SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Atanassov A) "

Sökning: WFRF:(Atanassov A)

  • Resultat 1-17 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bonekamp, N. A., et al. (författare)
  • Small-molecule inhibitors of human mitochondrial DNA transcription
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 588, s. 712-716
  • Tidskriftsartikel (refereegranskat)abstract
    • Altered expression of mitochondrial DNA (mtDNA) occurs in ageing and a range of human pathologies (for example, inborn errors of metabolism, neurodegeneration and cancer). Here we describe first-in-class specific inhibitors of mitochondrial transcription (IMTs) that target the human mitochondrial RNA polymerase (POLRMT), which is essential for biogenesis of the oxidative phosphorylation (OXPHOS) system(1-6). The IMTs efficiently impair mtDNA transcription in a reconstituted recombinant system and cause a dose-dependent inhibition of mtDNA expression and OXPHOS in cell lines. To verify the cellular target, we performed exome sequencing of mutagenized cells and identified a cluster of amino acid substitutions in POLRMT that cause resistance to IMTs. We obtained a cryo-electron microscopy (cryo-EM) structure of POLRMT bound to an IMT, which further defined the allosteric binding site near the active centre cleft of POLRMT. The growth of cancer cells and the persistence of therapy-resistant cancer stem cells has previously been reported to depend on OXPHOS7-17, and we therefore investigated whether IMTs have anti-tumour effects. Four weeks of oral treatment with an IMT is well-tolerated in mice and does not cause OXPHOS dysfunction or toxicity in normal tissues, despite inducing a strong anti-tumour response in xenografts of human cancer cells. In summary, IMTs provide a potent and specific chemical biology tool to study the role of mtDNA expression in physiology and disease. Inhibitors of mitochondrial transcription that target human mitochondrial RNA polymerase provide a chemical biology tool for studying the role of mitochondrial DNA expression in a wide range of pathologies.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Mourier, A, et al. (författare)
  • Mitofusin 2 is required to maintain mitochondrial coenzyme Q levels
  • 2015
  • Ingår i: The Journal of cell biology. - : Rockefeller University Press. - 1540-8140 .- 0021-9525. ; 208:4, s. 429-442
  • Tidskriftsartikel (refereegranskat)abstract
    • Mitochondria form a dynamic network within the cell as a result of balanced fusion and fission. Despite the established role of mitofusins (MFN1 and MFN2) in mitochondrial fusion, only MFN2 has been associated with metabolic and neurodegenerative diseases, which suggests that MFN2 is needed to maintain mitochondrial energy metabolism. The molecular basis for the mitochondrial dysfunction encountered in the absence of MFN2 is not understood. Here we show that loss of MFN2 leads to impaired mitochondrial respiration and reduced ATP production, and that this defective oxidative phosphorylation process unexpectedly originates from a depletion of the mitochondrial coenzyme Q pool. Our study unravels an unexpected and novel role for MFN2 in maintenance of the terpenoid biosynthesis pathway, which is necessary for mitochondrial coenzyme Q biosynthesis. The reduced respiratory chain function in cells lacking MFN2 can be partially rescued by coenzyme Q10 supplementation, which suggests a possible therapeutic strategy for patients with diseases caused by mutations in the Mfn2 gene.
  •  
6.
  •  
7.
  •  
8.
  • Atanassov, A, et al. (författare)
  • Grazing incident asymmetric X-ray diffraction of beta-FeSi2 layers, produced by ion beam synthesis
  • 2004
  • Ingår i: Vacuum. - : Elsevier BV. - 0042-207X .- 1879-2715. ; 76:02-Mar, s. 277-280
  • Tidskriftsartikel (refereegranskat)abstract
    • The crystal structure of beta-FeSi2 phase, prepared by ion beam synthesis (IBS) method, followed by rapid thermal annealing (RTA) is investigated by grazing incident asymmetric X-ray diffraction (GIAXRD). The X-ray spectra, obtained at different grazing angles, indicated that the beta-FeSi2 phase is formed in the whole implantation range. From the comparison of the reflections intensities ratios, it is found that in the metal-deficient regions, where the beta-FeSi2 phase is present in the form of precipitates, the crystallites orientation is influenced by the one of the silicon substrates, while the orientation in the metal-rich region is different and depends on the annealing temperature. (C) 2004 Elsevier Ltd. All rights reserved.
  •  
9.
  • Bonekamp, NA, et al. (författare)
  • High levels of TFAM repress mammalian mitochondrial DNA transcription in vivo
  • 2021
  • Ingår i: Life science alliance. - : Life Science Alliance, LLC. - 2575-1077. ; 4:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Mitochondrial transcription factor A (TFAM) is compacting mitochondrial DNA (dmtDNA) into nucleoids and directly controls mtDNA copy number. Here, we show that the TFAM-to-mtDNA ratio is critical for maintaining normal mtDNA expression in different mouse tissues. Moderately increased TFAM protein levels increase mtDNA copy number but a normal TFAM-to-mtDNA ratio is maintained resulting in unaltered mtDNA expression and normal whole animal metabolism. Mice ubiquitously expressing very high TFAM levels develop pathology leading to deficient oxidative phosphorylation (OXPHOS) and early postnatal lethality. The TFAM-to-mtDNA ratio varies widely between tissues in these mice and is very high in skeletal muscle leading to strong repression of mtDNA expression and OXPHOS deficiency. In the heart, increased mtDNA copy number results in a near normal TFAM-to-mtDNA ratio and maintained OXPHOS capacity. In liver, induction of LONP1 protease and mitochondrial RNA polymerase expression counteracts the silencing effect of high TFAM levels. TFAM thus acts as a general repressor of mtDNA expression and this effect can be counterbalanced by tissue-specific expression of regulatory factors.
  •  
10.
  •  
11.
  • Jiang, M., et al. (författare)
  • The mitochondrial single-stranded DNA binding protein is essential for initiation of mtDNA replication
  • 2021
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 7:27
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a role for the mitochondrial single-stranded DNA binding protein (mtSSB) in regulating mitochondrial DNA (mtDNA) replication initiation in mammalian mitochondria. Transcription from the light-strand promoter (LSP) is required both for gene expression and for generating the RNA primers needed for initiation of mtDNA synthesis. In the absence of mtSSB, transcription from LSP is strongly up-regulated, but no replication primers are formed. Using deep sequencing in a mouse knockout model and biochemical reconstitution experiments with pure proteins, we find that mtSSB is necessary to restrict transcription initiation to optimize RNA primer formation at both origins of mtDNA replication. Last, we show that human pathological versions of mtSSB causing severe mitochondrial disease cannot efficiently support primer formation and initiation of mtDNA replication. © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science.
  •  
12.
  •  
13.
  • Kruger, A, et al. (författare)
  • Human mitochondria require mtRF1 for translation termination at non-canonical stop codons
  • 2023
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 14:1, s. 30-
  • Tidskriftsartikel (refereegranskat)abstract
    • The mitochondrial translation machinery highly diverged from its bacterial counterpart. This includes deviation from the universal genetic code, with AGA and AGG codons lacking cognate tRNAs in human mitochondria. The locations of these codons at the end of COX1 and ND6 open reading frames, respectively, suggest they might function as stop codons. However, while the canonical stop codons UAA and UAG are known to be recognized by mtRF1a, the release mechanism at AGA and AGG codons remains a debated issue. Here, we show that upon the loss of another member of the mitochondrial release factor family, mtRF1, mitoribosomes accumulate specifically at AGA and AGG codons. Stalling of mitoribosomes alters COX1 transcript and protein levels, but not ND6 synthesis. In addition, using an in vitro reconstituted mitochondrial translation system, we demonstrate the specific peptide release activity of mtRF1 at the AGA and AGG codons. Together, our results reveal the role of mtRF1 in translation termination at non-canonical stop codons in mitochondria.
  •  
14.
  • Matic, S., et al. (författare)
  • Mice lacking the mitochondrial exonuclease MGME1 accumulate mtDNA deletions without developing progeria
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Replication of mammalian mitochondrial DNA (mtDNA) is an essential process that requires high fidelity and control at multiple levels to ensure proper mitochondrial function. Mutations in the mitochondrial genome maintenance exonuclease 1 (MGME1) gene were recently reported in mitochondrial disease patients. Here, to study disease pathophysiology, we generated Mgme1 knockout mice and report that homozygous knockouts develop depletion and multiple deletions of mtDNA. The mtDNA replication stalling phenotypes vary dramatically in different tissues of Mgme1 knockout mice. Mice with MGME1 deficiency accumulate a long linear subgenomic mtDNA species, similar to the one found in mtDNA mutator mice, but do not develop progeria. This finding resolves a long-standing debate by showing that point mutations of mtDNA are the main cause of progeria in mtDNA mutator mice. We also propose a role for MGME1 in the regulation of replication and transcription termination at the end of the control region of mtDNA.
  •  
15.
  • Schober, Florian A., et al. (författare)
  • The one-carbon pool controls mitochondrial energy metabolism via complex I and iron-sulfur clusters
  • 2021
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 7:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Induction of the one-carbon cycle is an early hallmark of mitochondrial dysfunction and cancer metabolism. Vital intermediary steps are localized to mitochondria, but it remains unclear how one-carbon availability connects to mitochondrial function. Here, we show that the one-carbon metabolite and methyl group donor S-adenosylmethionine (SAM) is pivotal for energy metabolism. A gradual decline in mitochondrial SAM (mitoSAM) causes hierarchical defects in fly and mouse, comprising loss of mitoSAM-dependent metabolites and impaired assembly of the oxidative phosphorylation system. Complex I stability and iron-sulfur cluster biosynthesis are directly controlled by mitoSAM levels, while other protein targets are predominantly methylated outside of the organelle before import. The mitoSAM pool follows its cytosolic production, establishing mitochondria as responsive receivers of one-carbon units. Thus, we demonstrate that cellular methylation potential is required for energy metabolism, with direct relevance for pathophysiology, aging, and cancer.
  •  
16.
  • Schober, FA, et al. (författare)
  • Quantitative Proteomics in Drosophila with Holidic Stable-Isotope Labeling of Amino Acids in Fruit Flies (SILAF)
  • 2021
  • Ingår i: Methods in molecular biology (Clifton, N.J.). - New York, NY : Springer US. - 1940-6029. ; 2192, s. 75-87
  • Tidskriftsartikel (refereegranskat)abstract
    • Protein-focused research has been challenging in Drosophila melanogaster due to few specific antibodies for Western blotting and the lack of effective labeling methods for quantitative proteomics. Herein, we describe the preparation of a holidic medium that allows stable-isotope labeling of amino acids in fruit flies (SILAF). Furthermore, in this chapter, we provide a protocol for mitochondrial enrichments from Drosophila larvae and flies together with a procedure to generate high-quality peptides for further analysis by mass spectrometry. Samples obtained following this protocol can be used for various functional studies such as comprehensive proteome profiling or quantitative analysis of posttranslational modifications upon enrichment. SILAF is based on standard fly routines in a basic wet lab environment and provides a flexible and cost-effective tool for quantitative protein expression analysis.
  •  
17.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-17 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy