-phosphate isomerase) will compose a bi-functional enzyme; the second activity is unknown.
  •  
11.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-11 of 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view