SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Arce Maximiliano) "

Sökning: WFRF:(Arce Maximiliano)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arce, Maximiliano, et al. (författare)
  • Coagulation Factor Xa Promotes Solid Tumor Growth, Experimental Metastasis and Endothelial Cell Activation
  • 2019
  • Ingår i: Cancers. - : MDPI. - 2072-6694. ; 11:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Hypercoagulable state is linked to cancer progression; however, the precise role of the coagulation cascade is poorly described. Herein, we examined the contribution of a hypercoagulative state through the administration of intravenous Coagulation Factor Xa (FXa), on the growth of solid human tumors and the experimental metastasis of the B16F10 melanoma in mouse models. FXa increased solid tumor volume and lung, liver, kidney and lymph node metastasis of tail-vein injected B16F10 cells. Concentrating on the metastasis model, upon coadministration of the anticoagulant Dalteparin, lung metastasis was significantly reduced, and no metastasis was observed in other organs. FXa did not directly alter proliferation, migration or invasion of cancer cells in vitro. Alternatively, FXa upon endothelial cells promoted cytoskeleton contraction, disrupted membrane VE-Cadherin pattern, heightened endothelial-hyperpermeability, increased inflammatory adhesion molecules and enhanced B16F10 adhesion under flow conditions. Microarray analysis of endothelial cells treated with FXa demonstrated elevated expression of inflammatory transcripts. Accordingly, FXa treatment increased immune cell infiltration in mouse lungs, an effect reduced by dalteparin. Taken together, our results suggest that FXa increases B16F10 metastasis via endothelial cell activation and enhanced cancer cell-endothelium adhesion advocating that the coagulation system is not merely a bystander in the process of cancer metastasis.
  •  
2.
  • Globisch, Maria Ascencion, et al. (författare)
  • Dysregulated Hemostasis and Immunothrombosis in Cerebral Cavernous Malformations
  • 2022
  • Ingår i: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 23:20
  • Forskningsöversikt (refereegranskat)abstract
    • Cerebral cavernous malformation (CCM) is a neurovascular disease that affects 0.5% of the general population. For a long time, CCM research focused on genetic mutations, endothelial junctions and proliferation, but recently, transcriptome and proteome studies have revealed that the hemostatic system and neuroinflammation play a crucial role in the development and severity of cavernomas, with some of these publications coming from our group. The aim of this review is to give an overview of the latest molecular insights into the interaction between CCM-deficient endothelial cells with blood components and the neurovascular unit. Specifically, we underscore how endothelial dysfunction can result in dysregulated hemostasis, bleeding, hypoxia and neurological symptoms. We conducted a thorough review of the literature and found a field that is increasingly poised to regard CCM as a hemostatic disease, which may have implications for therapy.
  •  
3.
  • Globisch, Maria A., et al. (författare)
  • Immunothrombosis and vascular heterogeneity in cerebral cavernous malformation
  • 2022
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 140:20, s. 2154-2169
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebral cavernous malformation (CCM) is a neurovascular disease that results in various neurological symptoms. Thrombi have been reported in surgically resected CCM patient biopsies, but the molecular signatures of these thrombi remain elusive. Here, we investigated the kinetics of thrombi formation in CCM and how thrombi affect the vasculature and contribute to cerebral hypoxia. We used RNA sequencing to investigate the transcriptome of mouse brain endothelial cells with an inducible endothelial-specific Ccm3 knock-out (Ccm3-iECKO). We found that Ccm3-deficient brain endothelial cells had a higher expression of genes related to the coagulation cascade and hypoxia when compared with wild-type brain endothelial cells. Immunofluorescent assays identified key molecular signatures of thrombi such as fibrin, von Willebrand factor, and activated platelets in Ccm3-iECKO mice and human CCM biopsies. Notably, we identified polyhedrocytes in Ccm3-iECKO mice and human CCM biopsies and report it for the first time. We also found that the parenchyma surrounding CCM lesions is hypoxic and that more thrombi correlate with higher levels of hypoxia. We created an in vitro model to study CCM pathology and found that human brain endothelial cells deficient for CCM3 expressed elevated levels of plasminogen activator inhibitor-1 and had a redistribution of von Willebrand factor. With transcriptomics, comprehensive imaging, and an in vitro CCM preclinical model, this study provides experimental evidence that genes and proteins related to the coagulation cascade affect the brain vasculature and promote neurological side effects such as hypoxia in CCMs. This study supports the concept that antithrombotic therapy may be beneficial for patients with CCM.
  •  
4.
  • Oldenburg, Joppe, et al. (författare)
  • Propranolol Reduces the Development of Lesions and Rescues Barrier Function in Cerebral Cavernous Malformations : A Preclinical Study
  • 2021
  • Ingår i: Stroke. - : Lippincott Williams & Wilkins. - 0039-2499 .- 1524-4628. ; 52:4, s. 1418-1427
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Purpose: Cerebral cavernous malformations (CCM) present as mulberry-like malformations of the microvasculature of the central nervous system. Current medical treatment of CCM lesions is limited to surgical removal of the vascular malformations. It is, therefore, important to identify therapeutic drug treatments for patients with CCM. Propranolol has shown great benefit in the treatment of infantile hemangioma. In addition, patients with CCM who receive propranolol have demonstrated a reduction of their lesions. Our investigation set out to provide preclinical data to support propranolol as a therapeutic treatment.Methods: An inducible endothelial-specific Ccm3 knockout murine model (CCM3(iECKO)) was used, with assessment of lesion quantity and size following oral treatment with propranolol. Scanning and transmission electron microscopy were used to characterize the CCM3(iECKO) lesions and the effects of propranolol on the disease. Immunofluorescent imaging was used to investigate pericyte coverage in the propranolol-treated CCM3(iECKO) mice.Results: With propranolol treatment, the lesion quantity, size, and volume decreased in both the brain and retina in the CCM3(iECKO) model. Novel characteristics of the CCM3(iECKO) lesions were discovered using electron microscopy, including plasmalemmal pits and thickening of the endothelial-pericyte basal membrane. These characteristics were absent with propranolol treatment. Pericyte coverage of the CCM3(iECKO) lesions increased after propranolol treatment, and vascular leakage was reduced.Conclusions: This study supports the concept that propranolol can be used to reduce and stabilize vascular lesions and can, therefore, be suggested as a pharmaceutical treatment for CCM.
  •  
5.
  • Rezai Jahromi, Behnam, et al. (författare)
  • Slow-Closing Clip for the Treatment of Nonsaccular Vertebrobasilar Aneurysms : A Retrospective Case Series
  • 2022
  • Ingår i: World Neurosurgery. - : Elsevier. - 1878-8750 .- 1878-8769. ; 168, s. e645-e665
  • Tidskriftsartikel (refereegranskat)abstract
    • ObjectiveVertebrobasilar artery nonsaccular aneurysms (VBANSAs) are associated with a 13% annual mortality. Revascularization and flow diversion are life-saving options in select cases; technical failures and rapid hemodynamic changes may contribute to unwanted outcomes. We describe a technique and report clinical outcomes of patients treated with an experimental slow-closing clip (SCC).MethodsAn experimental SCC was created to gradually close the parent artery of aneurysms. Clinical, radiographic, and outcome data from patients with VBANSAs who underwent experimental treatment with the SCC were retrospectively analyzed.ResultsAmong 10 patients (7 men; mean age, 49.5 years; range, 18–73 years), 6 presented with mass effect symptoms, 1 with ischemic stroke, 2 with subarachnoid hemorrhage, and 1 with hydrocephalus. Five patients underwent revascularization plus SCC application, and 5 were treated with SCC alone. The mean follow-up was 6.7 years. The expected mortality among patients with unruptured VBANSAs with previous treatment options in this period was 52.7%, whereas the observed rate was 20%. Four patients died within 12 months after treatment. Causes of death were brainstem ischemic stroke, poor-grade subarachnoid hemorrhage, poor clinical presentation, and unknown. Six patients were alive at last follow-up, with unchanged or improved modified Rankin Scale scores. Mortality was associated with posterior-projecting aneurysms and late-stage treatment.ConclusionsIn this small case series, use of SCC overcame the natural history of VBANSAs when treatment timing and aneurysm anatomy were suitable. The SCC potentially favors aneurysm thrombosis and collateral reactivation. More studies are necessary to better develop the SCC.
  •  
6.
  • Selvarajan, Ilakya, et al. (författare)
  • Coronary Artery Disease Risk Variant Dampens the Expression of CALCRL by Reducing HSF Binding to Shear Stress Responsive Enhancer in Endothelial Cells In Vitro
  • 2024
  • Ingår i: Arteriosclerosis, Thrombosis and Vascular Biology. - : Lippincott Williams & Wilkins. - 1079-5642 .- 1524-4636. ; 44:6, s. 1330-1345
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND:CALCRL (calcitonin receptor-like) protein is an important mediator of the endothelial fluid shear stress response, which is associated with the genetic risk of coronary artery disease. In this study, we functionally characterized the noncoding regulatory elements carrying coronary artery disease that risks single-nucleotide polymorphisms and studied their role in the regulation of CALCRL expression in endothelial cells.METHODS:To functionally characterize the coronary artery disease single-nucleotide polymorphisms harbored around the gene CALCRL, we applied an integrative approach encompassing statistical, transcriptional (RNA-seq), and epigenetic (ATAC-seq [transposase-accessible chromatin with sequencing], chromatin immunoprecipitation assay-quantitative polymerase chain reaction, and electromobility shift assay) analyses, alongside luciferase reporter assays, and targeted gene and enhancer perturbations (siRNA and clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9) in human aortic endothelial cells.RESULTS:We demonstrate that the regulatory element harboring rs880890 exhibits high enhancer activity and shows significant allelic bias. The A allele was favored over the G allele, particularly under shear stress conditions, mediated through alterations in the HSF1 (heat shock factor 1) motif and binding. CRISPR deletion of rs880890 enhancer resulted in downregulation of CALCRL expression, whereas HSF1 knockdown resulted in a significant decrease in rs880890-enhancer activity and CALCRL expression. A significant decrease in HSF1 binding to the enhancer region in endothelial cells was observed under disturbed flow compared with unidirectional flow. CALCRL knockdown and variant perturbation experiments indicated the role of CALCRL in mediating eNOS (endothelial nitric oxide synthase), APLN (apelin), angiopoietin, prostaglandins, and EDN1 (endothelin-1) signaling pathways leading to a decrease in cell proliferation, tube formation, and NO production.CONCLUSIONS:Overall, our results demonstrate the existence of an endothelial-specific HSF (heat shock factor)-regulated transcriptional enhancer that mediates CALCRL expression. A better understanding of CALCRL gene regulation and the role of single-nucleotide polymorphisms in the modulation of CALCRL expression could provide important steps toward understanding the genetic regulation of shear stress signaling responses.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy