SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Atlas E.) "

Search: WFRF:(Atlas E.)

  • Result 1-19 of 19
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • 2019
  • Journal article (peer-reviewed)
  •  
2.
  • Lambert, A., et al. (author)
  • Validation of the Aura Microwave Limb Sounder middle atmosphere water vapor and nitrous oxide measurements
  • 2007
  • In: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 112:D24
  • Journal article (peer-reviewed)abstract
    • The quality of the version 2.2 (v2.2) middle atmosphere water vapor and nitrous oxide measurements from the Microwave Limb Sounder (MLS) on the Earth Observing System (EOS) Aura satellite is assessed. The impacts of the various sources of systematic error are estimated by a comprehensive set of retrieval simulations. Comparisons with correlative data sets from ground-based, balloon and satellite platforms operating in the UV/ visible, infrared and microwave regions of the spectrum are performed. Precision estimates are also validated, and recommendations are given on the data usage. The v2.2 H 2 O data have been improved over v1.5 by providing higher vertical resolution in the lower stratosphere and better precision above the stratopause. The single-profile precision is ∼0.2-0.3 ppmv (4-9%), and the vertical resolution is ∼3-4 km in the stratosphere. The precision and vertical resolution become worse with increasing height above the stratopause. Over the pressure range 0.1-0.01 hPa the precision degrades from 0.4 to 1.1 ppmv (6-34%), and the vertical resolution degrades to ∼12-16 km. The accuracy is estimated to be 0.2-0.5 ppmv (4-11%) for the pressure range 68-0.01 hPa. The scientifically useful range of the H 2 O data is from 316 to 0.002 hPa, although only the 82-0.002 hPa pressure range is validated here. Substantial improvement has been achieved in the v2.2 N 2 O data over v1.5 by reducing a significant low bias in the stratosphere and eliminating unrealistically high biased mixing ratios in the polar regions. The single-profile precision is ∼13-25 ppbv (7-38%), the vertical resolution is ∼4-6 km and the accuracy is estimated to be 3-70 ppbv (9-25%) for the pressure range 100-4.6 hPa. The scientifically useful range of the N 2 O data is from 100 to 1 hPa. Copyright 2007 by the American Geophysical Union.
  •  
3.
  • Ziska, F., et al. (author)
  • Global sea-to-air flux climatology for bromoform, dibromomethane and methyl iodide
  • 2013
  • In: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 13:17, s. 8915-8934
  • Journal article (peer-reviewed)abstract
    • Volatile halogenated organic compounds containing bromine and iodine, which are naturally produced in the ocean, are involved in ozone depletion in both the troposphere and stratosphere. Three prominent compounds transporting large amounts of marine halogens into the atmosphere are bromoform (CHBr3), dibromomethane (CH2Br2) and methyl iodide (CH3I). The input of marine halogens to the stratosphere has been estimated from observations and modelling studies using low-resolution oceanic emission scenarios derived from top-down approaches. In order to improve emission inventory estimates, we calculate data-based high resolution global sea-to-air flux estimates of these compounds from surface observations within the HalOcAt (Halocarbons in the Ocean and Atmosphere) database (https://halocat.geomar.de/). Global maps of marine and atmospheric surface concentrations are derived from the data which are divided into coastal, shelf and open ocean regions. Considering physical and biogeochemical characteristics of ocean and atmosphere, the open ocean water and atmosphere data are classified into 21 regions. The available data are interpolated onto a 1 degrees x 1 degrees grid while missing grid values are interpolated with latitudinal and longitudinal dependent regression techniques reflecting the compounds' distributions. With the generated surface concentration climatologies for the ocean and atmosphere, global sea-to-air concentration gradients and sea-to-air fluxes are calculated. Based on these calculations we estimate a total global flux of 1.5/2.5 Gmol Br yr(-1) for CHBr3, 0.78/0.98 Gmol Br yr(-1) for CH2Br2 and 1.24/1.45 Gmol Br yr(-1) for CH3I (robust fit/ordinary least squares regression techniques). Contrary to recent studies, negative fluxes occur in each sea-to-air flux climatology, mainly in the Arctic and Antarctic regions. "Hot spots" for global polybromomethane emissions are located in the equatorial region, whereas methyl iodide emissions are enhanced in the subtropical gyre regions. Inter-annual and seasonal variation is contained within our flux calculations for all three compounds. Compared to earlier studies, our global fluxes are at the lower end of estimates, especially for bromoform. An under-representation of coastal emissions and of extreme events in our estimate might explain the mismatch between our bottom-up emission estimate and top-down approaches.
  •  
4.
  • Garg, S, et al. (author)
  • Self-monitoring of blood glucose
  • 2010
  • In: International journal of clinical practice. Supplement. - : Hindawi Limited. - 1368-504X .- 1368-5031 .- 1742-1241. ; 64:166, s. 1-69
  • Journal article (peer-reviewed)
  •  
5.
  • Kim, S. W., et al. (author)
  • Evaluations of NOx and highly reactive VOC emission inventories in Texas and their implications for ozone plume simulations during the Texas Air Quality Study 2006
  • 2011
  • In: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 11:22, s. 11361-11386
  • Journal article (peer-reviewed)abstract
    • Satellite and aircraft observations made during the 2006 Texas Air Quality Study (TexAQS) detected strong urban, industrial and power plant plumes in Texas. We simulated these plumes using the Weather Research and Forecasting-Chemistry (WRF-Chem) model with input from the US EPA's 2005 National Emission Inventory (NEI-2005), in order to evaluate emissions of nitrogen oxides (NOx = NO + NO2) and volatile organic compounds (VOCs) in the cities of Houston and Dallas-FortWorth. We compared the model results with satellite retrievals of tropospheric nitrogen dioxide (NO2) columns and airborne in-situ observations of several trace gases including NOx and a number of VOCs. The model and satellite NO2 columns agree well for regions with large power plants and for urban areas that are dominated by mobile sources, such as Dallas. How-ever, in Houston, where significant mobile, industrial, and inport marine vessel sources contribute to NOx emissions, the model NO2 columns are approximately 50 %-70 % higher than the satellite columns. Similar conclusions are drawn from comparisons of the model results with the TexAQS 2006 aircraft observations in Dallas and Houston. For Dallas plumes, the model-simulated NO2 showed good agreement with the aircraft observations. In contrast, the model-simulated NO2 is similar to 60 % higher than the aircraft observations in the Houston plumes. Further analysis indicates that the NEI-2005 NOx emissions over the Houston Ship Channel area are overestimated while the urban Houston NOx emissions are reasonably represented. The comparisons of model and aircraft observations confirm that highly reactive VOC emissions originating from industrial sources in Houston are underestimated in NEI-2005. The update of VOC emissions based on Solar Occultation Flux measurements during the field campaign leads to improved model simulations of ethylene, propylene, and formaldehyde. Reducing NOx emissions in the Houston Ship Channel and increasing highly reactive VOC emissions from the point sources in Houston improve the model's capability of simulating ozone (O-3) plumes observed by the NOAA WP-3D aircraft, although the deficiencies in the model O-3 simulations indicate that many challenges remain for a full understanding of the O-3 formation mechanisms in Houston.
  •  
6.
  • Nakanishi, Tomoko, et al. (author)
  • Age-dependent impact of the major common genetic risk factor for COVID-19 on severity and mortality
  • 2021
  • In: Journal of Clinical Investigation. - : American Society For Clinical Investigation. - 0021-9738 .- 1558-8238. ; 131:23
  • Journal article (peer-reviewed)abstract
    • BACKGROUND. There is considerable variability in COVID-19 outcomes among younger adults, and some of this variation may be due to genetic predisposition. METHODS. We combined individual level data from 13,888 COVID-19 patients (n = 7185 hospitalized) from 17 cohorts in 9 countries to assess the association of the major common COVID-19 genetic risk factor (chromosome 3 locus tagged by rs10490770) with mortality, COVID-19-related complications, and laboratory values. We next performed metaanalyses using FinnGen and the Columbia University COVID-19 Biobank. RESULTS. We found that rs10490770 risk allele carriers experienced an increased risk of all-cause mortality (HR, 1.4; 95% CI, 1.2-1.7). Risk allele carriers had increased odds of several COVID-19 complications: severe respiratory failure (OR, 2.1; 95% CI, 1.6-2.6), venous thromboembolism (OR, 1.7; 95% CI, 1.2-2.4), and hepatic injury (OR, 1.5; 95% CI, 1.2-2.0). Risk allele carriers age 60 years and younger had higher odds of death or severe respiratory failure (OR, 2.7; 95% CI, 1.8-3.9) compared with those of more than 60 years (OR, 1.5; 95% CI, 1.2-1.8; interaction, P = 0.038). Among individuals 60 years and younger who died or experienced severe respiratory failure, 32.3% were risk-variant carriers compared with 13.9% of those not experiencing these outcomes. This risk variant improved the prediction of death or severe respiratory failure similarly to, or better than, most established clinical risk factors. CONCLUSIONS. The major common COVID-19 genetic risk factor is associated with increased risks of morbidity and mortality, which are more pronounced among individuals 60 years or younger. The effect was similar in magnitude and more common than most established clinical risk factors, suggesting potential implications for future clinical risk management.
  •  
7.
  • Rozenblatt-Rosen, O., et al. (author)
  • Building a high-quality Human Cell Atlas
  • 2021
  • In: Nature Biotechnology. - : Nature Research. - 1087-0156 .- 1546-1696. ; 39:2, s. 149-153
  • Journal article (peer-reviewed)
  •  
8.
  •  
9.
  • De Gouw, J. A., et al. (author)
  • Airborne Measurements of Ethene from Industrial Sources Using Laser Photo-Acoustic Spectroscopy
  • 2009
  • In: Environmental Science & Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 43:7, s. 2437-2442
  • Journal article (peer-reviewed)abstract
    • A laser photoacoustic spectroscopy (LPAS) instrument was developed and used for aircraft measurements of ethene from industrial sources near Houston, Texas. The instrument provided 20 s measurements with a detection limit of less than 0.7 ppbv. Data from this instrument and from the GC-FID analysis of air samples collected in flight agreed within 15% on average. Ethene fluxes from the Mt. Belvieu chemical complex to the northeast of Houston were quantified during 10 different flights. The average flux was 520 +/- 140 kg h(-1) in agreement with independent results from solar occultation flux (SOF) measurements, and roughly an order of magnitude higher than regulatory emission inventories indicate. This study shows that ethene emissions are routinely at levels that qualify as emission upsets, which need to be reported to regional air quality managers.
  •  
10.
  •  
11.
  • Merino, E. G., et al. (author)
  • Molecular dynamics of poly(ATRIF) homopolymer and poly(AN-co-ATRIF) copolymer investigated by dielectric relaxation spectroscopy
  • 2011
  • In: European Polymer Journal. - : Elsevier BV. - 0014-3057 .- 1873-1945. ; 47:7, s. 1429-1446
  • Journal article (peer-reviewed)abstract
    • Aiming to develop new dielectric polymers containing CN and F groups with strong dipole moments, a novel copolymer of acrylonitrile (AN) and 2,2,2-trifluoroethyl acrylate (ATRIF) was synthesized in acetonitrile by free radical process as well as the respective homopolymer (poly(ATRIF)). The copolymer's composition and microstructure were analyzed by FTIR, (1)H and (13)C NMR spectroscopy and SEC. The molar incorporation of AN determined in the copolymer by NMR was 58 mol%. Thermogravimetric analysis of poly(AN-co-ATRIF) copolymer showed good thermal stability comparatively to the fluorinated homopolymer. Both copolymer, poly(AN-co-ATRIF), and homopolymer, poly(ATRIF), were dielectrically characterized over a frequency range from 10(-1) to 10(6) Hz, and in a temperature range from 223 to 393 K. The dominating relaxation process detected in both materials is the alpha-relaxation, associated with the dynamic glass transition. A VFTH temperature dependence of the relaxation times (tau) was found for both materials, as characteristic of cooperative processes, from which the respective glass transition temperatures (T(g)(tau = 100 s)) were estimated, which differ similar to 40 K, the one of the copolymer being higher (307 K) in accordance to the calorimetric analysis. This effect was attributed to a higher stiffness of the backbone in the copolymer originated by the inclusion of the acrylonitrile groups. Both relaxation functions have the same breath of relaxation times allowing constructing a single master curve, indicating similar non-exponential character. A less fragile behavior was found for the copolymer. This was rationalized in a more straightforward way by the free volume approach instead from a correlation between fragility and intermolecular coupling. It was found that in the copolymer the free volume increases at a lower rate with the temperature increase. It was inferred from the VFTH temperature dependence of the dc conductivity and low values of the decoupling index that ion motion is significantly influenced by the dynamics of the alpha-process.
  •  
12.
  •  
13.
  • Rahnev, D, et al. (author)
  • The Confidence Database
  • 2020
  • In: Nature human behaviour. - : Springer Science and Business Media LLC. - 2397-3374. ; 4:3, s. 317-325
  • Journal article (peer-reviewed)
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-19 of 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view