SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Arnardottir Hildur) "

Sökning: WFRF:(Arnardottir Hildur)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Artiach, Gonzalo, et al. (författare)
  • Omega-3 Polyunsaturated Fatty Acids Decrease Aortic Valve Disease through the Resolvin E1 and ChemR23 Axis.
  • 2020
  • Ingår i: Circulation. - 0009-7322 .- 1524-4539. ; 142, s. 776-789
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Aortic valve stenosis (AVS), which is the most common valvular heart disease, causes a progressive narrowing of the aortic valve as a consequence of thickening and calcification of the aortic valve leaflets. The beneficial effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) in cardiovascular prevention have been recently demonstrated in a large randomized controlled trial. In addition, n-3 PUFA serve as the substrate for the synthesis of specialized pro-resolving mediators (SPMs), which are known by their potent beneficial anti-inflammatory, pro-resolving and tissue-modifying properties in cardiovascular disease. However, the effects of n-3 PUFA and SPMs on AVS have not yet been determined. The aim of this study was to identify the role of n-3 PUFA-derived SPMs in relation to the development of AVS. Methods: Lipidomic and transcriptomic analyses were performed in human tricuspid aortic valves. Apoe-/- mice and wire injury in C57BL/6J mice were used as models for mechanistic studies. Results: We found that n-3 PUFA incorporation into human stenotic aortic valves was higher in non-calcified regions compared with calcified regions. LC-MS-MS based lipid mediator lipidomics identified that the n-3 PUFA-derived SPM resolvin E1 (RvE1) was dysregulated in calcified regions and acted as a calcification inhibitor. Apoe-/- mice expressing the Caenorhabditis elegans Fat-1 transgene (Fat-1tgxApoe-/-), which enables the endogenous synthesis of n-3 PUFA, increased valvular n-3 PUFA content, exhibited reduced valve calcification, lower aortic valve leaflet area, increased M2 macrophage polarization and improved echocardiographic parameters. Finally, abrogation of the RvE1 receptor ChemR23 enhanced disease progression, and the beneficial effects of Fat-1tg were abolished in the absence of ChemR23. Conclusions: n-3 PUFA-derived RvE1 and its receptor ChemR23 emerge as a key axis in the inhibition of AVS progression, and may represent a novel potential therapeutic opportunity to be evaluated in patients with AVS.
  •  
2.
  • Skenteris, Nikolaos T, et al. (författare)
  • Osteomodulin attenuates smooth muscle cell osteogenic transition in vascular calcification
  • 2022
  • Ingår i: Clinical and Translational Medicine. - : Wiley. - 2001-1326. ; 12:2, s. 1-22
  • Tidskriftsartikel (refereegranskat)abstract
    • RATIONALE: Vascular calcification is a prominent feature of late-stage diabetes, renal and cardiovascular disease (CVD), and has been linked to adverse events. Recent studies in patients reported that plasma levels of osteomodulin (OMD), a proteoglycan involved in bone mineralisation, associate with diabetes and CVD. We hypothesised that OMD could be implicated in these diseases via vascular calcification as a common underlying factor and aimed to investigate its role in this context.METHODS AND RESULTS: In patients with chronic kidney disease, plasma OMD levels correlated with markers of inflammation and bone turnover, with the protein present in calcified arterial media. Plasma OMD also associated with cardiac calcification and the protein was detected in calcified valve leaflets by immunohistochemistry. In patients with carotid atherosclerosis, circulating OMD was increased in association with plaque calcification as assessed by computed tomography. Transcriptomic and proteomic data showed that OMD was upregulated in atherosclerotic compared to control arteries, particularly in calcified plaques, where OMD expression correlated positively with markers of smooth muscle cells (SMCs), osteoblasts and glycoproteins. Immunostaining confirmed that OMD was abundantly present in calcified plaques, localised to extracellular matrix and regions rich in α-SMA+ cells. In vivo, OMD was enriched in SMCs around calcified nodules in aortic media of nephrectomised rats and in plaques from ApoE-/- mice on warfarin. In vitro experiments revealed that OMD mRNA was upregulated in SMCs stimulated with IFNγ, BMP2, TGFβ1, phosphate and β-glycerophosphate, and by administration of recombinant human OMD protein (rhOMD). Mechanistically, addition of rhOMD repressed the calcification process of SMCs treated with phosphate by maintaining their contractile phenotype along with enriched matrix organisation, thereby attenuating SMC osteoblastic transformation. Mechanistically, the role of OMD is exerted likely through its link with SMAD3 and TGFB1 signalling, and interplay with BMP2 in vascular tissues.CONCLUSION: We report a consistent association of both circulating and tissue OMD levels with cardiovascular calcification, highlighting the potential of OMD as a clinical biomarker. OMD was localised in medial and intimal α-SMA+ regions of calcified cardiovascular tissues, induced by pro-inflammatory and pro-osteogenic stimuli, while the presence of OMD in extracellular environment attenuated SMC calcification.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy