SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Andrade Marcos) "

Search: WFRF:(Andrade Marcos)

  • Result 1-25 of 25
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Householder, John Ethan, et al. (author)
  • One sixth of Amazonian tree diversity is dependent on river floodplains
  • 2024
  • In: NATURE ECOLOGY & EVOLUTION. - 2397-334X.
  • Journal article (peer-reviewed)abstract
    • Amazonia's floodplain system is the largest and most biodiverse on Earth. Although forests are crucial to the ecological integrity of floodplains, our understanding of their species composition and how this may differ from surrounding forest types is still far too limited, particularly as changing inundation regimes begin to reshape floodplain tree communities and the critical ecosystem functions they underpin. Here we address this gap by taking a spatially explicit look at Amazonia-wide patterns of tree-species turnover and ecological specialization of the region's floodplain forests. We show that the majority of Amazonian tree species can inhabit floodplains, and about a sixth of Amazonian tree diversity is ecologically specialized on floodplains. The degree of specialization in floodplain communities is driven by regional flood patterns, with the most compositionally differentiated floodplain forests located centrally within the fluvial network and contingent on the most extraordinary flood magnitudes regionally. Our results provide a spatially explicit view of ecological specialization of floodplain forest communities and expose the need for whole-basin hydrological integrity to protect the Amazon's tree diversity and its function.
  •  
2.
  • Luize, Bruno Garcia, et al. (author)
  • Geography and ecology shape the phylogenetic composition of Amazonian tree communities
  • 2024
  • In: JOURNAL OF BIOGEOGRAPHY. - 0305-0270 .- 1365-2699.
  • Journal article (peer-reviewed)abstract
    • Aim: Amazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types. Location: Amazonia. Taxon: Angiosperms (Magnoliids; Monocots; Eudicots). Methods: Data for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran's eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny. Results: In the terra firme and v & aacute;rzea forest types, the phylogenetic composition varies by geographic region, but the igap & oacute; and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R-2 = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R-2 = 28%). A greater number of lineages were significant indicators of geographic regions than forest types. Main Conclusion: Numerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions.
  •  
3.
  • ter Steege, Hans, et al. (author)
  • Mapping density, diversity and species-richness of the Amazon tree flora
  • 2023
  • In: COMMUNICATIONS BIOLOGY. - 2399-3642. ; 6:1
  • Journal article (peer-reviewed)abstract
    • Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution. A study mapping the tree species richness in Amazonian forests shows that soil type exerts a strong effect on species richness, probably caused by the areas of these forest types. Cumulative water deficit, tree density and temperature seasonality affect species richness at a regional scale.
  •  
4.
  • Abolfathi, Bela, et al. (author)
  • The Fourteenth Data Release of the Sloan Digital Sky Survey : First Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment
  • 2018
  • In: Astrophysical Journal Supplement Series. - : IOP Publishing Ltd. - 0067-0049 .- 1538-4365. ; 235:2
  • Journal article (peer-reviewed)abstract
    • The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since 2014 July. This paper describes the second data release from this phase, and the 14th from SDSS overall (making this Data Release Fourteen or DR14). This release makes the data taken by SDSS-IV in its first two years of operation (2014-2016 July) public. Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey; the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data-driven machine-learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from the SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS web site (www.sdss.org) has been updated for this release and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020 and will be followed by SDSS-V.
  •  
5.
  •  
6.
  • Blanton, Michael R., et al. (author)
  • Sloan Digital Sky Survey IV : Mapping the Milky Way, Nearby Galaxies, and the Distant Universe
  • 2017
  • In: Astronomical Journal. - : IOP Publishing Ltd. - 0004-6256 .- 1538-3881. ; 154:1
  • Journal article (peer-reviewed)abstract
    • We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and. high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z similar to 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z similar to 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs. and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the. Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July.
  •  
7.
  •  
8.
  • Aliaga, Diego, et al. (author)
  • Identifying source regions of air masses sampled at the tropical high-altitude site of Chacaltaya using WRF-FLEXPART and cluster analysis
  • 2021
  • In: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 21:21, s. 16453-16477
  • Journal article (peer-reviewed)abstract
    • Observations of aerosol and trace gases in the remote troposphere are vital to quantify background concentrations and identify long-term trends in atmospheric composition on large spatial scales. Measurements made at high altitude are often used to study free-tropospheric air; however such high-altitude sites can be influenced by boundary layer air masses. Thus, accurate information on air mass origin and transport pathways to high-altitude sites is required. Here we present a new method, based on the source-receptor relationship (SRR) obtained from backwards WRF-FLEXPART simulations and a k-means clustering approach, to identify source regions of air masses arriving at measurement sites. Our method is tailored to areas of complex terrain and to stations influenced by both local and long-range sources. We have applied this method to the Chacaltaya (CHC) GAW station (5240 m a.s.l.; 16.35 degrees S, 68.13 degrees W) for the 6-month duration of the Southern Hemisphere high-altitude experiment on particle nucleation and growth (SALILNA) to identify where sampled air masses originate and to quantify the influence of the surface and the free troposphere. A key aspect of our method is that it is probabilistic, and for each observation time, more than one air mass (cluster) can influence the station, and the percentage influence of each air mass can be quantified. This is in contrast to binary methods, which label each observation time as influenced by either boundary layer or free-troposphere air masses. Air sampled at CHC is a mix of different provenance. We find that on average 9 % of the air, at any given observation time, has been in contact with the surface within 4 d prior to arriving at CHC. Furthermore, 24 % of the air has been located within the first 1.5 km above ground level (surface included). Consequently, 76 % of the air sampled at CHC originates from the free troposphere. However, pure free-tropospheric influences are rare, and often samples are concurrently influenced by both boundary layer and free-tropospheric air masses. A clear diurnal cycle is present, with very few air masses that have been in contact with the surface being detected at night. The 6-month analysis also shows that the most dominant air mass (cluster) originates in the Amazon and is responsible for 29 % of the sampled air. Furthermore, short-range clusters (origins within 100 km of CHC) have high temporal frequency modulated by local meteorology driven by the diurnal cycle, whereas the mid- and long-range clusters' (> 200 km) variability occurs on timescales governed by synoptic-scale dynamics. To verify the reliability of our method, in situ sulfate observations from CHC are combined with the SRR clusters to correctly identify the (pre-known) source of the sulfate: the Sabancaya volcano located 400 km north-west from the station.
  •  
9.
  • Bernal, Ximena E., et al. (author)
  • Empowering Latina scientists
  • 2019
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 363:6429, s. 825-826
  • Journal article (other academic/artistic)
  •  
10.
  • Bonroy, Carolien, et al. (author)
  • Detection of antinuclear antibodies : recommendations from EFLM, EASI and ICAP
  • 2023
  • In: Clinical Chemistry and Laboratory Medicine. - : Walter de Gruyter. - 1434-6621 .- 1437-4331. ; 61:7, s. 1167-1198
  • Journal article (peer-reviewed)abstract
    • Objectives: Antinuclear antibodies (ANA) are important for the diagnosis of various autoimmune diseases. ANA are usually detected by indirect immunofluorescence assay (IFA) using HEp-2 cells (HEp-2 IFA). There are many variables influencing HEp-2 IFA results, such as subjective visual reading, serum screening dilution, substrate manufacturing, microscope components and conjugate. Newer developments on ANA testing that offer novel features adopted by some clinical laboratories include automated computer-assisted diagnosis (CAD) systems and solid phase assays (SPA).Methods: A group of experts reviewed current literature and established recommendations on methodological aspects of ANA testing. This process was supported by a two round Delphi exercise. International expert groups that participated in this initiative included (i) the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) Working Group “Autoimmunity Testing”; (ii) the European Autoimmune Standardization Initiative (EASI); and (iii) the International Consensus on ANA Patterns (ICAP).Results: In total, 35 recommendations/statements related to (i) ANA testing and reporting by HEp-2 IFA; (ii) HEp-2 IFA methodological aspects including substrate/conjugate selection and the application of CAD systems; (iii) quality assurance; (iv) HEp-2 IFA validation/verification approaches and (v) SPA were formulated. Globally, 95% of all submitted scores in the final Delphi round were above 6 (moderately agree, agree or strongly agree) and 85% above 7 (agree and strongly agree), indicating strong international support for the proposed recommendations.Conclusions: These recommendations are an important step to achieve high quality ANA testing.
  •  
11.
  • Chauvigné, Aurélien, et al. (author)
  • Biomass burning and urban emission impacts in the Andes Cordillera region based on in situ measurements from the Chacaltaya observatory, Bolivia (5240 m a.s.l.)
  • 2019
  • In: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 19:23, s. 14805-14824
  • Journal article (peer-reviewed)abstract
    • This study documents and analyses a 4-year continuous record of aerosol optical properties measured at the Global Atmosphere Watch (GAW) station of Chacaltaya (CHC; 5240 m a.s.l.), in Bolivia. Records of particle light scattering and particle light absorption coefficients are used to investigate how the high Andean Cordillera is affected by both long-range transport and by the fast-growing agglomeration of La Paz-El Alto, located approximately 20 km away and 1.5 km below the sampling site. The extended multiyear record allows us to study the properties of aerosol particles for different air mass types, during wet and dry seasons, also covering periods when the site was affected by biomass burning in the Bolivian lowlands and the Amazon Basin. The absorption, scattering, and extinction coefficients (median annual values of 0.74, 12.14, and 12.96 Mm(-1) respectively) show a clear seasonal variation with low values during the wet season (0.57, 7.94, and 8.68 Mm(-1) respectively) and higher values during the dry season (0.80, 11.23, and 14.51 Mm(-1) respectively). The record is driven by variability at both seasonal and diurnal scales. At a diurnal scale, all records of intensive and extensive aerosol properties show a pronounced variation (daytime maximum, night-time minimum), as a result of the dynamic and convective effects. The particle light absorption, scattering, and extinction coefficients are on average 1.94, 1.49, and 1.55 times higher respectively in the turbulent thermally driven conditions than the more stable conditions, due to more efficient transport from the boundary layer. Retrieved intensive optical properties are significantly different from one season to the other, reflecting the changing aerosol emission sources of aerosol at a larger scale. Using the wavelength dependence of aerosol particle optical properties, we discriminated between contributions from natural (mainly mineral dust) and anthropogenic (mainly biomass burning and urban transport or industries) emissions according to seasons and local circulation. The main sources influencing measurements at CHC are from the urban area of La Paz-El Alto in the Altiplano and from regional biomass burning in the Amazon Basin. Results show a 28 % to 80 % increase in the extinction coefficients during the biomass burning season with respect to the dry season, which is observed in both tropospheric dynamic conditions. From this analysis, long-term observations at CHC provide the first direct evidence of the impact of biomass burning emissions of the Amazon Basin and urban emissions from the La Paz area on atmospheric optical properties at a remote site all the way to the free troposphere.
  •  
12.
  • Gei, Maga, et al. (author)
  • Legume abundance along successional and rainfall gradients in Neotropical forests
  • 2018
  • In: Nature Ecology & Evolution. - : Springer Science and Business Media LLC. - 2397-334X. ; 2:7
  • Journal article (peer-reviewed)abstract
    • The nutrient demands of regrowing tropical forests are partly satisfied by nitrogen-fixing legume trees, but our understanding of the abundance of those species is biased towards wet tropical regions. Here we show how the abundance of Leguminosae is affected by both recovery from disturbance and large-scale rainfall gradients through a synthesis of forest inventory plots from a network of 42 Neotropical forest chronosequences. During the first three decades of natural forest regeneration, legume basal area is twice as high in dry compared with wet secondary forests. The tremendous ecological success of legumes in recently disturbed, water-limited forests is likely to be related to both their reduced leaflet size and ability to fix N2, which together enhance legume drought tolerance and water-use efficiency. Earth system models should incorporate these large-scale successional and climatic patterns of legume dominance to provide more accurate estimates of the maximum potential for natural nitrogen fixation across tropical forests.
  •  
13.
  • Heitto, Arto, et al. (author)
  • Analysis of atmospheric particle growth based on vapor concentrations measured at the high-altitude GAW station Chacaltaya in the Bolivian Andes
  • 2024
  • In: Atmospheric Chemistry and Physics. - 1680-7316 .- 1680-7324. ; 24, s. 1315-1328
  • Journal article (peer-reviewed)abstract
    • Early growth of atmospheric particles is essential for their survival and ability to participate in cloud formation. Many different atmospheric vapors contribute to the growth, but even the main contributors still remain poorly identified in many environments, such as high-altitude sites. Based on measured organic vapor and sulfuric acid concentrations under ambient conditions, particle growth during new particle formation events was simulated and compared with the measured particle size distribution at the Chacaltaya Global Atmosphere Watch station in Bolivia (5240ma.s.l.) during April and May 2018, as a part of the SALTENA (Southern Hemisphere high-ALTitude Experiment on particle Nucleation and growth) campaign. Despite the challenging topography and ambient conditions around the station, the simple particle growth model used in the study was able to show that the detected vapors were sufficient to explain the observed particle growth, although some discrepancies were found between modeled and measured particle growth rates. This study, one of the first of such studies conducted on high altitude, gives insight on the key factors affecting the particle growth on the site and helps to improve the understanding of important factors on high-altitude sites and the atmosphere in general. Low-volatility organic compounds originating from multiple surrounding sources such as the Amazonia and La Paz metropolitan area were found to be the main contributor to the particle growth, covering on average 65% of the simulated particle mass in particles with a diameter of 30nm. In addition, sulfuric acid made a major contribution to the particle growth, covering at maximum 37% of the simulated particle mass in 30nm particles during periods when volcanic activity was detected on the area, compared to around 1% contribution on days without volcanic activity. This suggests that volcanic emissions can greatly enhance the particle growth.
  •  
14.
  •  
15.
  • Laj, Paolo, et al. (author)
  • A global analysis of climate-relevant aerosol properties retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories
  • 2020
  • In: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 13:8, s. 4353-4392
  • Journal article (peer-reviewed)abstract
    • Aerosol particles are essential constituents of the Earth's atmosphere, impacting the earth radiation balance directly by scattering and absorbing solar radiation, and indirectly by acting as cloud condensation nuclei. In contrast to most greenhouse gases, aerosol particles have short atmospheric residence times, resulting in a highly heterogeneous distribution in space and time. There is a clear need to document this variability at regional scale through observations involving, in particular, the in situ near-surface segment of the atmospheric observation system. This paper will provide the widest effort so far to document variability of climate-relevant in situ aerosol properties (namely wavelength dependent particle light scattering and absorption coefficients, particle number concentration and particle number size distribution) from all sites connected to the Global Atmosphere Watch network. High-quality data from almost 90 stations worldwide have been collected and controlled for quality and are reported for a reference year in 2017, providing a very extended and robust view of the variability of these variables worldwide. The range of variability observed worldwide for light scattering and absorption coefficients, single-scattering albedo, and particle number concentration are presented together with preliminary information on their long-term trends and comparison with model simulation for the different stations. The scope of the present paper is also to provide the necessary suite of information, including data provision procedures, quality control and analysis, data policy, and usage of the ground-based aerosol measurement network. It delivers to users of the World Data Centre on Aerosol, the required confidence in data products in the form of a fully characterized value chain, including uncertainty estimation and requirements for contributing to the global climate monitoring system.
  •  
16.
  • Mardonez, Valeria, et al. (author)
  • Source apportionment study on particulate air pollution in two high-altitude Bolivian cities : La Paz and El Alto
  • 2023
  • In: Atmospheric Chemistry And Physics. - 1680-7316 .- 1680-7324. ; 23:18, s. 10325-10347
  • Journal article (peer-reviewed)abstract
    • La Paz and El Alto are two fast-growing, high-altitude Bolivian cities forming the second-largest metropolitan area in the country. Located between 3200 and 4050 m a.s.l. (above sea level), these cities are home to a burgeoning population of approximately 1.8 million residents. The air quality in this conurbation is heavily influenced by urbanization; however, there are no comprehensive studies evaluating the sources of air pollution and their health impacts. Despite their proximity, the substantial variation in altitude, topography, and socioeconomic activities between La Paz and El Alto result in distinct sources, dynamics, and transport of particulate matter (PM). In this investigation, PM10 samples were collected at two urban background stations located in La Paz and El Alto between April 2016 and June 2017. The samples were later analyzed for a wide range of chemical species including numerous source tracers (OC, EC, water-soluble ions, sugar anhydrides, sugar alcohols, trace metals, and molecular organic species). The United States Environmental Protection Agency (U.S. EPA) Positive Matrix Factorization (PMF v.5.0) receptor model was employed for the source apportionment of PM10. This is one of the first source apportionment studies in South America that incorporates an extensive suite of organic markers, including levoglucosan, polycyclic aromatic hydrocarbons (PAHs), hopanes, and alkanes, alongside inorganic species. The multisite PMF resolved 11 main sources of PM. The largest annual contribution to PM10 came from the following two major sources: the ensemble of the four vehicular emissions sources (exhaust and non-exhaust), accountable for 35 % and 25 % of the measured PM in La Paz and El Alto, respectively; and dust, which contributed 20 % and 32 % to the total PM mass. Secondary aerosols accounted for 22 % (24 %) in La Paz (El Alto). Agricultural smoke resulting from biomass burning in the Bolivian lowlands and neighboring countries contributed to 9 % (8 %) of the total PM10 mass annually, increasing to 17 % (13 %) between August-October. Primary biogenic emissions were responsible for 13 % (7 %) of the measured PM10 mass. Additionally, a profile associated with open waste burning occurring from May to August was identified. Although this source contributed only to 2 % (5 %) of the total PM10 mass, it constitutes the second largest source of PAHs, which are compounds potentially hazardous to human health. Our analysis additionally resolved two different traffic-related factors, a lubricant source (not frequently identified), and a non-exhaust emissions source. Overall, this study demonstrates that PM10 concentrations in La Paz and El Alto region are predominantly influenced by a limited number of local sources. In conclusion, to improve air quality in both cities, efforts should primarily focus on addressing dust, traffic emissions, open waste burning, and biomass burning.
  •  
17.
  • Moreira, Camila A.B., et al. (author)
  • Natural variability in exposure to fine particles and their trace elements during typical workdays in an urban area
  • 2018
  • In: Transportation Research Part D: Transport and Environment. - : Elsevier BV. - 1361-9209. ; 63, s. 333-346
  • Journal article (peer-reviewed)abstract
    • Studies on the natural human exposures to fine particulate matter (PM2.5) and their elements composition are practically non-existent in South America. In order to understand the natural exposure of the typical Brazilian population to PM2.5 and their trace element composition, we measured PM2.5 concentrations and collected mass on filters for nine continuous hours during a typical workday of volunteers. In addition, bus routes were performed at peak and non-peak periods, mimicking the routine activity of the population. Mean concentrations of PM2.5 in the bus and car groups were similar while the fraction of BCe was higher for the bus group. For all routes, mean PM2.5 concentrations were higher during peak than non-peak hours, with an average of 43.5 ± 33.1 μg m−3 and 14.3 ± 10.2 μg m−3, respectively. The trace elements S, K and Na originated mainly from vehicle emissions; Na was associated with the presence of biofuel in diesel. Toxic elements (Pb, Cr, Cu, Ni, Zn, Mn) were found at low levels as evident by the total hazard index that ranged from 2.15 × 10−03 to 1.38 for volunteers. For all routes, the hazard index ranged from 2.25 × 10−03 to 5.03. Average PM2.5 respiratory deposition dose was estimated to be 0.60 μg/kg-hour for peak hours. Potential health damages to people during their movements and at workplaces close to the traffic were identified. Improvements in the design of the building to reduce the entrance of air pollutants as well as the use of filters in the buses could help to limit population exposure.
  •  
18.
  • Moreno, C. Isabel, et al. (author)
  • Tropical tropospheric aerosol sources and chemical composition observed at high altitude in the Bolivian Andes
  • 2024
  • In: Atmospheric Chemistry And Physics. - 1680-7316 .- 1680-7324. ; 24:5, s. 2837-2860
  • Journal article (peer-reviewed)abstract
    • The chemical composition of PM10 and non-overlapping PM2.5 was studied at the summit of Mt. Chacaltaya (5380 m a.s.l., lat. −16.346950°, long. −68.128250°) providing a unique long-term record spanning from December 2011 to March 2020. The chemical composition of aerosol at the Chacaltaya Global Atmosphere Watch (GAW) site is representative of the regional background, seasonally affected by biomass burning practices and by nearby anthropogenic emissions from the metropolitan area of La Paz–El Alto. Concentration levels are clearly influenced by seasons with minima occurring during the wet season (December to March) and maxima occurring during the dry and transition seasons (April to November). Ions, total carbon (EC + OC), and saccharide interquartile ranges for concentrations are 558–1785, 384–1120, and 4.3–25.5 ng m−3 for bulk PM10 and 917–2308, 519–1175, and 3.9–24.1 ng m−3 for PM2.5, respectively, with most of the aerosol seemingly present in the PM2.5 fraction. Such concentrations are overall lower compared to other high-altitude stations around the globe but higher than Amazonian remote sites (except for OC). For PM10, there is dominance of insoluble mineral matter (33 %–56 % of the mass), organic matter (7 %–34 %), and secondary inorganic aerosol (15 %–26 %). Chemical composition profiles were identified for different origins: glucose, and for the nearby urban and rural areas; OC, EC, , K+, acetate, formate, levoglucosan, and some F− and Br− for biomass burning; for aged marine emissions from the Pacific Ocean; arabitol, mannitol, and glucose for biogenic emissions; for soil dust; and and some Cl− for volcanism. Regional biomass burning practices influence the soluble fraction of the aerosol between June and November. The organic fraction is present all year round and has both anthropogenic (biomass burning and other combustion sources) and natural (primary and secondary biogenic emissions) origins, with the OC/EC mass ratio being practically constant all year round (10.5 ± 5.7, IQR 8.1–13.3). Peruvian volcanism has dominated the concentration since 2014, though it presents strong temporal variability due to the intermittence of the sources and seasonal changes in the transport patterns. These measurements represent some of the first long-term observations of aerosol chemical composition at a continental high-altitude site in the tropical Southern Hemisphere.
  •  
19.
  • Muscarella, Robert, et al. (author)
  • The global abundance of tree palms
  • 2020
  • In: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 29:9, s. 1495-1514
  • Journal article (peer-reviewed)abstract
    • AimPalms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change.LocationTropical and subtropical moist forests.Time periodCurrent.Major taxa studiedPalms (Arecaceae).MethodsWe assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., ≥10 cm diameter at breast height) abundance relative to co‐occurring non‐palm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure.ResultsOn average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of long‐term climate stability. Life‐form diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many non‐tree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of above‐ground biomass, but the magnitude and direction of the effect require additional work.ConclusionsTree palms are not only quintessentially tropical, but they are also overwhelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical forests.
  •  
20.
  • Pandolfi, Marco, et al. (author)
  • A European aerosol phenomenology-6 : scattering properties of atmospheric aerosol particles from 28 ACTRIS sites
  • 2018
  • In: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 18:11, s. 7877-7911
  • Journal article (peer-reviewed)abstract
    • This paper presents the light-scattering properties of atmospheric aerosol particles measured over the past decade at 28 ACTRIS observatories, which are located mainly in Europe. The data include particle light scattering (sigma(sp)) and hemispheric backscattering (sigma(bsp)) coefficients, scattering Angstrom exponent (SAE), backscatter fraction (BF) and asymmetry parameter (g). An increasing gradient of sigma(sp) is observed when moving from remote environments (arctic/mountain) to regional and to urban environments. At a regional level in Europe, sigma(sp) also increases when moving from Nordic and Baltic countries and from western Europe to central/eastern Europe, whereas no clear spatial gradient is observed for other station environments. The SAE does not show a clear gradient as a function of the placement of the station. However, a west-to-east-increasing gradient is observed for both regional and mountain placements, suggesting a lower fraction of fine-mode particle in western/south-western Europe compared to central and eastern Europe, where the fine-mode particles dominate the scattering. The g does not show any clear gradient by station placement or geographical location reflecting the complex relationship of this parameter with the physical properties of the aerosol particles. Both the station placement and the geographical location are important factors affecting the intraannual variability. At mountain sites, higher sigma(sp) and SAE values are measured in the summer due to the enhanced boundary layer influence and/or new particle-formation episodes. Conversely, the lower horizontal and vertical dispersion during winter leads to higher sigma(sp) values at all low-altitude sites in central and eastern Europe compared to summer. These sites also show SAE maxima in the summer (with corresponding g minima). At all sites, both SAE and g show a strong variation with aerosol particle loading. The lowest values of g are always observed together with low sigma(sp) values, indicating a larger contribution from particles in the smaller accumulation mode. During periods of high sigma(sp) values, the variation of g is less pronounced, whereas the SAE increases or decreases, suggesting changes mostly in the coarse aerosol particle mode rather than in the fine mode. Statistically significant decreasing trends of sigma(sp) are observed at 5 out of the 13 stations included in the trend analyses. The total reductions of sigma(sp) are consistent with those reported for PM2.5 and PM10 mass concentrations over similar periods across Europe.
  •  
21.
  • Rose, Clemence, et al. (author)
  • CCN production by new particle formation in the free troposphere
  • 2017
  • In: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 17:2, s. 1529-1541
  • Journal article (peer-reviewed)abstract
    • Global models predict that new particle formation (NPF) is, in some environments, responsible for a substantial fraction of the total atmospheric particle number concentration and subsequently contributes significantly to cloud condensation nuclei (CCN) concentrations. NPF events were frequently observed at the highest atmospheric observatory in the world, on Chacaltaya (5240 m a.s.l.), Bolivia. The present study focuses on the impact of NPF on CCN population. Neutral cluster and Air Ion Spectrometer and mobility particle size spectrometer measurements were simultaneously used to follow the growth of particles from cluster sizes down to similar to 2 nm up to CCN threshold sizes set to 50, 80 and 100 nm. Using measurements performed between 1 January and 31 December 2012, we found that 61% of the 94 analysed events showed a clear particle growth and significant enhancement of the CCN-relevant particle number concentration. We evaluated the contribution of NPF, relative to the transport and growth of pre-existing particles, to CCN size. The averaged production of 50 nm particles during those events was 5072, and 1481 cm(-3) for 100 nm particles, with a larger contribution of NPF compared to transport, especially during the wet season. The data set was further segregated into boundary layer (BL) and free troposphere (FT) conditions at the site. The NPF frequency of occurrence was higher in the BL (48 %) compared to the FT (39 %). Particle condensational growth was more frequently observed for events initiated in the FT, but on average faster for those initiated in the BL, when the amount of condensable species was most probably larger. As a result, the potential to form new CCN was higher for events initiated in the BL (67% against 53% in the FT). In contrast, higher CCN number concentration increases were found when the NPF process initially occurred in the FT, under less polluted conditions. This work highlights the competition between particle growth and the removal of freshly nucleated particles by coagulation processes. The results support model predictions which suggest that NPF is an effective source of CCN in some environments, and thus may influence regional climate through cloud-related radiative processes.
  •  
22.
  •  
23.
  • Van Hoovels, Lieve, et al. (author)
  • Current laboratory and clinical practices in reporting and interpreting anti-nuclear antibody indirect immunofluorescence (ANA IIF) patterns : results of an international survey
  • 2020
  • In: AUTOIMMUNITY HIGHLIGHTS. - : Springer. - 2038-0305 .- 2038-3274. ; 11:1
  • Journal article (peer-reviewed)abstract
    • Background The International Consensus on Antinuclear Antibody (ANA) Patterns (ICAP) has recently proposed nomenclature in order to harmonize ANA indirect immunofluorescence (IIF) pattern reporting. ICAP distinguishes competent-level from expert-level patterns. A survey was organized to evaluate reporting, familiarity, and considered clinical value of ANA IIF patterns. Methods Two surveys were distributed by European Autoimmunity Standardization Initiative (EASI) working groups, the International Consensus on ANA Patterns (ICAP) and UK NEQAS to laboratory professionals and clinicians. Results 438 laboratory professionals and 248 clinicians from 67 countries responded. Except for dense fine speckled (DFS), the nuclear competent patterns were reported by > 85% of the laboratories. Except for rods and rings, the cytoplasmic competent patterns were reported by > 72% of laboratories. Cytoplasmic IIF staining was considered ANA positive by 55% of clinicians and 62% of laboratory professionals, with geographical and expertise-related differences. Quantification of fluorescence intensity was considered clinically relevant for nuclear patterns, but less so for cytoplasmic and mitotic patterns. Combining IIF with specific extractable nuclear antigens (ENA)/dsDNA antibody testing was considered most informative. Of the nuclear competent patterns, the centromere and homogeneous pattern obtained the highest scores for clinical relevance and the DFS pattern the lowest. Of the cytoplasmic patterns, the reticular/mitochondria-like pattern obtained the highest scores for clinical relevance and the polar/Golgi-like and rods and rings patterns the lowest. Conclusion This survey confirms that the major nuclear and cytoplasmic ANA IIF patterns are considered clinically important. There is no unanimity on classifying DFS, rods and rings and polar/Golgi-like as a competent pattern and on reporting cytoplasmic patterns as ANA IIF positive.
  •  
24.
  • Zha, Qiaozhi, et al. (author)
  • Oxidized organic molecules in the tropical free troposphere over Amazonia
  • 2023
  • In: National Science Review. - 2095-5138 .- 2053-714X.
  • Journal article (peer-reviewed)abstract
    • New particle formation (NPF) in the tropical free troposphere (FT) is a globally important source of cloud condensation nuclei, affecting cloud properties and climate. Oxidized organic molecules (OOMs) produced from biogenic volatile organic compounds are believed to contribute to aerosol formation in the tropical FT, but without direct chemical observations. We performed in-situ molecular-level OOMs measurements at the Bolivian station Chacaltaya at 5240 meters above sea level, on the western edge of Amazonia. For the first time, we demonstrate the presence of OOMs, mainly with 4-5 carbon atoms, in both gas-phase and particle-phase (in terms of mass contribution) measurements in tropical FT air from Amazonia. These observations, combined with air mass history analyses, indicate that the observed OOMs are linked to isoprene emitted from the rainforests hundreds of kilometers away. Based on particle-phase measurements, we find that these compounds can contribute to NPF, at least the growth of newly formed nanoparticles, in the tropical FT on a continental scale. Thus, our study is a fundamental and significant step in understanding the aerosol formation process in the tropical FT.
  •  
25.
  • Zha, Qiaozhi, et al. (author)
  • Oxidized organic molecules in the tropical free troposphere over Amazonia
  • 2024
  • In: National Science Review. - 2095-5138 .- 2053-714X. ; 11:1
  • Journal article (peer-reviewed)abstract
    • New particle formation (NPF) in the tropical free troposphere (FT) is a globally important source of cloud condensation nuclei, affecting cloud properties and climate. Oxidized organic molecules (OOMs) produced from biogenic volatile organic compounds are believed to contribute to aerosol formation in the tropical FT, but without direct chemical observations. We performed in situ molecular-level OOMs measurements at the Bolivian station Chacaltaya at 5240 m above sea level, on the western edge of Amazonia. For the first time, we demonstrate the presence of OOMs, mainly with 4-5 carbon atoms, in both gas-phase and particle-phase (in terms of mass contribution) measurements in tropical FT air from Amazonia. These observations, combined with air mass history analyses, indicate that the observed OOMs are linked to isoprene emitted from the rainforests hundreds of kilometers away. Based on particle-phase measurements, we find that these compounds can contribute to NPF, at least the growth of newly formed nanoparticles, in the tropical FT on a continental scale. Thus, our study is a fundamental and significant step in understanding the aerosol formation process in the tropical FT. In-situ molecular-level measurements demonstrate the presence of oxidized organic molecules, mainly with 4-5 carbon atoms, in both gas-phase and particle-phase in tropical free troposphere air from Amazonia. These molecules are linked to isoprene emitted from the rainforests hundreds of kilometers away, and can contribute to new particle formation.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 25
Type of publication
journal article (25)
Type of content
peer-reviewed (24)
other academic/artistic (1)
Author/Editor
Laj, Paolo (10)
Andrade, Marcos (9)
Wiedensohler, Alfred (8)
Velarde, Fernando (7)
Krejci, Radovan (6)
Aliaga, Diego (6)
show more...
Sellegri, Karine (5)
Ginot, Patrick (5)
Alastuey, Andres (4)
Malhi, Yadvinder (4)
Phillips, Oliver L. (4)
Bianchi, Federico (4)
Mohr, Claudia (4)
ter Steege, Hans (4)
Barlow, Jos (4)
Berenguer, Erika (4)
Balslev, Henrik (4)
Weinhold, Kay (4)
Moreno, Isabel (4)
Pandolfi, Marco (4)
Andrade, Ana (4)
Arroyo, Luzmila (4)
Krejci, Radovan, 197 ... (3)
Artaxo, Paulo (3)
Carbone, Samara (3)
Kulmala, Markku (3)
Carvalho, Fernanda A ... (3)
Huang, Wei (3)
Damasco, Gabriel, 19 ... (3)
Holmgren, Milena (3)
Feeley, Kenneth J. (3)
Huamantupa-Chuquimac ... (3)
Zha, Qiaozhi (3)
Rivas-Torres, Gonzal ... (3)
Farfan-Rios, William (3)
de Aguiar, Daniel P. ... (3)
Ahuite Reategui, Man ... (3)
Albuquerque, Bianca ... (3)
Alonso, Alfonso (3)
do Amaral, Dário Dan ... (3)
do Amaral, Iêda Leão (3)
de Andrade Miranda, ... (3)
Araujo-Murakami, Ale ... (3)
Aymard C, Gerardo A. (3)
Baider, Cláudia (3)
Bánki, Olaf S. (3)
Baraloto, Chris (3)
Barbosa, Edelcilio M ... (3)
Barbosa, Flávia Rodr ... (3)
Brienen, Roel (3)
show less...
University
Stockholm University (8)
University of Gothenburg (5)
Karolinska Institutet (4)
Lund University (3)
Umeå University (2)
Uppsala University (2)
show more...
Malmö University (2)
Chalmers University of Technology (1)
show less...
Language
English (25)
Research subject (UKÄ/SCB)
Natural sciences (19)
Medical and Health Sciences (4)
Agricultural Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view