SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Antonucci Ester) "

Sökning: WFRF:(Antonucci Ester)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Telloni, Daniele, et al. (författare)
  • Does Turbulence along the Coronal Current Sheet Drive Ion Cyclotron Waves?
  • 2023
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 944:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Evidence for the presence of ion cyclotron waves (ICWs), driven by turbulence, at the boundaries of the current sheet is reported in this paper. By exploiting the full potential of the joint observations performed by Parker Solar Probe and the Metis coronagraph on board Solar Orbiter, local measurements of the solar wind can be linked with the large-scale structures of the solar corona. The results suggest that the dynamics of the current sheet layers generates turbulence, which in turn creates a sufficiently strong temperature anisotropy to make the solar-wind plasma unstable to anisotropy-driven instabilities such as the Alfven ion cyclotron, mirror-mode, and firehose instabilities. The study of the polarization state of high-frequency magnetic fluctuations reveals that ICWs are indeed present along the current sheet, thus linking the magnetic topology of the remotely imaged coronal source regions with the wave bursts observed in situ. The present results may allow improvement of state-of-the-art models based on the ion cyclotron mechanism, providing new insights into the processes involved in coronal heating.
  •  
2.
  • Telloni, Daniele, et al. (författare)
  • Evolution of Solar Wind Turbulence from 0.1 to 1 au during the First Parker Solar Probe-Solar Orbiter Radial Alignment
  • 2021
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 912:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The first radial alignment between Parker Solar Probe and Solar Orbiter spacecraft is used to investigate the evolution of solar wind turbulence in the inner heliosphere. Assuming ballistic propagation, two 1.5 hr intervals are tentatively identified as providing measurements of the same plasma parcels traveling from 0.1 to 1 au. Using magnetic field measurements from both spacecraft, the properties of turbulence in the two intervals are assessed. Magnetic spectral density, flatness, and high-order moment scaling laws are calculated. The Hilbert-Huang transform is additionally used to mitigate short sample and poor stationarity effects. Results show that the plasma evolves from a highly Alfvenic, less-developed turbulence state near the Sun, to fully developed and intermittent turbulence at 1 au. These observations provide strong evidence for the radial evolution of solar wind turbulence.
  •  
3.
  • Telloni, Daniele, et al. (författare)
  • Exploring the Solar Wind from Its Source on the Corona into the Inner Heliosphere during the First Solar Orbiter-Parker Solar Probe Quadrature
  • 2021
  • Ingår i: Astrophysical Journal Letters. - : Institute of Physics Publishing (IOPP). - 2041-8205 .- 2041-8213. ; 920:1
  • Tidskriftsartikel (refereegranskat)abstract
    • This Letter addresses the first Solar Orbiter (SO)-Parker Solar Probe (PSP) quadrature, occurring on 2021 January 18 to investigate the evolution of solar wind from the extended corona to the inner heliosphere. Assuming ballistic propagation, the same plasma volume observed remotely in the corona at altitudes between 3.5 and 6.3 solar radii above the solar limb with the Metis coronagraph on SO can be tracked to PSP, orbiting at 0.1 au, thus allowing the local properties of the solar wind to be linked to the coronal source region from where it originated. Thanks to the close approach of PSP to the Sun and the simultaneous Metis observation of the solar corona, the flow-aligned magnetic field and the bulk kinetic energy flux density can be empirically inferred along the coronal current sheet with an unprecedented accuracy, allowing in particular estimation of the Alfven radius at 8.7 solar radii during the time of this event. This is thus the very first study of the same solar wind plasma as it expands from the sub-Alfvenic solar corona to just above the Alfven surface.
  •  
4.
  • Telloni, Daniele, et al. (författare)
  • Observation of a Magnetic Switchback in the Solar Corona
  • 2022
  • Ingår i: Astrophysical Journal Letters. - : Institute of Physics (IOP). - 2041-8205 .- 2041-8213. ; 936:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Switchbacks are sudden, large radial deflections of the solar wind magnetic field, widely revealed in interplanetary space by the Parker Solar Probe. The switchbacks' formation mechanism and sources are still unresolved, although candidate mechanisms include Alfvenic turbulence, shear-driven Kelvin-Helmholtz instabilities, interchange reconnection, and geometrical effects related to the Parker spiral. This Letter presents observations from the Metis coronagraph on board a Solar Orbiter of a single large propagating S-shaped vortex, interpreted as the first evidence of a switchback in the solar corona. It originated above an active region with the related loop system bounded by open-field regions to the east and west. Observations, modeling, and theory provide strong arguments in favor of the interchange reconnection origin of switchbacks. Metis measurements suggest that the initiation of the switchback may also be an indicator of the origin of slow solar wind.
  •  
5.
  • Telloni, Daniele, et al. (författare)
  • Possible Evidence for Shear-driven Kelvin-Helmholtz Instability along the Boundary of Fast and Slow Solar Wind in the Corona
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 929:1
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper reports the first possible evidence for the development of the Kelvin-Helmholtz (KH) instability at the border of coronal holes separating the associated fast wind from the slower wind originating from adjacent streamer regions. Based on a statistical data set of spectroscopic measurements of the UV corona acquired with the UltraViolet Coronagraph Spectrometer on board the SOlar and Heliospheric Observatory during the minimum activity of solar cycle 22, high temperature-velocity correlations are found along the fast/slow solar wind interface region and interpreted as manifestations of KH vortices formed by the roll-up of the shear flow, whose dissipation could lead to higher heating and, because of that, higher velocities. These observational results are supported by solving coupled solar wind and turbulence transport equations including a KH-driven source of turbulence along the tangential velocity discontinuity between faster and slower coronal flows: numerical analysis indicates that the correlation between the solar wind speed and temperature is large in the presence of the shear source of turbulence. These findings suggest that the KH instability may play an important role both in the plasma dynamics and in the energy deposition at the boundaries of coronal holes and equatorial streamers.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy