SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Atzeni Italo) "

Sökning: WFRF:(Atzeni Italo)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Atzeni, Italo, et al. (författare)
  • Low-Resolution Massive MIMO Under Hardware Power Consumption Constraints
  • 2021
  • Ingår i: Conference Record - Asilomar Conference on Signals, Systems and Computers. - 1058-6393. - 9781665458283 ; 2021-October
  • Konferensbidrag (refereegranskat)abstract
    • We consider a fully digital massive multipleinput multiple-output architecture with low-resolution analogto-digital/digital-to-analog converters (ADCs/DACs) at the base station (BS) and analyze the performance trade-off between the number of BS antennas, the resolution of the ADCs/DACs, and the bandwidth. Assuming a hardware power consumption constraint, we determine the relationship between these design parameters by using a realistic model for the power consumption of the ADCs/DACs and the radio frequency chains. Considering uplink pilot-aided channel estimation, we build on the Bussgang decomposition to derive tractable expressions for uplink and downlink ergodic achievable sum rates. Numerical results show that the ergodic performance is boosted when many BS antennas with very low resolution (i.e., 2 to 3 bits) are adopted in both the uplink and the downlink.
  •  
2.
  • Rajatheva, Nandana, et al. (författare)
  • Scoring the Terabit/s Goal:Broadband Connectivity in 6G
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • This paper explores the road to vastly improving the broadband connectivity in future 6G wireless systems. Different categories of use cases are considered, from extreme capacity with peak data rates up to 1 Tbps, to raising the typical data rates by orders-of-magnitude, and supporting broadband connectivity at railway speeds up to 1000 km/h. To achieve these, not only the terrestrial networks will be evolved but they will also be integrated with satellite networks, all facilitating autonomous systems and various interconnected structures. We believe that several categories of enablers at the infrastructure, spectrum, and protocol/algorithmic levels are required to realize the connectivity goals in 6G. At the infrastructure level, we consider ultra-massive MIMO technology (possibly implemented using holographic radio), intelligent reflecting surfaces, user-centric cell-free networking, integrated access and backhaul, and integrated space and terrestrial networks. At the spectrum level, the network must seamlessly utilize sub-6 GHz bands for coverage and spatial multiplexing of many devices, while higher bands will be used for pushing the peak rates of point-to-point links. The latter path will lead to (sub-)Terahertz communications complemented by visible light communications in specific scenarios. At the protocol/algorithmic level, the enablers include improved coding, modulation, and waveforms to achieve lower latency, higher reliability, and reduced complexity. The resource efficiency can be further improved by using various combinations of full-duplex radios, interference management based on rate-splitting, machine-learning based optimization, coded caching, and broadcasting. Finally, the three levels of enablers must be utilized also to provide full-coverage broadband connectivity which must be one of the key outcomes of 6G.
  •  
3.
  • Rajatheva, Nandana, et al. (författare)
  • White Paper on Broadband Connectivity in 6G
  • 2020
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • This white paper explores the road to implementing broadband connectivity in future 6G wireless systems. Different categories of use cases are considered, from extreme capacity with peak data rates up to 1 Tbps, to raising the typical data rates by orders-of-magnitude, to support broadband connectivity at railway speeds up to 1000 km/h. To achieve these goals, not only the terrestrial networks will be evolved but they will also be integrated with satellite networks, all facilitating autonomous systems and various interconnected structures.We believe that several categories of enablers at the infrastructure, spectrum, and protocol/ algorithmic levels are required to realize the intended broadband connectivity goals in 6G. At the infrastructure level, we consider ultra-massive MIMO technology (possibly implemented using holographic radio), intelligent reflecting surfaces, user-centric and scalable cell-free networking, integrated access and backhaul, and integrated space and terrestrial networks. At the spectrum level, the network must seamlessly utilize sub-6 GHz bands for coverage and spatial multiplexing of many devices, while higher bands will be used for pushing the peak rates of point-to-point links. The latter path will lead to THz communications complemented by visible light communications in specific scenarios. At the protocol/algorithmic level, the enablers include improved coding, modulation, and waveforms to achieve lower latencies, higher reliability, and reduced complexity. Different options will be needed to optimally support different use cases. The resource efficiency can be further improved by using various combinations of full-duplex radios, interference management based on rate-splitting, machine-learning-based optimization, coded caching, and broadcasting.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy