SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Asaadi Shirin) "

Sökning: WFRF:(Asaadi Shirin)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Asaadi, Shirin, et al. (författare)
  • Structural analysis of Ioncell-F fibres from birch wood
  • 2018
  • Ingår i: Carbohydrate Polymers. - : Elsevier BV. - 0144-8617. ; 181, s. 893-901
  • Tidskriftsartikel (refereegranskat)abstract
    • Quite recently, the Ioncell-F process, a novel and promising Lyocell fibre process, has been developed. The ionic liquid 1,5-diazabicyclo[4.3.0]non-5-enium acetate ([DBNH]OAc) utilized in this process, was identified as an excellent cellulose solvent for dry-jet wet fibre spinning. Fibres spun from cellulose-[DBNH]OAc solution have shown excellent mechanical properties. Herein, various structural features of these ionic liquid-based fibres were analyzed and correlated with their mechanical properties. The highest slope of tenacity increase of these Ioncell-F fibres (from birch wood) observed at low draw ratios (DRs), while a continuous but slower increase occurs to partly very high draws. The improvements in the mechanical properties do not seem to correlate with changes in the crystallite size or the crystalline orientation based on wide-angle X-ray scattering (WAXS) results. More significant differences were seen for the sample crystallinity, the amorphous orientation (measured by birefringence), the orientation of the voids, the specific surface (measured by small-angle X-ray scattering (SAXS)), and the sorption/desorption properties of the fibres.
  •  
2.
  • Colson, Jérôme, et al. (författare)
  • Adhesion properties of regenerated lignocellulosic fibres towards poly(lactic acid) microspheres assessed by colloidal probe technique
  • 2018
  • Ingår i: Journal of Colloid and Interface Science. - : Elsevier BV. - 1095-7103 .- 0021-9797. ; 532, s. 819-829
  • Tidskriftsartikel (refereegranskat)abstract
    • In the field of polymer reinforcement, it is important to understand the interactions involved between the polymer matrix and the reinforcing component. This paper is a contribution to the fundamental understanding of the adhesion mechanisms involved in natural fibre reinforced composites. We report on the use of the colloidal probe technique for the assessment of the adhesion behaviour between poly(lactic acid) microspheres and embedded cross-sections of regenerated lignocellulosic fibres. These fibres consisted of tailored mixtures of cellulose, lignin and xylan, the amount of which was determined beforehand. The influence of the chemical composition of the fibres on the adhesion behaviour was studied in ambient air and in dry atmosphere. In ambient air, capillary forces resulted in larger adhesion between the sphere and the fibres. Changing the ambient medium to a dry nitrogen atmosphere allowed reducing the capillary forces, leading to a drop in the adhesion forces. Differences between fibres of distinct chemical compositions could be measured only on freshly cut surfaces. Moreover, the surface energy of the fibres was assessed by inverse gas chromatography. Compared to fibres containing solely cellulose, the presence of lignin and/or hemicellulose led to higher adhesion and lower surface energy, suggesting that these chemicals could serve as natural coupling agents between hydrophobic and hydrophilic components.
  •  
3.
  • Gubitosi, Marta, et al. (författare)
  • The colloidal structure of a cellulose fiber
  • 2021
  • Ingår i: Cellulose. - : Springer Science and Business Media LLC. - 0969-0239 .- 1572-882X. ; 28:5, s. 2779-2789
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract: We present a small angle X-ray scattering (SAXS) study of the colloidal structure of regenerated cellulose fibers, air-gap spun from an ionic liquid solution. Based on the data, and a different interpretation of the anisotropic SAXS pattern, we propose a slightly different colloidal structure of the fibers, than what is commonly assumed for regenerated cellulose fibers. Fibers with two different degrees of orientation, as produced by different draw ratios, DR = 2 and 15, respectively, are analyzed. The 2D SAXS pattern is highly anisotropic with striking cross-like pattern, having scattering predominantly perpendicular and parallel to the fiber axis. This cross-like pattern suggest a colloidal structure with oriented crystalline lamellae of ca. 10 nm thickness, embedded within a continuous matrix of amorphous cellulose. The lamellae are oriented with their normal parallel with the fiber axis. Complementary wide angle X-ray diffraction data confirm that the lamellae normal direction corresponds to the cellulose chain direction (c-direction) in the monoclinic cellulose crystal (Cellulose II). Graphic abstract: [Figure not available: see fulltext.].
  •  
4.
  • Gusenbauer, Claudia, et al. (författare)
  • Differences in surface chemistry of regenerated lignocellulose fibers determined by chemically sensitive scanning probe microscopy
  • 2020
  • Ingår i: International Journal of Biological Macromolecules. - : Elsevier BV. - 0141-8130 .- 1879-0003. ; 165, s. 2520-2527
  • Tidskriftsartikel (refereegranskat)abstract
    • Tuning the composition of regenerated lignocellulosic fibers in the production process enables targeting of specific material properties. In composite materials, such properties could be manipulated by controlled heterogeneous distribution of chemical components of regenerated fibers. This attribute requires a visualization method to show their inherent chemical characteristics. We compared complementary microscopic techniques to analyze the surface chemistry of four differently tuned regenerated lignocellulosic fibers. Adhesion properties were visualized with chemical force microscopy and showed contrasts towards hydrophilic and hydrophobic atomic force microscopy tips. Fibers containing xylan showed heterogeneous adhesion properties within the fiber structure towards hydrophilic tips. Additionally, peak force infrared microscopy mapped spectroscopic contrasts with nanometer resolution and provided point infrared spectra, which were consistent to classical infrared microscopy data. With this setup, infrared signals with a spatial resolution below 20 nm reveal chemical gradients in specific fiber types.
  •  
5.
  • Nypelö, Tiina, 1982, et al. (författare)
  • Conversion of wood-biopolymers into macrofibers with tunable surface energy via dry-jet wet-spinning
  • 2018
  • Ingår i: Cellulose. - : Springer Science and Business Media LLC. - 0969-0239 .- 1572-882X. ; 25:9, s. 5297-5307
  • Tidskriftsartikel (refereegranskat)abstract
    • Surface chemistry of regenerated all-wood-biopolymer fibers that are fine-tuned by composition of cellulose, lignin and xylan is elucidated via revealing their surface energy and adhesion. Xylan additive resulted in thin fibers and decreased surface energy of the fiber outer surfaces compared to the cellulose fibers, or when lignin was used as an additive. Lignin increased the water contact angle on the fiber surface and decreased adhesion force between the fiber cross section and a hydrophilic probe, confirming that lignin reduced fiber surface affinity to water. Lignin and xylan enabled fiber decoration with charged groups that could tune the adhesion force between the fiber and an AFM probe. The fibers swelled in water: the neat cellulose fiber cross section area increased 9.2%, the fibers with lignin as the main additive 9.1%, with xylan 6.8%, and the 3-component fibers 5.5%. This indicates that dimensional stability in elevated humidity is improved in the case of 3-component fiber compared to 2-component fibers. Xylan or lignin as an additive neither improved strength nor elongation at break. However, improved deformability was achieved when all the three components were incorporated into the fibers. Graphical Abstract: [Figure not available: see fulltext.].
  •  
6.
  •  
7.
  • Persson, Anders, 1963-, et al. (författare)
  • Ioncell-F: ionic liquid-based cellulosic textile fibers as an alternative to viscose and Lyocell
  • 2016
  • Ingår i: Textile research journal. - : Sage Publications. - 0040-5175 .- 1746-7748. ; 86:5, s. 543-552
  • Tidskriftsartikel (refereegranskat)abstract
    • Ioncell-F, a recently developed process for the production of man-made cellulosic fibers from ionic liquid solutions by dry-jet wet spinning, is presented as an alternative to the viscose and N-methylmorpholine N-oxide (NMMO)-based Lyocell processes. The ionic liquid 1,5-diazabicyclo[4.3.0]non-5-ene acetate was identified as excellent cellulose solvent allowing for a rapid dissolution at moderate temperatures and subsequent shaping into continuous filaments. The highly oriented cellulose fibers obtained upon coagulation in cold water exhibited superior tenacity, exceeding that of commercial viscose and NMMO-based Lyocell (Tencel) fibers. The respective staple fibers, which have been converted into two-ply yarn by ring spinning technology, presented very high tenacity. Furthermore, the Ioncell yarn showed very good behavior during the knitting and weaving processes, reflecting the quality of the produced yarn. The successfully knitted and woven garments from the Ioncell yarn demonstrate the suitability of this particular ionic liquid for the production of man-made cellulosic fibers and thus give a promising outlook for the future of the Ioncell-F process.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy