SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Arey Bruce W) "

Sökning: WFRF:(Arey Bruce W)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Matthews, Bethany E., et al. (författare)
  • Micro- and Nanoscale Surface Analysis of Late Iron Age Glass from Broborg, a Vitrified Swedish Hillfort
  • 2023
  • Ingår i: Microscopy and Microanalysis. - : Oxford University Press. - 1431-9276 .- 1435-8115. ; 29:1, s. 50-68
  • Tidskriftsartikel (refereegranskat)abstract
    • Archaeological glasses with prolonged exposure to biogeochemical processes in the environment can be used to understand glass alteration, which is important for the safe disposal of vitrified nuclear waste. Samples of mafic and felsic glasses with different chemistries, formed from melting amphibolitic and granitoid rocks, were obtained from Broborg, a Swedish Iron Age hillfort. Glasses were excavated from the top of the hillfort wall and from the wall interior. A detailed microscopic, spectroscopic, and diffraction study of surficial textures and chemistries were conducted on these glasses. Felsic glass chemistry was uniform, with a smooth surface showing limited chemical alteration (<150 nm), irrespective of the position in the wall. Mafic glass was heterogeneous, with pyroxene, spinel, feldspar, and quartz crystals in the glassy matrix. Mafic glass surfaces in contact with topsoil were rougher than those within the wall and had carbon-rich material consistent with microbial colonization. Limited evidence for chemical or physical alteration of mafic glass was found; the thin melt film that coated all exposed surfaces remained intact, despite exposure to hydraulically unsaturated conditions, topsoil, and associated microbiome for over 1,500 years. This supports the assumption that aluminosilicate nuclear waste glasses will have a high chemical durability in near-surface disposal facilities.
  •  
2.
  • Plymale, Andrew E., et al. (författare)
  • Niche Partitioning of Microbial Communities at an Ancient Vitrified Hillfort : Implications for Vitrified Radioactive Waste Disposal
  • 2021
  • Ingår i: Geomicrobiology Journal. - : Taylor & Francis. - 0149-0451 .- 1521-0529. ; 38:1, s. 36-56
  • Tidskriftsartikel (refereegranskat)abstract
    • Because microbes cannot be eliminated from radioactive waste disposal facilities, the consequences of bio-colonization must be understood. At a pre-Viking era vitrified hillfort, Broborg, Sweden, anthropogenic glass has been subjected to bio-colonization for over 1,500 years. Broborg is used as a habitat analogue for disposed radioactive waste glass to inform how microbial processes might influence long-term glass durability. Electron microscopy and DNA sequencing of surficial material from the Broborg vitrified wall, adjacent soil, and general topsoil show that the ancient glass supports a niche microbial community of bacteria, fungi, and protists potentially involved in glass alteration. Communities associated with the vitrified wall are distinct and less diverse than soil communities. The vitrified niche of the wall and adjacent soil are dominated by lichens, lichen-associated microbes, and other epilithic, endolithic, and epigeic organisms. These organisms exhibit potential bio-corrosive properties, including silicate dissolution, extraction of essential elements, and secretion of geochemically reactive organic acids, that could be detrimental to glass durability. However, long-term biofilms can also possess a homeostatic function that could limit glass alteration. This study documents potential impacts that microbial colonization and niche partitioning can have on glass alteration, and subsequent release of radionuclides from a disposal facility for vitrified radioactive waste.
  •  
3.
  • Weaver, Jamie L., et al. (författare)
  • Pre‐Viking Swedish Hillfort Glass : A Prospective Long‐Term Alteration Analogue for Vitrified Nuclear Waste
  • 2018
  • Ingår i: The International Journal of Applied Glass Science (IJAGS). - : John Wiley & Sons. - 2041-1294 .- 2041-1286. ; 9:4, s. 540-554
  • Tidskriftsartikel (refereegranskat)abstract
    • Models for long‐term glass alteration are required to satisfy performance predictions of vitrified nuclear waste in various disposal scenarios. Durability parameters are usually extracted from short‐term laboratory tests, and sometimes checked with long‐term natural experiments on glasses, termed analogues. In this paper, a unique potential ancient glass analogue from Sweden is discussed. The hillfort glass found at Broborg represents a unique case study as a vitrified waste glass analogue to compare to Low Activity Waste glass to be emplaced in near surface conditions at Hanford (Washington State). Glasses at Broborg have similar and dissimilar compositions to LAW glass, allowing the testing of long‐term alteration of different glass chemistries. Additionally, the environmental history of the site is reasonably well documented. Initial investigations on previously collected samples established methodologies for handling and characterizing these artifacts by laboratory methods while preserving their alteration layers and cultural context. Evidence of possible biologically influenced glass alteration, and differential alteration in the two types of glass found at the Broborg site is presented.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy