SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Auer Gerald) "

Sökning: WFRF:(Auer Gerald)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Auer, Gerald, et al. (författare)
  • Timing and Pacing of Indonesian Throughflow Restriction and Its Connection to Late Pliocene Climate Shifts
  • 2019
  • Ingår i: Paleoceanography and Paleoclimatology. - : AMER GEOPHYSICAL UNION. - 2572-4517 .- 2572-4525. ; 34:4, s. 635-657
  • Tidskriftsartikel (refereegranskat)abstract
    • The Pliocene was characterized by a gradual shift of global climate toward cooler and drier conditions. This shift fundamentally reorganized Earth's climate from the Miocene state toward conditions similar to the present. During the Pliocene, the progressive restriction of the Indonesian Throughflow (ITF) is suggested to have enhanced this shift toward stronger meridional thermal gradients. Reduced ITF, caused by the northward movement of Australia and uplift of Indonesia, impeded global thermohaline circulation, also contributing to late Pliocene Northern Hemisphere cooling via atmospheric and oceanographic teleconnections. Here we present an orbitally tuned high-resolution sediment geochemistry, calcareous nannofossil, and X-ray fluorescence record between 3.65 and 2.97 Ma from the northwest shelf of Australia within the Leeuwin Current. International Ocean Discovery Program Site U1463 provides a record of local surface water conditions and Australian climate in relation to changing ITF connectivity. Modern analogue-based interpretations of nannofossil assemblages indicate that ITF configuration culminated similar to 3.54 Ma. A decrease in warm, oligotrophic taxa such as Umbilicosphaera sibogae, with a shift from Gephyrocapsa sp. to Reticulofenestra sp., and an increase of mesotrophic taxa (e.g., Umbilicosphaera jafari and Helicosphaera spp.) suggest that tropical Pacific ITF sources were replaced by cooler, fresher, northern Pacific waters. This initial tectonic reorganization enhanced the Indian Oceans sensitivity to orbitally forced cooling in the southern high latitudes culminating in the M2 glacial event (similar to 3.3 Ma). After 3.3 Ma the restructured ITF established the boundary conditions for the inception of the Sahul-Indian Ocean Bjerknes mechanism and increased the response to glacio-eustatic variability.
  •  
2.
  • Christensen, Beth A., et al. (författare)
  • Indonesian Throughflow drove Australian climate from humid Pliocene to arid Pleistocene
  • 2017
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 44:13, s. 6914-6925
  • Tidskriftsartikel (refereegranskat)abstract
    • Late Miocene to mid-Pleistocene sedimentary proxy records reveal that northwest Australia underwent an abrupt transition from dry to humid climate conditions at 5.5 million years (Ma), likely receiving year-round rainfall, but after similar to 3.3 Ma, climate shifted toward an increasingly seasonal precipitation regime. The progressive constriction of the Indonesian Throughflow likely decreased continental humidity and transferred control of northwest Australian climate from the Pacific to the Indian Ocean, leading to drier conditions punctuated by monsoonal precipitation. The northwest dust pathway and fully established seasonal and orbitally controlled precipitation were in place by similar to 2.4 Ma, well after the intensification of Northern Hemisphere glaciation. The transition from humid to arid conditions was driven by changes in Pacific and Indian Ocean circulation and regional atmospheric moisture transport, influenced by the emerging Maritime Continent. We conclude that the Maritime Continent is the switchboard modulating teleconnections between tropical and high-latitude climate systems. Plain Language Summary Australia is themost arid habitable continent on earth, however its climate is capable of dramatic changewith seasonalmonsoon rains in the otherwise arid northwest. We analyzed natural gamma radiation in a recently drilled borehole (IODP Expedition 356 Site U1463) off NW Australia to examine long-term climate changes over the last 6 million years. Based on variations in potassium, thorium and uranium, as well as common clay minerals, we show that the NW continent was more humid during the Pliocene period, between similar to 5.5 and 3.3 million years ago (Humid Interval), and became arid by the early Pleistocene, similar to 2.4 million years ago (Arid Interval). We attribute the Humid Interval to an expansion of warm surface waters in the western Pacific, supplying warm and moist air to the continent. As Australia moved north, the Maritime Continent (islands to the north) emerged, restricting the flow of warm surface currents from the Pacific (Indonesian Throughflow), resulting in drier conditions on land. The Arid Interval ushered in amodern-like Australian climate, with seasonal rainfall and dust storms, and a more modern Indian Ocean circulation. Our results show that the Maritime Continent is an important control on both Australian climate and Indian Ocean circulation.
  •  
3.
  • Christensen, Beth A., et al. (författare)
  • Late Miocene Onset of Tasman Leakage and Southern Hemisphere Supergyre Ushers in Near-Modern Circulation
  • 2021
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 48:18
  • Tidskriftsartikel (refereegranskat)abstract
    • This study provides a Miocene-to-recent history of Tasman Leakage (TL), driving surface-to-intermediate waters from the Pacific into the Indian Ocean. TL, in addition to Indonesian ThroughFlow (ITF), constitutes an important part of the Southern Hemisphere Supergyre. Here, we employ deep-sea benthic delta C-13 timeseries from the southwestern Pacific and eastern Indian Oceans to identify the history of Tasman Leakage. The delta C-13 results combined with sedimentary evidence show that an inter-ocean connection south of Australia existed from 7 Ma onward. A southward shift in Westerlies combined with a northward movement of Australia created the oceanic corridor necessary for Tasman Leakage (between Australia and the sub-Antarctic Front) at this time. Furthermore, changes in the northern limb of the Supergyre (ITF) are evident in the sedimentary record on Broken Ridge from similar to 3 to 2 Ma when Banda Sea intermediate waters started originating from the North Pacific.
  •  
4.
  • De Vleeschouwer, David, et al. (författare)
  • The amplifying effect of Indonesian Throughflow heat transport on Late Pliocene Southern Hemisphere climate cooling
  • 2018
  • Ingår i: Earth and Planetary Science Letters. - : ELSEVIER SCIENCE BV. - 0012-821X .- 1385-013X. ; 500, s. 15-27
  • Tidskriftsartikel (refereegranskat)abstract
    • An unusually short glaciation interrupted the warm Pliocene around 3.3 Ma (Marine Isotope Stage (MIS) M2). Different hypotheses exist to explain why this glaciation event was so pronounced, and why the global climate system returned to warm Pliocene conditions relatively quickly afterwards. One of these proposed mechanisms is a reduced equator-to-pole heat transfer, in response to a tectonically reduced Indonesian Throughflow (ITF). The ITF is a critical part of the global thermohaline ocean circulation, transporting heat from the Indo-Pacific Warm Pool to the Indian Ocean. When ITF connectivity is reduced, the water and heat supply for the Leeuwin Current, flowing poleward along Australia's west coast, is also diminished. To assess the possible relationship between mid-Pliocene glaciations and latitudinal heat transport through the Indonesian Throughflow, we constructed a multi-proxy orbital scale record for the 3.7-2.8 Ma interval from International Ocean Discovery Program (IODP) Site U1463, off northwest Australia. The comparison of the Site U1463 record with paleoclimate records from nearby Site 763 and West Pacific Warm Pool Site 806 allows for a detailed regional reconstruction of Pliocene paleoceanography and thus for testing the proposed hypothesis. An astronomically-paced decrease in potassium content characterizes the late Pliocene interval of U1463. This record documents the increasing aridity of northwest Australia, periodically alleviated by reinforced summer monsoon precipitation under summer insolation maxima. The 3180 record of the planktonic foraminifer Globigerinoides sacculifer correlates exceptionally well with the sea surface temperature (SST) record from Site 806 in the West Pacific Warm Pool, even during MIS M2. Hence, Site U1463 preserves an uninterrupted ITF signal even during Pliocene glaciations. However, the U1463 delta O-18(G.sacculifer) record exhibits a 0.5 parts per thousand offset with the nearby Site 763A record around MIS M2. This implies that Site 763A, about 500 km west of U1463, more closely tracks Indian Ocean SST records across MIS M2. The U1463 data reveal that heat-transport through the Indonesian Throughflow did not shut down completely during MIS M2, but rather its intensity decreased prior to and during MIS M2, causing Site 763A to temporarily reflect an Indian Ocean, rather than an ITF signal. We conclude that ITF variability significantly influenced latitudinal heat transport by means of the Leeuwin Current and hence contributed to the relative intensity of MIS M2. We propose the ITF valve between the Pacific and Indian Ocean as a positive feedback mechanism, in which an initial sea level lowering reduces ITF heat transport, in turn amplifying global cooling by advancing the thermal isolation of Antarctica.
  •  
5.
  • Groeneveld, Jeroen, et al. (författare)
  • Australian shelf sediments reveal shifts in Miocene Southern Hemisphere westerlies
  • 2017
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 3:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Global climate underwent a major reorganization when the Antarctic ice sheet expanded ~14 million years ago (Ma) (1). This event affected global atmospheric circulation, including the strength and position of the westerlies and the Intertropical Convergence Zone (ITCZ), and, therefore, precipitation patterns (2–5). We present new shallow-marine sediment records from the continental shelf of Australia (International Ocean Discovery Program Sites U1459 and U1464) providing the first empirical evidence linking high-latitude cooling around Antarctica to climate change in the (sub)tropics during the Miocene. We show that Western Australia was arid during most of the Middle Miocene. Southwest Australia became wetter during the Late Miocene, creating a climate gradient with the arid interior, whereas northwest Australia remained arid throughout. Precipitation and river runoff in southwest Australia gradually increased from 12 to 8 Ma, which we relate to a northward migration or intensification of the westerlies possibly due to increased sea ice in the Southern Ocean (5). Abrupt aridification indicates that the westerlies shifted back to a position south of Australia after 8 Ma. Our midlatitude Southern Hemisphere data are consistent with the inference that expansion of sea ice around Antarctica resulted in a northward movement of the westerlies. In turn, this may have pushed tropical atmospheric circulation and the ITCZ northward, shifting the main precipitation belt over large parts of Southeast Asia (4).
  •  
6.
  • Smith, Rebecca A., et al. (författare)
  • Plio-Pleistocene Indonesian Throughflow Variability Drove Eastern Indian Ocean Sea Surface Temperatures
  • 2020
  • Ingår i: PALEOCEANOGRAPHY AND PALEOCLIMATOLOGY. - : American Geophysical Union (AGU). - 2572-4517 .- 2572-4525. ; 35:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Ocean gateways facilitate circulation between ocean basins, thereby impacting global climate. The Indonesian Gateway transports water from the Pacific to the Indian Ocean via the Indonesian Throughflow (ITF) and drives the strength and intensity of the modern Leeuwin Current, which carries warm equatorial waters along the western coast of Australia to higher latitudes. Therefore, ITF dynamics are a vital component of global thermohaline circulation. Plio-Pleistocene changes in ITF behavior and Leeuwin Current intensity remain poorly constrained due to a lack of sedimentary records from regions under its influence. Here, organic geochemical proxies are used to reconstruct sea surface temperatures on the northwest Australian shelf at IODP Site U1463, downstream of the ITF outlet and under the influence of the Leeuwin Current. Our records, based on TEX86 and the long-chain diol index, provide insight into past ITF variability (3.5-1.5 Ma) and confirm that sea surface temperature exerted a control on Australian continental hydroclimate. A significant TEX86 cooling of similar to 5 degrees C occurs within the mid-Pliocene Warm Period (3.3-3.1 Ma) suggesting that this interval was characterized by SST fluctuations at Site U1463. A major feature of both the TEX86 and long-chain diol index records is a strong cooling from similar to 1.7 to 1.5 Ma. We suggest that this event reflects a reduction in Leeuwin Current intensity due to a major step in ongoing ITF constriction, accompanied by a switch from South to North Pacific source waters entering the ITF inlet. Our new data suggest that an additional ITF constriction event may have occurred in the Pleistocene.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy