SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Aprahamian I) "

Sökning: WFRF:(Aprahamian I)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Dent, E., et al. (författare)
  • International Clinical Practice Guidelines for Sarcopenia (ICFSR) : Screening, Diagnosis and Management
  • 2018
  • Ingår i: The Journal of Nutrition, Health & Aging. - : Springer Science and Business Media LLC. - 1279-7707 .- 1760-4788. ; 22:10, s. 1148-1161
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: Sarcopenia, defined as an age-associated loss of skeletal muscle function and muscle mass, occurs in approximately 6 - 22 % of older adults. This paper presents evidence-based clinical practice guidelines for screening, diagnosis and management of sarcopenia from the task force of the International Conference on Sarcopenia and Frailty Research (ICSFR).Methods: To develop the guidelines, we drew upon the best available evidence from two systematic reviews paired with consensus statements by international working groups on sarcopenia. Eight topics were selected for the recommendations: (i) defining sarcopenia; (ii) screening and diagnosis; (iii) physical activity prescription; (iv) protein supplementation; (v) vitamin D supplementation; (vi) anabolic hormone prescription; (vii) medications under development; and (viii) research. The ICSFR task force evaluated the evidence behind each topic including the quality of evidence, the benefit harm balance of treatment, patient preferences/values, and cost-effectiveness. Recommendations were graded as either strong or conditional (weak) as per the GRADE (Grading of Recommendations Assessment, Development and Evaluation) approach. Consensus was achieved via one face-to-face workshop and a modified Delphi process.Recommendations: We make a conditional recommendation for the use of an internationally accepted measurement tool for the diagnosis of sarcopenia including the EWGSOP and FNIH definitions, and advocate for rapid screening using gait speed or the SARC-F. To treat sarcopenia, we strongly recommend the prescription of resistance-based physical activity, and conditionally recommend protein supplementation/a protein-rich diet. No recommendation is given for Vitamin D supplementation or for anabolic hormone prescription. There is a lack of robust evidence to assess the strength of other treatment options.
  •  
3.
  • Castoldi, F, et al. (författare)
  • Autophagy-mediated metabolic effects of aspirin
  • 2020
  • Ingår i: Cell death discovery. - : Springer Science and Business Media LLC. - 2058-7716. ; 6:1, s. 129-
  • Tidskriftsartikel (refereegranskat)abstract
    • Salicylate, the active derivative of aspirin (acetylsalicylate), recapitulates the mode of action of caloric restriction inasmuch as it stimulates autophagy through the inhibition of the acetyltransferase activity of EP300. Here, we directly compared the metabolic effects of aspirin medication with those elicited by 48 h fasting in mice, revealing convergent alterations in the plasma and the heart metabolome. Aspirin caused a transient reduction of general protein acetylation in blood leukocytes, accompanied by the induction of autophagy. However, these effects on global protein acetylation could not be attributed to the mere inhibition of EP300, as determined by epistatic experiments and exploration of the acetyl-proteome from salicylate-treated EP300-deficient cells. Aspirin reduced high-fat diet-induced obesity, diabetes, and hepatosteatosis. These aspirin effects were observed in autophagy-competent mice but not in two different models of genetic (Atg4b−/− or Bcln1+/−) autophagy-deficiency. Aspirin also improved tumor control by immunogenic chemotherapeutics, and this effect was lost in T cell-deficient mice, as well as upon knockdown of an essential autophagy gene (Atg5) in cancer cells. Hence, the health-improving effects of aspirin depend on autophagy.
  •  
4.
  •  
5.
  • Dent, E., et al. (författare)
  • Physical Frailty : ICFSR International Clinical Practice Guidelines for Identification and Management
  • 2019
  • Ingår i: The Journal of Nutrition, Health & Aging. - : SPRINGER FRANCE. - 1279-7707 .- 1760-4788. ; 23:9, s. 771-787
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: The task force of the International Conference of Frailty and Sarcopenia Research (ICFSR) developed these clinical practice guidelines to overview the current evidence-base and to provide recommendations for the identification and management of frailty in older adults.Methods: These recommendations were formed using the GRADE approach, which ranked the strength and certainty (quality) of the supporting evidence behind each recommendation. Where the evidence-base was limited or of low quality, Consensus Based Recommendations (CBRs) were formulated. The recommendations focus on the clinical and practical aspects of care for older people with frailty, and promote person-centred care.Recommendations for Screening and Assessment: The task force recommends that health practitioners case identify/screen all older adults for frailty using a validated instrument suitable for the specific setting or context (strong recommendation). Ideally, the screening instrument should exclude disability as part of the screening process. For individuals screened as positive for frailty, a more comprehensive clinical assessment should be performed to identify signs and underlying mechanisms of frailty (strong recommendation).Recommendations for Management: A comprehensive care plan for frailty should address polypharmacy (whether rational or nonrational), the management of sarcopenia, the treatable causes of weight loss, and the causes of exhaustion (depression, anaemia, hypotension, hypothyroidism, and B12 deficiency) (strong recommendation). All persons with frailty should receive social support as needed to address unmet needs and encourage adherence to a comprehensive care plan (strong recommendation). First-line therapy for the management of frailty should include a multi-component physical activity programme with a resistance-based training component (strong recommendation). Protein/caloric supplementation is recommended when weight loss or undernutrition are present (conditional recommendation). No recommendation was given for systematic additional therapies such as cognitive therapy, problem-solving therapy, vitamin D supplementation, and hormone-based treatment. Pharmacological treatment as presently available is not recommended therapy for the treatment of frailty.
  •  
6.
  • Forlenza, O. V., et al. (författare)
  • Cerebrospinal fluid biomarkers in Alzheimer's disease: Diagnostic accuracy and prediction of dementia
  • 2015
  • Ingår i: Alzheimer's & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 1:4, s. 455-463
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Guidelines for the use of cerebrospinal fluid (CSF) biomarkers in the diagnosis of Alzheimer's disease (AD) establish that each laboratory must use internally qualified cutoff values. We determined the concentrations of biomarkers that discriminate cases from controls and combinations that predict the progression to dementia in a Brazilian cohort. Methods: Concentrations of amyloid-beta peptide (Aβ1-42), total tau (T-tau), and 181Thr-phosphorylated-tau (P-tau) were determined in CSF samples from 184 older adults (68 mild cognitive impairment, 41 AD, 34 non-AD cognitive impairment, and 41 controls) by the INNO-BIA AlzBio3 assay. Results: Cutoff values discriminating AD from controls are as follows: Aβ1-42: 416.0 pg/mL (sensitivity [SE]: 83%, specificity (SP): 70%); T-tau: 76.7 pg/mL (SE: 82%, SP: 67%); P-tau: 36.1 pg/mL (SE: 83%, SP: 49%); Aβ1-42/P-tau <9.53 (SE: 88%, SP: 78%); and Aβ1-42/T-tau <4.13 (SE: 80%; SP: 80%). Combining values Aβ1-42 <416.5 pg/mL and Aβ1-42/P-tau <9.5 best predicted the conversion in 2 years (Cox regression: hazard ratio 7.24 [2.09-25.06], P =.002, SE: 74%, Sp: 73%). Discussion: Our findings are in line with most of the available evidence in this field; yet, our cutoff values are different from those derived from other laboratories. © 2015 The Authors.
  •  
7.
  • Goubet, AG, et al. (författare)
  • Prolonged SARS-CoV-2 RNA virus shedding and lymphopenia are hallmarks of COVID-19 in cancer patients with poor prognosis
  • 2021
  • Ingår i: Cell death and differentiation. - : Springer Science and Business Media LLC. - 1476-5403 .- 1350-9047. ; 28:12, s. 3297-3315
  • Tidskriftsartikel (refereegranskat)abstract
    • Patients with cancer are at higher risk of severe coronavirus infectious disease 2019 (COVID-19), but the mechanisms underlying virus–host interactions during cancer therapies remain elusive. When comparing nasopharyngeal swabs from cancer and noncancer patients for RT-qPCR cycle thresholds measuring acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in 1063 patients (58% with cancer), we found that malignant disease favors the magnitude and duration of viral RNA shedding concomitant with prolonged serum elevations of type 1 IFN that anticorrelated with anti-RBD IgG antibodies. Cancer patients with a prolonged SARS-CoV-2 RNA detection exhibited the typical immunopathology of severe COVID-19 at the early phase of infection including circulation of immature neutrophils, depletion of nonconventional monocytes, and a general lymphopenia that, however, was accompanied by a rise in plasmablasts, activated follicular T-helper cells, and non-naive Granzyme B+FasL+, EomeshighTCF-1high, PD-1+CD8+ Tc1 cells. Virus-induced lymphopenia worsened cancer-associated lymphocyte loss, and low lymphocyte counts correlated with chronic SARS-CoV-2 RNA shedding, COVID-19 severity, and a higher risk of cancer-related death in the first and second surge of the pandemic. Lymphocyte loss correlated with significant changes in metabolites from the polyamine and biliary salt pathways as well as increased blood DNA from Enterobacteriaceae and Micrococcaceae gut family members in long-term viral carriers. We surmise that cancer therapies may exacerbate the paradoxical association between lymphopenia and COVID-19-related immunopathology, and that the prevention of COVID-19-induced lymphocyte loss may reduce cancer-associated death.
  •  
8.
  • Motiño, O, et al. (författare)
  • ACBP/DBI protein neutralization confers autophagy-dependent organ protection through inhibition of cell loss, inflammation, and fibrosis
  • 2022
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 119:41, s. e2207344119-
  • Tidskriftsartikel (refereegranskat)abstract
    • Acyl-coenzyme A (CoA)–binding protein (ACBP), also known as diazepam-binding inhibitor (DBI), is an extracellular feedback regulator of autophagy. Here, we report that injection of a monoclonal antibody neutralizing ACBP/DBI (α-DBI) protects the murine liver against ischemia/reperfusion damage, intoxication by acetaminophen and concanavalin A, and nonalcoholic steatohepatitis caused by methionine/choline-deficient diet as well as against liver fibrosis induced by bile duct ligation or carbon tetrachloride. α-DBI downregulated proinflammatory and profibrotic genes and upregulated antioxidant defenses and fatty acid oxidation in the liver. The hepatoprotective effects of α-DBI were mimicked by the induction of ACBP/DBI-specific autoantibodies, an inducibleAcbp/Dbiknockout or a constitutiveGabrg2F77Imutation that abolishes ACBP/DBI binding to the GABAAreceptor. Liver-protective α-DBI effects were lost when autophagy was pharmacologically blocked or genetically inhibited by knockout ofAtg4b. Of note, α-DBI also reduced myocardium infarction and lung fibrosis, supporting the contention that it mediates broad organ-protective effects against multiple insults.
  •  
9.
  • Motino, O, et al. (författare)
  • ACBP/DBI protein neutralization confers autophagy-dependent organ protection through inhibition of cell loss, inflammation, and fibrosis
  • 2022
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 119:41, s. e2207344119-
  • Tidskriftsartikel (refereegranskat)abstract
    • Acyl-coenzyme A (CoA)–binding protein (ACBP), also known as diazepam-binding inhibitor (DBI), is an extracellular feedback regulator of autophagy. Here, we report that injection of a monoclonal antibody neutralizing ACBP/DBI (α-DBI) protects the murine liver against ischemia/reperfusion damage, intoxication by acetaminophen and concanavalin A, and nonalcoholic steatohepatitis caused by methionine/choline-deficient diet as well as against liver fibrosis induced by bile duct ligation or carbon tetrachloride. α-DBI downregulated proinflammatory and profibrotic genes and upregulated antioxidant defenses and fatty acid oxidation in the liver. The hepatoprotective effects of α-DBI were mimicked by the induction of ACBP/DBI-specific autoantibodies, an inducibleAcbp/Dbiknockout or a constitutiveGabrg2F77Imutation that abolishes ACBP/DBI binding to the GABAAreceptor. Liver-protective α-DBI effects were lost when autophagy was pharmacologically blocked or genetically inhibited by knockout ofAtg4b. Of note, α-DBI also reduced myocardium infarction and lung fibrosis, supporting the contention that it mediates broad organ-protective effects against multiple insults.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy