SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bäcke Olof 1984) "

Sökning: WFRF:(Bäcke Olof 1984)

  • Resultat 1-41 av 41
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Qiu, Ren, 1993, et al. (författare)
  • CVD TiAlN coatings with tunable nanolamella architectures
  • 2021
  • Ingår i: Surface and Coatings Technology. - : Elsevier BV. - 0257-8972. ; 413
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, Ti1-xAlxN (TiAlN) coatings were synthesized by low pressure chemical vapour deposition (LPCVD), and the influence of a rotational precursor gas supply on the coating microstructure was studied. The microstructure of the TiAlN coatings were characterized using X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM), and electron backscattered diffraction (EBSD). It is shown that a rotational precursor gas supply induces an oscillatory surface reaction, which causes a nanolamella architecture. When the gas beam directly hits the sample, the local gas flow velocity is high, which increases the deposition rate of Ti and a Ti(Al)N lamella is formed. When the gas beam rotates away, the local gas velocity is low, so the deposition rate of Ti decreases, and an Al(Ti)N lamella is formed. As this is repeated a periodic nanolamella architecture is formed. The nanolamellae grow epitaxially on three {001} facets of the 111 textured grains, which leads to a pyramidal surface morphology. Without gas supply rotation, a high Al content cubic phase was still obtained, but no nanolamella was formed. This indicates that Ti-rich lamellae are not necessary to stabilize an Al-rich cubic TiAlN phase. In addition, spinodal decomposition is not likely to be the driving force behind the nanolamella formation in LPCVD TiAlN, as this would also have happened in the sample without a rotational gas supply. Finally, the nanolamella periodicity is found to be tunable via controlling the rotation speed of the precursor supply relative to the coating growth rate.
  •  
2.
  • Ben Hassine, Mohamed, 1985, et al. (författare)
  • Growth model for high-Al containing CVD TiAlN coatings on cemented carbides using intermediate layers of TiN
  • 2021
  • Ingår i: Surface and Coatings Technology. - : Elsevier BV. - 0257-8972. ; 421
  • Tidskriftsartikel (refereegranskat)abstract
    • This work concerns high Al-containing TixAl1-xN coatings prepared using low pressure-chemical vapour deposition (LP-CVD). The coatings were examined using electron microscopy techniques, such as scanning transmission electron microscopy (STEM), energy dispersive X-ray analysis (EDX) and transmission Kikuchi diffraction (TKD). An intermediate TiN-layer with a 〈211〉 texture consisting of twinned, needle-shaped grains influences the subsequent growth of the TiAlN layer. The TiAlN grains were columnar with a texture of 〈211〉. As the grains grow along 〈111〉, with {001} facets, this led to a tilted pyramid surface morphology. The grains developed an internal periodic epitaxial nanolamella structure. The thicknesses were 2 nm for the low (x = 0.6) and 6 nm for the high (x = 0.9) Al-containing lamellae. The TiAlN layer growth could be described by a “two-wing” model, where two TiAlN grains with a twin-related orientation grow on a twinned TiN grain, where the two TiAlN grains gradually switch sides, making the appearance of two wings of columnar grains. In general, this work shows that it should be possible to control the growth of TiAlN layers by controlling the texture and morphology of an intermediate layer, such as TiN.
  •  
3.
  • Polley, Craig Michael, 1984, et al. (författare)
  • Bottom-Up Growth of Monolayer Honeycomb SiC
  • 2023
  • Ingår i: Physical Review Letters. - : AMER PHYSICAL SOC. - 1079-7114 .- 0031-9007. ; 130:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The long theorized two-dimensional allotrope of SiC has remained elusive amid the exploration of graphenelike honeycomb structured monolayers. It is anticipated to possess a large direct band gap (2.5 eV), ambient stability, and chemical versatility. While sp2 bonding between silicon and carbon is energetically favorable, only disordered nanoflakes have been reported to date. Here we demonstrate large-area, bottom-up synthesis of monocrystalline, epitaxial monolayer honeycomb SiC atop ultrathin transition metal carbide films on SiC substrates. We find the 2D phase of SiC to be almost planar and stable at high temperatures, up to 1200 °C in vacuum. Interactions between the 2D-SiC and the transition metal carbide surface result in a Dirac-like feature in the electronic band structure, which in the case of a TaC substrate is strongly spin-split. Our findings represent the first step towards routine and tailored synthesis of 2D-SiC monolayers, and this novel heteroepitaxial system may find diverse applications ranging from photovoltaics to topological superconductivity.
  •  
4.
  • Qiu, Ren, 1993, et al. (författare)
  • Atom probe tomography investigation of 3D nanoscale compositional variations in CVD TiAlN nanolamella coatings
  • 2021
  • Ingår i: Surface and Coatings Technology. - : Elsevier BV. - 0257-8972. ; 426
  • Tidskriftsartikel (refereegranskat)abstract
    • The cubic (Ti1−xAlx)Ny (TiAlN) phase with a nanolamella structure, synthesized via low pressure chemical vapour deposition (LPCVD), has been widely used in wear-resistant coatings during the latest years. The nanolamella structured TiAlN coatings contain periodic and epitaxially grown Ti-rich [denoted as Ti(Al)N] and Al-rich [denoted as Al(Ti)N] lamellae. However, the chemical compositions of these nano-structures have not been fully revealed. In this study, the microstructure of the nanolamella TiAlN coating was studied using scanning and transmission electron microscopy (SEM and TEM), and the chemical content was investigated using atom probe tomography (APT) that provides three-dimensional composition data with good accuracy and a spatial resolution down to the nanometer scale. It was found that over- and under-stoichiometries of N exist for the Ti(Al)N and the Al(Ti)N lamellae, respectively. According to the previous simulation results, such over- and under-stoichiometries are due to metal (Al and Ti) and N vacancies, respectively. The Al(Ti)N lamellae have a chemical formula of (Ti0.12Al0.88)N0.90, and have 10% N vacancies. The Ti(Al)N lamellae have a chemical formula of (Ti0.70Al0.30)0.97N, and have 3% metal (Al and Ti) vacancies. In addition to the nanolamella structure, compositional variations on a scale of a few nm were found in both types of lamellae. In the Ti-richest volumes, the composition corresponds to (Ti0.72Al0.28)0.88N so a maximum of 12% of metal vacancies exists. In the Al-richest volumes, the composition corresponds to (Ti0.07Al0.93)N0.64 so a maximum of 36% N vacancies exists. In addition, a small amount of Cl (around 0.1 at.%) was found in the coating, which could originate from the incomplete dissociation of chloride precursors during the CVD surface reaction.
  •  
5.
  • Qiu, Ren, 1993, et al. (författare)
  • Effects of gas flow on detailed microstructure inhomogeneities in LPCVD TiAlN nanolamella coatings
  • 2020
  • Ingår i: Materialia. - : Elsevier BV. - 2589-1529. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Depositing homogeneous TiAlN coatings with a high Al content on cutting tool inserts is a challenging task. In this work, high-Al cubic Ti1-xAlxN coatings (average x = 0.8) with periodic Ti(Al)N (x = 0.5) and Al(Ti)N (x = 0.9) nanolamellae structure were synthesized by low pressure chemical vapour deposition (LPCVD) with different gas flow velocities, and the detailed microstructure was investigated by electron microscopy and simulations. Using a high gas flow rate, the columnar TiAlN grains with regular periodic nanolamella structures disappeared, the coating became enriched in Ti and hexagonal AlN (h-AlN) formed in the coating. The high Ti content is suggested to be caused by the high gas flow rate that increases the mass transport of the reactants. However, this does not influence the Al-deposition much as it is mainly limited by the surface kinetics due to the relatively low deposition temperature. Density functional theory (DFT) modelling and electron microscopy showed that h-AlN tends to form on the Ti(Al)N phase with a specific crystallographic orientation relationship. The Ti enrichment due to high gas flow rate promotes the formation of h-AlN, which therefore deteriorates the nanolamella structure and causes the disappearance of the columnar TiAlN grains. Thus, by designing the CVD process conditions to avoid too high gas flow rates, homogenous TiAlN coatings with high Al content and nanolamella structures can be deposited, which should yield superior cutting performance.
  •  
6.
  • Qiu, Ren, 1993, et al. (författare)
  • Facet identification in textured polycrystalline coatings by EBSD-aided SEM trace analysis
  • 2024
  • Ingår i: Materials Characterization. - 1044-5803. ; 209
  • Tidskriftsartikel (refereegranskat)abstract
    • Competitive growth usually occurs during deposition of polycrystalline coatings and is associated by the formation of crystal facets. Knowing the facet planes in the crystal coordinates is thus essential for understanding the coating growth process and optimizing corresponding experimental parameters. However, the crystal facets of polycrystalline coatings have not been explored enough due to a lack of easy-to-use experimental methods. In this work, we apply an electron backscattered diffraction (EBSD)-aided scanning electron microscopy (SEM) trace analysis for determining the crystal facets of the chemical vapour deposition (CVD) polycrystalline (Ti,Al)N and Ti(C,N) coatings. Using this method, the crystal orientation of an interesting grain relative to the specimen coordinates is first determined by the EBSD point analysis, and the crystal orientations of edges shared by neighbouring facets are then determined using trace analysis. Finally, the facet normals are calculated by the cross-product of the crystal orientations of edges on the corresponding facet. The (Ti,Al)N coating is found to have {100} crystal facets, which is consistent with the results obtained using transmission electron microscopy in previous work. The Ti(C,N) coating is found to have {211} crystal facets. In principle, the method proposed in this work can be applied to any crystals with planar facets and sharp edges. A possible improvement of the method is also discussed.
  •  
7.
  • Qiu, Ren, 1993, et al. (författare)
  • Schmid factor analysis for chip flow induced plastic deformation of textured cubic carbonitride coatings
  • 2022
  • Ingår i: International Journal of Refractory Metals and Hard Materials. - : Elsevier BV. - 0263-4368 .- 2213-3917. ; 108
  • Tidskriftsartikel (refereegranskat)abstract
    • In high-speed metal machining, cutting tools in the form of cemented carbide inserts coated with thin wear-resistant coatings are commonly used. These coatings are often made of metal carbonitrides with cubic rock salt crystal structure and different growth textures. However, the influence of the crystallographic texture of the coatings on their wear by plastic deformation due to the chip flow during machining needs to be revealed further. In this work, in order to analyse the ability of polycrystalline fibre-textured coatings with a rock salt structure to undergo plastic deformation, a method was developed for calculating Schmid factors of such textured coatings as a function of the loading angle of an external force. The Schmid factors were calculated for coatings with 100 and 211 growth textures, and {100} <110>, {110}<110> and {111}<110> as possible slip systems. For the {111}<110> slip systems, the Schmid factors are not much influenced by the force angle and coating texture, which is contrary to the {100}<110> and {110}<110> slip systems. The simulations were compared to wear on the rake face of two textured Ti(C,N) coatings after short longitudinal turning tests. The variation of the degree of plastic deformation of Ti(C,N) coatings with growth texture and external force angle indicates that the dominant activated slip systems are {110}<110> using the machining conditions applied in this work.
  •  
8.
  • Shoja, Siamak, 1980, et al. (författare)
  • Enhanced steel machining performance using texture-controlled CVD alpha-alumina coatings : Fundamental degradation mechanisms
  • 2024
  • Ingår i: International Journal of Machine Tools and Manufacture. - 0890-6955. ; 197
  • Tidskriftsartikel (refereegranskat)abstract
    • Cemented carbide inserts coated with CVD α-alumina, particularly those exhibiting a (0001) texture, have proven highly effective in steel turning. Despite the established superior performance of (0001) textured alumina coatings, the underlying reasons remain unclear. This study explores the influence of the crystallographic texture of alumina on wear mechanisms in various chip-tool contact zones on the insert rake face. The objective is to establish a fundamental understanding of the active degradation mechanisms and machining performance by relating coating texture to the orientation and deformation of individual Al2O3 grains. Two multilayered coatings, Al2O3 on Ti(C,N), featuring (0001)- and (112‾0)-textured CVD α-alumina, were assessed in dry turning of a bearing steel. The wear rate of the (112‾0) coating was double that of the (0001) coating. Worn coatings exhibit nano-terrace formation at the insert edge, likely due to chemical etching. In the sticking zone, plastic deformation leads to larger facets for grains oriented with the chip flow direction, while rounded surfaces result if this condition is not met. In the transition zone, both (0001) and (112‾0) textured coatings undergo increased plastic deformation accompanied by sub-surface dislocations. (0001) texture deforms more by basal slip creating a wavy coating pattern with steps present at larger misalignments of the lattice planes in neighboring grains while (112‾0) texture deforms by several slip systems creating elongated ridges and ruptured-like areas resulting in rougher surface. This difference in surface morphology is then inherited by the abrasion of submicron coating fragments embedded in the chip (more in (112‾0) texture) in the sliding zone resulting in an even rougher surface. Chemical reaction with the hot chip may also contribute to wear acting as an additional mechanism. This fundamental understanding contributes to the potential enhancement of steel machining using texture-controlled CVD alumina coatings, ultimately improving coated cutting tool performance.
  •  
9.
  • Shoja, Siamak, 1980, et al. (författare)
  • On the influence of varying the crystallographic texture of alumina CVD coatings on cutting performance in steel turning
  • 2022
  • Ingår i: International Journal of Machine Tools and Manufacture. - : Elsevier BV. - 0890-6955. ; 176
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the mechanisms at the tool/chip interface during metal cutting is crucial in the production of almost every metallic component used in engineering applications. It is critical to have rapid, durable, and reliable machining processes. This work contributes to the understanding of mechanisms occurring on the tool in the secondary shear zone, and it is focusing on the tool side of the contact. Crystallographic textured Chemical Vapor Deposited (CVD) α-Al2O3 coated cutting tools are dominating the steel turning area, as they show an increased performance compared to coatings with randomly oriented grains. In this study, we investigate the effect of three different CVD α-Al2O3 textures on the initial rake crater behavior. This was done using a turning test designed to generate crater wear only in the alumina layer, which was deposited onto an inner Ti(C,N) layer, which in turn was deposited on a cemented carbide insert. With this approach, the influence of the underlying coating layer and substrate was reduced. Pre- and post-machining characterization of the different contact areas on the surfaces of the three textured CVD α-Al2O3 coatings, (0001)(0001), (011‾2) and (112‾0), was performed using scanning electron microscopy (SEM), electron backscattered diffraction (EBSD) and energy dispersive X-ray spectroscopy (XEDS). Plastic deformation, micro-rupture, abrasion and chemical reactions with the workpiece material are all identified as mechanisms involved in crater formation during turning. For the (0001)-textured coating, the observed low wear-rate is attributed to homogeneous basal-slip dominating plastic deformation, while for the (011‾2) and (112‾0) textures the main deformation mechanisms are attributed to heterogeneous plastic deformation, causing micro-rupture and abrasion, leading to higher wear-rates. The effect of a larger coating grain size is mainly seen as the formation of wider ridges and valleys, while the effect on wear rate was limited.
  •  
10.
  • Tao, Qiang, 1987, et al. (författare)
  • D-A(1)-D-A(2) Copolymers with Extended Donor Segments for Efficient Polymer Solar Cells
  • 2015
  • Ingår i: Macromolecules. - : American Chemical Society (ACS). - 1520-5835 .- 0024-9297. ; 48:4, s. 1009-1016
  • Tidskriftsartikel (refereegranskat)abstract
    • Typically a donor-acceptor (D-A) design strategy is used for engineering the bandgap of polymers for solar cells. However, in this work, a series of alternating D-A(1-)D-A(2) copolymers PnTQTI(F) were synthesized and characterized with oligothiophenes (nT, n = 1, 2, 3) as the donor and two electron-deficient moieties, quinoxaline and isoindigo, as the acceptors in the repeating unit. We have studied the influence of the donor segments with different numbers of thiophene units and the effect of the addition of fluorine to the quinoxaline unit of the D-A(1)-D-A(2) polymers. The photophysical, electrochemical, and photovoltaic properties of the polymers were examined via a range of techniques and related to theoretical simulations. On increasing the length of the donor thiophene units, broader absorption spectra were observed in addition to a sequential increase in HOMO levels, while the LUMO levels displayed very small variations. The addition of fluorine to the quinoxaline unit not only decreased the HOMO levels of the resulting polymers but also enhanced the absorption coefficients. A superior photovoltaic performance was observed for the P3TQTI-F-based device with a power conversion efficiency (PCE) of 7.0%, which is the highest efficiency for alternating D-A(1)-D-A(2) polymers reported to date. The structureproperty correlations of the PnTQTI(F) polymers demonstrate that varying of the length of the donor segments is a valuable method for designing high-performance D-A(1)-D-A(2) copolymers and highlight the promising nature of D-A(1)-D-A(2) copolymers for efficient bulk-heterojunction solar cells.
  •  
11.
  • Xu, Xiaofeng, 1984, et al. (författare)
  • Effects of side chain isomerism on the physical and photovoltaic properties of indacenodithieno[3,2-b]thiophene–quinoxaline copolymers: toward a side chain design for enhanced photovoltaic performance
  • 2014
  • Ingår i: Journal of Materials Chemistry. - 1364-5501 .- 0959-9428. ; 2:44, s. 18988-18997
  • Tidskriftsartikel (refereegranskat)abstract
    • Four new D–A polymers PIDTT-Q-p, PIDTT-Q-m, PIDTT-QF-p and PIDTT-QF-m, using indacenodithieno[3,2-b]thiophene (IDTT) as an electron-rich unit and quinoxaline (Q) as an electron-deficient unit, were synthesized via a Pd-catalyzed Stille polymerization. The side chains on the pendant phenyl rings of IDTT were varied from the para- to the meta-position, and the effect of the inclusion of fluorine on the quinoxaline unit was simultaneously investigated. The influence on the optical and electrochemical properties, film topography and photovoltaic properties of the four copolymers were thoroughly examined via a range of techniques. The inductively electron-withdrawing properties of the fluorine atoms result in a decrease of the highest occupied molecular orbital (HOMO) energy levels. The effect of meta-substitution on the PIDTT-Q-m polymer leads to good solubility and in turn higher molecular weight. More importantly, it exhibits optimal morphological properties in the PIDTT-Q-m/PC71BM blends. As a result, the corresponding solar cells (ITO/PEDOT:PSS/polymer:PC71BM/LiF/Al) attain the best power conversion efficiency (PCE) of 6.8%. The structure–property correlations demonstrate that the meta-alkyl-phenyl substituted IDTT unit is a promising building block for efficient organic photovoltaic materials. This result also extends our strategy with regards to side chain isomerism of IDTT-based copolymers for enhanced photovoltaic performance.
  •  
12.
  • Xu, Xiaofeng, 1984, et al. (författare)
  • Pyrrolo[3,4-g]quinoxaline-6,8-dione-based conjugated copolymers for bulk heterojunction solar cells with high photovoltages
  • 2015
  • Ingår i: Polymer Chemistry. - : ROYAL SOC CHEMISTRY. - 1759-9954 .- 1759-9962. ; 6:25, s. 4624-4633
  • Tidskriftsartikel (refereegranskat)abstract
    • A new electron-deficient building block 5,9-di(thiophen-2-yl)-6H-pyrrolo[3,4-g]quinoxaline-6,8(7H)-dione (PQD) was synthesized via functionalizing the 6- and 7-positions of quinoxaline (Qx) with a dicarboxylic imide moiety. Side chain substitution on the PQD unit leads to good solubility which enables very high molecular weight copolymers to be attained. The fusion of two strong electron-withdrawing groups (Qx and dicarboxylic imide) makes the PQD unit a stronger electron-deficient moiety than if the unit had just one electron-withdrawing group, thus enhancing the intramolecular charge transfer between electron-rich and deficient units of the copolymer. Four PQD-based polymers were synthesized which feature deep-lying highest occupied molecular orbital (HOMO) levels and bathochromic absorption spectra when compared to PBDT-Qx and PBDT-TPD analogues. The copolymers incorporated with benzo[1,2-b:4,5-b]dithiophene (BDT) units show that the 1D and 2D structural variations of the side groups on the BDT unit are correlated with the device performance. As a result, the corresponding solar cells (ITO/PEDOT:PSS/polymer: PC71BM/LiF/Al) based on the four copolymers feature very high open-circuit voltages (V-oc) of around 1.0 V. The copolymer PBDT-PQD1 attains the best power conversion efficiency of 4.9%, owing to its relatively high absorption intensity and suitable film morphology. The structure-property correlation demonstrates that the new PQD unit is a promising electron-deficient building block for efficient photovoltaic materials with high V-oc.
  •  
13.
  • Bakken, Kristine, 1990, et al. (författare)
  • Effect of post-annealing on the thermal stability and residual stresses in CVD (Al,Ti)N coatings investigated by in situ synchrotron diffraction
  • 2024
  • Ingår i: International Journal of Refractory Metals and Hard Materials. - 0263-4368 .- 2213-3917. ; 124
  • Forskningsöversikt (refereegranskat)abstract
    • The stress in thin wear resistant coatings is of great importance for the performance and service life of tools for metal cutting. In this work we have performed detailed investigations of the phase stability and temperature-dependent residual stresses in Al-rich AlxTi1-xN ((Al,Ti)N) coatings deposited by chemical vapor deposition (CVD) on cemented carbide substrates. One as-deposited (Al,Ti)N coating and one coating post-annealed at 850 °C for 3 h were heated to 1200 °C while the structure and residual stresses were monitored by in situ high energy synchrotron X-ray diffraction. In the as-deposited state, the coating is in tensile stress at room temperature, but post-annealing resulted in a reduction of the room temperature residual stress. This lowering can be explained by growth of hexagonal AlN (hAlN) at the (Al,Ti)N grain boundaries during the isothermal hold time. Upon heating, the temperature-dependence of the residual stresses in both coatings are initially controlled by the mismatch in coefficients of thermal expansion (CTE) with the substrate, which leads to compressive stresses at typical service temperatures. Decomposition starts gradually at around 850–900 °C, resulting in an accelerated development of large compressive stresses with increasing temperatures, until the entire coating is transformed at temperatures just below 1100 °C. The growth of hAlN initiates slightly higher in temperature after post-annealing, whereas the upper limit for complete transformation remains unaffected. The lowered room temperature tensile stress after post-annealing leads to higher compressive stress at service temperatures, which is expected to improve the performance and service time of the coated tool.
  •  
14.
  • Bergqvist, J., et al. (författare)
  • Sub-glass transition annealing enhances polymer solar cell performance
  • 2014
  • Ingår i: Journal of Materials Chemistry A. - 2050-7488 .- 2050-7496. ; 2:17, s. 6146-6152
  • Tidskriftsartikel (refereegranskat)abstract
    • Thermal annealing of non-crystalline polymer:fullerene blends typically results in a drastic decrease in solar cell performance. In particular aggressive annealing above the glass transition temperature results in a detrimental coarsening of the blend nanostructure. We demonstrate that mild annealing below the glass transition temperature is a viable avenue to control the nanostructure of a non-crystalline thiophene–quinoxaline copolymer:fullerene blend. Direct imaging methods indicate that coarsening of the blend nanostructure can be avoided. However, a combination of absorption and luminescence spectroscopy reveals that local changes in the polymer conformation as well as limited fullerene aggregation are permitted to occur. As a result, we are able to optimise the solar cell performance evenly across different positions of the coated area, which is a necessary criterion for large-scale, high throughput production.
  •  
15.
  • Boll, Torben, 1979, et al. (författare)
  • On aliovalent cations control of α-alumina growth on doped and undoped NiAl
  • 2021
  • Ingår i: Acta Materialia. - : Elsevier BV. - 1359-6454. ; 210
  • Tidskriftsartikel (refereegranskat)abstract
    • Alumina forming Ni-base superalloys are essential due to their oxidation resistance at elevated temperatures. A two-step procedure allows to assess the outward growth of the oxide scale from the resulting oxide ridges that form at 1100°C and cap the alumina grain boundaries. Employing undoped 50Ni50Al (at%) as reference, the impact of reactive elements on the diffusion processes, here Zr and Hf, is quantified using atom probe tomography. Unexpectedly, we find that up to one monolayer of Ni may co-decorate the alumina grain boundaries. Additionally, a decrease in Al-, and Ni-diffusivity of two orders of magnitude is observed owing to the reactive element effect. We employ density functional theory calculations to better understand the role of aliovalent cations, here Ni(II), Zr(IV), and Hf(IV) in the α−alumina scale. The calculations show that Ni may not only decorate the alumina grain boundaries but also facilitates transport of electrons as well as oxygen vacancies. Thereby oxide scale growth becomes enhanced. In turn, the dual impact of reactive elements, i.e. to annihilate oxygen vacancies and to remove impurity states in the band gap, explains the reduced scale growth rate.
  •  
16.
  • Bäcke, Olof, 1984, et al. (författare)
  • Decomposition pathways in nano-lamellar CVD Ti 0.2 Al 0.8 N
  • 2023
  • Ingår i: Materialia. - 2589-1529. ; 30
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent progress in chemical vapour deposition (CVD) technology has enabled synthesis of metastable cubic Ti1−xAlxN coatings with x as high as 0.8–0.9. These coatings have unique micro- and nano-structures consisting of grains with epitaxially grown nanolamellae with different Al/Ti ratios, and exhibit exceptional hardness and resistance to wear and oxidation. Here, the thermal stability and decomposition of nano-lamellar CVD Ti0.2Al0.8N at temperatures between 800 and 1000 °C have been investigated using a combination of cross-sectional transmission X-ray nano-diffraction and scanning transmission electron microscopy. The decomposition started by formation of hexagonal AlN (h-AlN) in the grain boundaries throughout the coating. Below 900 °C, only limited further decomposition of the grain interiors occurred. At higher temperatures the formation of grain boundary h-AlN was followed by a bulk transformation of the nano-lamellar structure, starting at the top of the coating and subsequently sweeping inwards. The bulk transformation occurred initially through spinodal decomposition, followed by transformation of the Al-rich cubic phase to h-AlN, leading to a coarsened structure with Ti-rich domains in a h-AlN matrix. The behaviour is explained by the higher capability of grain boundaries and free surfaces to accommodate the volumetric expansion from the h-AlN formation. The results increase our understanding of the complicated decomposition processes in these metastable cubic coatings, which are of utmost importance from both technological and scientific perspectives.
  •  
17.
  • Bäcke, Olof, 1984, et al. (författare)
  • Enhanced thermal stability of a polymer solar cell blend induced by electron beam irradiation in the transmission electron microscope
  • 2017
  • Ingår i: Ultramicroscopy. - : Elsevier BV. - 1879-2723 .- 0304-3991. ; 173, s. 16-23
  • Tidskriftsartikel (refereegranskat)abstract
    • We show by in situ microscopy that the effects of electron beam irradiation during transmission electron microscopy can be used to lock microstructural features and enhance the structural thermal stability of a nanostructured polymer:fullerene blend. Polymer:fullerene bulk-heterojunction thin films show great promise for use as active layers in organic solar cells but their low thermal stability is a hindrance. Lack of thermal stability complicates manufacturing and influences the lifetime of devices. To investigate how electron irradiation affects the thermal stability of polymer:fullerene films, a model bulk-heterojunction film based on a thiophene-quinoxaline copolymer and a fullerene derivative was heat-treated in-situ in a transmission electron microscope. In areas of the film that exposed to the electron beam the nanostructure of the film remained stable, while the nanostructure in areas not exposed to the electron beam underwent large phase separation and nucleation of fullerene crystals. UV–vis spectroscopy shows that the polymer:fullerene films are stable for electron doses up to 2000 kGy.
  •  
18.
  • Bäcke, Olof, 1984, et al. (författare)
  • Enhanced thermal stability of a polymer solar cell blend induced by electron beam irradiation in the transmission electron microscope
  • 2017
  • Ingår i: Ultramicroscopy. - : Elsevier BV. - 1879-2723 .- 0304-3991. ; 176:Spec. Issue, s. 23-30
  • Tidskriftsartikel (refereegranskat)abstract
    • We show by in situ microscopy that the effects of electron beam irradiation during transmission electron microscopy can be used to lock microstructural features and enhance the structural thermal stability of a nanostructured polymer:fullerene blend. Polymer:fullerene bulk-heterojunction thin films show great promise for use as active layers in organic solar cells but their low thermal stability is a hindrance. Lack of thermal stability complicates manufacturing and influences the lifetime of devices. To investigate how electron irradiation affects the thermal stability of polymer:fullerene films, a model bulk-heterojunction film based on a thiophene-quinoxaline copolymer and a fullerene derivative was heat-treated in-situ in a transmission electron microscope. In areas of the film that exposed to the electron beam the nanostructure of the film remained stable, while the nanostructure in areas not exposed to the electron beam underwent large phase separation and nucleation of fullerene crystals. UV–vis spectroscopy shows that the polymer:fullerene films are stable for electron doses up to 2000 kGy.
  •  
19.
  • Bäcke, Olof, 1984 (författare)
  • Evolution and control of the three dimensional functional microstructure of Polymer:Fullerene photovoltaic blends
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Polymer:fullerene bulk-heterojunction thin films show great promise for use as active layers in organic solar cells. However, their low thermal stability is a hindrance that complicates the manufacturing and influences the lifetime of devices. It is thus of high importance to understand what factors that a↵ect the thermal stability of polymer:fullerene blends and explore di↵erent strate- gies to increase the thermal stability. This work is focused on using various electron microscopy techniques to investigate how the nanostructure of poly- mer:fullerene films degrades when exposed to thermal stress and how the ther- mal stability of polymer:fullerene films can be increased. As a model system we have worked with the polymer poly(2,3-bis-(3-octyloxyphenyl)quinoxaline-5,8- diyl-alt-thiophene-2,5-diyl) (TQ1) and the fullerene derivative (6,6)-phenyl- C61-butric acid methyl ester, (PCBM).One of the degradation pathways for polymer:fullerene films exposed to ther- mal stress is nucleation and growth of fullerene crystals. We have investi- gated the kinetics of fullerene crystal nucleation and growth in TQ1:PCBM films, and shown that the formation of fullerene crystals is strongly nucleation limited. We have also explored how transmission electron tomography can be used to visualize the three dimensional distribution of nucleation sites for fullerene crystals in polymer:fullerene films. The results show for our investi- gated TQ1:PCBM films that the fullerene crystals do not start to randomly nucleate in the bulk but have a preference to start nucleating in the upper part of the films.When it comes to increasing the thermal stability of polymer:fullerene films we have shown that the thermal stability of a TQ1:PCBM film can be increased by including additives such as C60, using mixtures of di↵erenet fullerenes, and exposing a film to electron radiation. By adding C60 or using mixtures of fullerenes the nucleation and growth rate of PCBM crystals can be influenced, avoiding large micron sized crystals and preserving the photovoltaic perfor- mance of a film. In a simliar way, exposure to electron radiation will quenche the nucleation of fullerene crystals and the nanostructure of a film will remain stable upon thermal exposure, with a greater e↵ect seen for larger doses.
  •  
20.
  • Bäcke, Olof, 1984, et al. (författare)
  • Mapping fullerene crystallization in a photovoltaic blend: an electron tomography study
  • 2015
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3372 .- 2040-3364. ; 7:18, s. 8451-8456
  • Tidskriftsartikel (refereegranskat)abstract
    • The formation of fullerene crystals represents a major degradation pathway of polymer/fullerene bulk-heterojunction thin films that inexorably deteriorates their photovoltaic performance. Currently no tools exist that reveal the origin of fullerene crystal formation vertically through the film. Here, we show that electron tomography can be used to study nucleation and growth of fullerene crystals. A model bulk-heterojunction blend based on a thiophene-quinoxaline copolymer and a fullerene derivative is examined after controlled annealing above the glass transition temperature. We image a number of fullerene nanocrystals, ranging in size from 70 to 400 nanometers, and observe that their center is located close to the free-surface of spin-coated films. The results show that the nucleation of fullerene crystals predominately occurs in the upper part of the films. Moreover, electron tomography reveals that the nucleation is preceded by more pronounced phase separation of the blend components.
  •  
21.
  • Böör, Katalin, et al. (författare)
  • Chemical vapor deposition of TiN on a CoCrFeNi multi-principal element alloy substrate
  • 2020
  • Ingår i: Surface and Coatings Technology. - : Elsevier BV. - 0257-8972 .- 1879-3347. ; 393
  • Tidskriftsartikel (refereegranskat)abstract
    • The reactivity of a quaternary multi-principal element alloy (MPEA), CoCrFeNi, as a substrate in thermal halide chemical vapor deposition (CVD) processes for titanium nitride (TiN) coatings was studied. The coatings were deposited at 850 °C–950 °C using TiCl4, H2 and N2 precursors. The coating microstructures were characterized using X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM/TEM) with energy dispersive X-ray spectroscopy (EDS). Thermodynamic calculations of substrate and coating stability for a gas phase environment of N2 and H2 within a temperature range relevant for the experiments showed that Cr is expected to form hexagonal Cr2N and cubic (Ti1−ε1Crε1)N or (Cr1−ε2Tiε2)N phases. These phases could however not be discerned in the samples by XRD after the depositions. Cr was detected at the grain boundaries and the top surface by EDS for a sample synthesized at 950 °C. Grain boundary and surface diffusion, respectively, were the suggested mechanisms for Cr transport into the coating and onto the top surface. Although thermodynamic calculations indicated that Cr is the most easily etched component of the CoCrFeNi alloy to form gaseous chlorides in similar concentrations to that of the residual Ti-chlorides, no sign of etching were found according to the imaging of the sample cross-sections using SEM and TEM. Cross-section and top surface images further confirmed that the choice of substrate had no significant detrimental influence on the film growth or microstructure.
  •  
22.
  • Diaz de Zerio Mendaza, Amaia, 1986, et al. (författare)
  • A Fullerene Alloy Based Photovoltaic Blend with a Glass Transition Temperature above 200 °C
  • 2017
  • Ingår i: Journal of Materials Chemistry A. - 2050-7488 .- 2050-7496. ; 5:8, s. 4156-4162
  • Tidskriftsartikel (refereegranskat)abstract
    • Organic solar cells with a high degree of thermal stability require bulk-heterojunction blends that feature a high glass transition, which must occur considerably above the temperatures encountered during device fabrication and operation. Here, we demonstrate for the first time a polymer : fullerene blend with a glass transition temperature above 200 °C, which we determine by plasmonic nanospectroscopy. We achieve this strong tendency for glass formation through the use of an alloy of neat, unsubstituted C60 and C70, which we combine with the fluorothieno-benzodithiophene copolymer PTB7. A stable photovoltaic performance of PTB7 : C60 : C70 ternary blends is preserved despite annealing the active layer at up to 180 °C, which coincides with the onset of the glass transition. Rapid deterioration of the power conversion efficiency from initially above 5% only occurs upon exceeding the glass transition temperature of 224 °C of the ternary blend.
  •  
23.
  • Diaz de Zerio Mendaza, Amaia, 1986, et al. (författare)
  • High-Entropy Mixtures of Pristine Fullerenes for Solution-Processed Transistors and Solar Cells
  • 2015
  • Ingår i: Advanced Materials. - : Wiley. - 0935-9648 .- 1521-4095. ; 27:45, s. 7325-7331
  • Tidskriftsartikel (refereegranskat)abstract
    • The solubility of pristine fullerenes can be enhanced by mixing C60 and C70 due to the associated increase in configurational entropy. This "entropic dissolution" allows the preparation of field-effect transistors with an electron mobility of 1 cm2 V-1 s-1 and polymer solar cells with a highly reproducible power-conversion efficiency of 6%, as well as a thermally stable active layer.
  •  
24.
  • Diaz de Zerio Mendaza, Amaia, 1986, et al. (författare)
  • Neat C60:C70 buckminsterfullerene mixtures enhance polymer solar cell performance
  • 2014
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 2:35, s. 14354-14359
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate that bulk-heterojunction blends based on neat, unsubstituted buckminsterfullerenes (C60, C70) and a thiophene–quinoxaline copolymer (TQ1) can be readily processed from solution. Atomic force and transmission electron microscopy as well as photoluminescence spectroscopy reveal that thin films with a fine-grained nanostructure can be spin-coated, which display a good photovoltaic performance. Replacement of substituted fullerenes with C60 or C70 only results in a small drop in open-circuit voltage from 0.9 V to about 0.8 V. Thus, a power conversion efficiency of up to 2.9% can be maintained if C70 is used as the acceptor material. Further improvement in photovoltaic performance to 3.6% is achieved, accompanied by a high internal quantum efficiency of 75%, if a 1 : 1 C60:C70 mixture is used as the acceptor material, due to its improved solubility in ortho-dichlorobenzene.
  •  
25.
  • Gerdin Hulkko, Johan, et al. (författare)
  • Kinetics of the low-pressure chemical vapor deposited tungsten nitride process using tungsten hexafluoride and ammonia precursors
  • 2021
  • Ingår i: Journal of Vacuum Science and Technology A. - : American Vacuum Society. - 1520-8559 .- 0734-2101. ; 39:6, s. 063403-
  • Tidskriftsartikel (refereegranskat)abstract
    • Tungsten nitride (WNx) is a hard refractory material with low electrical resistance that can be deposited using multiple methods. This study focuses on the microstructrual development of low pressure chemical vapor deposition grown WNx coatings. Also, the growth kinetics is studied and discussed in terms of the resulting microstructures. Samples of WNx were deposited using WF6, NH3, and Ar at 592–887 K in a hot-wall reactor with variable gas mixture compositions (NH3:WF6 = 0.5–25). The coatings were nitrogen-rich (x ∼ 1.65) and oxygen-free as determined by time-of-flight-elastic recoil detection analysis. X-ray diffraction showed that the coatings transformed from being amorphous to crystallizing as β-W2N at 641–690 K. The morphologies changed with deposition temperature. Being very fine grained and nodular at deposition temperatures 740 K and below, increasing the deposition temperature to 789 K while employing a NH3:WF6 molar ratio of 1, large disc-shaped protrusions were formed. When increasing the NH3:WF6 molar ratio to 25, striped facets became increasingly dominant. Investigating the latter by transmission electron microscopy, a microstructure of smaller ridges formed by twinning, oriented as <211> in the out-of-plane direction, was revealed across the facet surfaces. Transmission Kikuchi diffraction confirmed that <211> was the texture of these coatings. The partial reaction order of WF6 and NH3 at 740 K was determined to be close to 1/6 and 1/2, respectively. The apparent activation energy ranged from 82 to 12 kJ/mol corresponding to deposition temperatures from 592 to 887 K.
  •  
26.
  •  
27.
  • Hagman, Henning, 1981, et al. (författare)
  • Plasmon-enhanced four-wave mixing by nanoholes in thin gold films
  • 2014
  • Ingår i: Optics Letters. - : Optical Society of America. - 0146-9592 .- 1539-4794. ; 39:4, s. 1001-1004
  • Tidskriftsartikel (refereegranskat)abstract
    • Nonlinear plasmonics opens up for wavelength conversion, reduced interaction/emission volumes, and nonlinear enhancement effects at the nanoscale with many compelling nanophotonic applications foreseen. We investigate nonlinear plasmonic responses of nanoholes in thin gold films by exciting the holes individually with tightly focused laser beams, employing a degenerated pump/probe and Stokes excitation scheme. Excitation of the holes results in efficient generation of both narrowband four-wave mixing (FWM) and broadband multiphoton excited luminescence, blueshifted relative to the excitation beams. Clear enhancements were observed when matching the pump/probe wavelength with the hole plasmon resonance. These observations show that the FWM generation is locally excited by nanoholes and has a resonant behavior primarily governed by the dimensions of the individual holes.
  •  
28.
  • Hashemi, Seyed Ehsan, 1986, et al. (författare)
  • Effect of compositional interlayers on the vertical electrical conductivity of Si-doped AlN/GaN distributed Bragg reflectors grown on SiC''
  • 2017
  • Ingår i: Applied Physics Express. - 1882-0786 .- 1882-0778. ; 10:5, s. 055501-
  • Tidskriftsartikel (refereegranskat)abstract
    • We have investigated the effect of strain-compensating interlayers on the vertical electrical conductivity of Si-doped AlN/GaN distributed Bragg reflectors (DBRs). Samples with 10.5 mirror pairs were grown through plasma-assisted molecular beam epitaxy on SiC. Room-temperature current–voltage characteristics were measured vertically in mesas through 8 of the 10.5 pairs. The sample with no interlayers yields a mean specific series resistance of 0.044 Ω cm2 at low current densities, while three samples with 5/5-Å-thick, 2/2-nm-thick, and graded interlayers have resistivities between 0.16 and 0.34 Ω cm2. Thus, interlayers impair vertical current transport, and they must be designed carefully when developing conductive DBRs.
  •  
29.
  • Hjort, Filip, 1991, et al. (författare)
  • Vertical Electrical Conductivity of ZnO/GaN Multilayers for Application in Distributed Bragg Reflectors
  • 2018
  • Ingår i: IEEE Journal of Quantum Electronics. - 0018-9197 .- 1558-1713. ; 54:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We have demonstrated an electrically conductive ZnO/GaN multilayer structure using hybrid plasma-assisted molecular beam epitaxy. Electrical I-V characteristics were measured through the top three pairs of a six pair ZnO/GaN sample. The total measured resistance was dominated by lateral and contact resistances, setting an upper limit of similar to 10(-4) Omega.cm(2) for the vertical specific series resistance of the stack. A strong contribution to the low resistance is the cancellation of spontaneous and piezoelectric polarization that occurs in the in- plane strained ZnO/GaN sample, as shown by electrical simulations. In addition, the simulations show that the actual vertical resistance of the sample could in fact be three orders of magnitude lower and that ZnO/GaN structures with thicknesses fulfilling the Bragg condition should have similar resistance. Our results suggest that ZnO/GaN distributed Bragg reflectors (DBRs) are a promising alternative to pure III-nitride DBRs in GaN-based vertical-cavity surface-emitting lasers.
  •  
30.
  • Hulkko, Johan G., et al. (författare)
  • Low-pressure CVD of (Ti-x,W1-x)Ny from WF6, TiCl4 and NH3
  • 2022
  • Ingår i: Surface & Coatings Technology. - : Elsevier BV. - 0257-8972 .- 1879-3347. ; 438
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work chemical vapour deposited (CVD) coatings of (Tix,W1-x)Ny from TiCl4, WF6, NH3 and Ar were investigated. This coating material has previously been deposited using other vacuum techniques but no publication has so far demonstrated CVD of (Tix,W1-x)Ny. The studied (Tix,W1-x)Ny coatings had a metallic molar ratio (Ti:W) close to 2:1 and 1:1, and were slightly over-stoichiometric with regard to N. The coatings appeared homogeneous and crystallised in a rock salt structure on an alpha-Al2O3 substrate. The cell parameter varied between 4.16 and 4.23 angstrom as a function of the deposition conditions, ranging from a pure TiNx to a pure WNx coating. The texture in the normal direction was (100) for the TiNx and (Tix,W1-x)Ny coatings and (111) for WNx. Electron backscattered diffraction (EBSD) results showed that a strong correlation to the substrate existed but random inplane orientation was also present. The microstructure showed columnar grains with well defined facets growing. Adding a mixture of TiCl4 and WF6 to produce (Tix,W1-x)Ny did increase the grain size significantly when compared to the case when only one metal precursor was present. The down-stream thickness profile, using only WF6 and NH3, displayed mass transport control behaviour, with the coating thickness converging to zero within the deposition zone. Using only TiCl4 on the other hand showed a uniform deposition profile, the signs of a surface kinetics controlled process.
  •  
31.
  • Kroon, Renee, 1982, et al. (författare)
  • A New Tetracyclic Lactam Building Block for Thick, Broad-Bandgap Photovoltaics
  • 2014
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society. - 0002-7863 .- 1520-5126. ; 136:33, s. 11578-11581
  • Tidskriftsartikel (refereegranskat)abstract
    • A new tetracyclic lactam building block for polymer semiconductors is reported that was designed to combine the many favorable properties that larger fused and/or amide-containing building blocks can induce, including improved solid-state packing, high charge carrier mobility, and improved charge separation. Copolymerization with thiophene resulted in a semicrystalline conjugated polymer, PTNT, with a broad bandgap of 2.2 eV. Grazing incidence wide-angle X-ray scattering of PTNT thin films revealed a strong tendency for face-on pi-stacking of the polymer backbone, which was retained in PTNT:firllerene blends. Corresponding solar cells featured a high open-circuit voltage of 0.9 V, a fill factor around 0.6, and a power conversion efficiency as high as 596 for greater than200 nm thick active layers, regardless of variations in blend stoichiometry and nanostructure. Moreover, efficiencies of greater than4% could be retained when thick active layers of similar to 400 rim were employed. Overall, these values are the highest reported for a conjugated polymer with such a broad bandgap and are unprecedented in materials for tandem and particularly ternary blend photovoltaics. Hence, the newly developed tetracyclic lactam unit has significant potential as a conjugated building block in future organic electronic materials.
  •  
32.
  • Lindqvist, Camilla, et al. (författare)
  • Fullerene mixtures enhance the thermal stability of a non-crystalline polymer solar cell blend
  • 2014
  • Ingår i: Applied Physics Letters. - : American Institute of Physics (AIP). - 0003-6951 .- 1077-3118. ; 104:15, s. 153301-
  • Tidskriftsartikel (refereegranskat)abstract
    • Printing of polymer: fullerene solar cells at high speed requires annealing at temperatures up to 140 degrees C. However, bulk-heterojunction blends that comprise a non-crystalline donor polymer often suffer from insufficient thermal stability and hence rapidly coarsen upon annealing above the glass transition temperature of the blend. In addition, micrometer-sized fullerene crystals grow, which are detrimental for the solar cell performance. In this manuscript, we present a strategy to limit fullerene crystallization, which is based on the use of fullerene mixtures of the two most common derivatives, PC61BM and PC71BM, as the acceptor material. Blends of this fullerene mixture and a non-crystalline thiophene-quinoxaline copolymer display considerably enhanced thermal stability and largely retain their photovoltaic performance upon annealing at elevated temperatures as high as 170 degrees C.
  •  
33.
  • Lindqvist, Camilla, 1985, et al. (författare)
  • Fullerene Nucleating Agents: A Route Towards Thermally Stable Photovoltaic Blends
  • 2014
  • Ingår i: Advanced Energy Materials. - : Wiley. - 1614-6840 .- 1614-6832. ; 4:9, s. 1301437-
  • Tidskriftsartikel (refereegranskat)abstract
    • The bulk-heterojunction nanostructure of non-crystalline polymer: fullerene blends has the tendency to rapidly coarsen when heated above its glass transition temperature, which represents an important degradation mechanism. We demonstrate that fullerene nucleating agents can be used to thermally arrest the nanostructure of photovoltaic blends that comprise a non-crystalline thiophene-quinoxaline copolymer and the widely used fullerene derivative [6,6]-phenyl-C-61-butyric acid methyl ester (PCBM). To this end, C-60 fullerene is employed to efficiently nucleate PCBM crystallization. Sub-micrometer-sized fullerene crystals are formed when as little as 2 wt% C-60 with respect to PCBM is added to the blend. These reach an average size of only 200 nanometers upon introduction of more than 8 wt% C-60. Solar cells based on C-60-nucleated blends indicate significantly improved thermal stability of the bulk-heterojunction nanostructure even after annealing at an elevated temperature of 130 degrees C, which lies above the glass transition temperature of the blend. Moreover, we find that various other compounds, including C-70 fullerene, single-walled carbon nanotubes, and sodium benzoate, as well as a number of commercial nucleating agents-commonly used to clarify isotactic polypropylene-permit to control crystallization of the fullerene phase.
  •  
34.
  • Lindqvist, Camilla, 1985, et al. (författare)
  • Nucleation-limited fullerene crystallisation in a polymer–fullerene bulk-heterojunction blend
  • 2013
  • Ingår i: Journal of Materials Chemistry A. - 2050-7488 .- 2050-7496. ; 1:24, s. 7174-7180
  • Tidskriftsartikel (refereegranskat)abstract
    • The nucleation and growth kinetics of fullerene crystals in thin films of a polymer:fullerene bulk-heterojunction blend are investigated. We find that both processes are strongly diffusion-limited at 100–110 °C due to the proximity to the glass transition temperatures of the blend components. Whereas the growth rate exponentially increases with temperature up to 230 °C, the nucleation rate displays a broad maximum around 150–170 °C, which coincides with the highest rate of fullerene crystallisation. A time-temperature-transformation (TTT) diagram reveals that across the investigated range of temperatures the low rate of nucleation is responsible for the formation of micrometre-sized crystals, which can be detrimental for polymer solar cells. Thus, we identify the lack of sufficient nucleation, which predominantly occurs on the substrate interface, as the origin of this important degradation mechanism.
  •  
35.
  • Lotze, Gudrun, et al. (författare)
  • In situ characterization of stresses, deformation and fracture of thin films using transmission X-ray nanodiffraction microscopy
  • 2024
  • Ingår i: Journal of Synchrotron Radiation. - 1600-5775 .- 0909-0495. ; 31:Pt 1, s. 42-54
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of hard X-ray transmission nano- and microdiffraction to perform in situ stress and strain measurements during deformation has recently been demonstrated and used to investigate many thin film systems. Here a newly commissioned sample environment based on a commercially available nanoindenter is presented, which is available at the NanoMAX beamline at the MAX IV synchrotron. Using X-ray nanoprobes of around 60-70 nm at 14-16 keV and a scanning step size of 100 nm, we map the strains, stresses, plastic deformation and fracture during nanoindentation of industrial coatings with thicknesses in the range of several micrometres, relatively strong texture and large grains. The successful measurements of such challenging samples illustrate broad applicability. The sample environment is openly accessible for NanoMAX beamline users through the MAX IV sample environment pool, and its capability can be further extended for specific purposes through additional available modules.
  •  
36.
  • Mayweg, David, 1986, et al. (författare)
  • Focused Ion Beam induced hydride formation does not affect Fe, Ni, Cr-clusters in irradiated Zircaloy-2
  • 2023
  • Ingår i: Journal of Nuclear Materials. - 0022-3115. ; 581
  • Tidskriftsartikel (refereegranskat)abstract
    • Room temperature focused ion beam (FIB) milling is known to potentially promote the formation of hydrides in zirconium and its alloys. We used atom probe tomography (APT) to determine the composition of irradiated and as-produced Zircaloy-2 fuel cladding. We consistently found ∼ 50 at% hydrogen in all room temperature FIB-milled specimens run in voltage pulsing APT measurements. Crystallographic analysis of APT data however showed slightly better agreement with δ-hydride (ZrH2, FCC, ∼ 60–66.7 at% H) than γ-hydride (ZrH, FCT, ∼ 50 at% H). Electron energy loos spectroscopy (EELS) measurements prior to APT analyses confirmed the presence of δ-hydride. Hence, APT gives a systematic underestimation of hydrogen for Zr-hydride. Milling at cryogenic temperatures was found to not cause such hydride formation. However, we did not find significant differences in the clusters formed by segregation of the alloying elements Fe, Cr and Ni to irradiation induced a-loops whether the material was identified as α-Zr or hydride. Therefore, analyzing irradiation-induced redistribution of alloying elements in Zr fuel cladding using APT does not rely on FIB preparation at cryogenic temperatures. However, in conjunction with voltage pulsing APT cryo-FIB can be worthwhile if one aims at investigating hydrogen distribution or hydrides.
  •  
37.
  • Shoja, Siamak, 1980, et al. (författare)
  • Microstructure investigation of textured CVD alumina coatings
  • 2020
  • Ingår i: International Journal of Refractory Metals and Hard Materials. - : Elsevier BV. - 0263-4368 .- 2213-3917. ; 87
  • Tidskriftsartikel (refereegranskat)abstract
    • This study concerns the interfacial microstructure and texture development in three textured CVD alpha-Al2O3 coatings using X-ray diffraction, transmission Kikuchi diffraction, scanning transmission electron microscopy and energy dispersive X-ray analysis. It is well known that the performance of these types of coatings relies on the degree and type of texture. The aim of this work is to study the microstructure of three different CVD alpha-Al2O3 layers when deposited onto a Ti(C,N,O) bonding layer. The coatings were deposited onto cemented carbide/cobalt substrates (WC/Co). It was observed that grain boundary diffusion of W and Co occurred through the TiN and Ti(C,N) layers to the bonding layer/alpha-Al2O3 interface. This may disturb the alumina layer nucleation and early growth. Interfacial porosity was observed at the bonding layer/alpha-Al2O3 interface. The number of voids that were detected in the (0001) and (01 (1) over bar0)-textured coatings was similar when H2S was not used during the initial deposition step. When H2S was present during the nucleation step deposition of the alpha-Al2O3 more voids were introduced at the interface for the (0001)-textured samples. The alumina grain morphology developed from small (similar to 100 nm) equiaxed grains at the start of the alumina coating to larger (several microns) columnar grains at the top of the coating. The inner part of the alumina coatings had a more random orientation. The texture changed either: (i) gradually over several grains, or (ii) more abruptly from one grain to another; from more random orientations to the desired texture. The desired texture develops earlier when using H2S at the start for the (0001)-textured coatings, while the (01 (1) over bar0)-texture development benefits from the absence of H2S. Thus, in this study, H2S promotes (0001) texture and interfacial void formation.
  •  
38.
  • Sun, Jie, 1977, et al. (författare)
  • Direct Chemical Vapor Deposition of Large-Area Carbon Thin Films on Gallium Nitride for Transparent Electrodes: A First Attempt
  • 2012
  • Ingår i: IEEE Transactions on Semiconductor Manufacturing. - : Institute of Electrical and Electronics Engineers (IEEE). - 0894-6507 .- 1558-2345. ; 25:3, s. 494-501
  • Tidskriftsartikel (refereegranskat)abstract
    • Direct formation of large-area carbon thin films on gallium nitride by chemical vapor deposition without metallic catalysts is demonstrated. A high flow of ammonia is used to stabilize the surface of the GaN (0001)/sapphire substrate during the deposition at 950 degrees C. Various characterization methods verify that the synthesized thin films are largely sp(2) bonded, macroscopically uniform, and electrically conducting. The carbon thin films possess optical transparencies comparable to that of exfoliated graphene. This paper offers a viable route toward the use of carbon-based materials for future transparent electrodes in III-nitride optoelectronics, such as GaN-based light emitting diodes and laser diodes.
  •  
39.
  • von Fieandt, Linus, et al. (författare)
  • Chemical vapor deposition of TiN on transition metal substrates
  • 2018
  • Ingår i: Surface and Coatings Technology. - : Elsevier BV. - 0257-8972 .- 1879-3347. ; 334, s. 373-383
  • Tidskriftsartikel (refereegranskat)abstract
    • The growth of chemical vapor deposited TiN from a reaction gas mixture of TiCl 4 , N 2 and H 2 was investigated on three different transition metal substrates: Fe, Co and Ni at deposition temperatures ranging from 850 °C to 950 °C. The interactions between the substrate metals and the gas phase were investigated using thermodynamic calculations. The TiN coatings were characterized by scanning electron microscopy, scanning transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy and transmission Kikuchi diffraction. Chemical vapor deposition (CVD) of TiN on Co substrates resulted in dense, columnar coatings of single phase TiN. The activation energy for TiN deposition on Co was determined to be 90 kJ/mol. CVD of TiN on Fe substrates caused severe substrate corrosion by the formation of gaseous FeCl x . Due to the substrate corrosion, the activation energy could not be determined. Furthermore, it was found that CVD of TiN on Ni substrates produced a phase mixture of TiN and Ni 3 Ti. Formation of Ni 3 Ti could be minimized by decreasing the H 2 partial pressure and increasing the N 2 partial pressure. Deposition on Ni yielded two different activation energies, 40 kJ/mol in the temperature interval 850 °C to 900 °C and 165 kJ/mol in the interval 900 °C to 950 °C. This is an indication of two different types of process control, which were identified as Ni diffusion into the growing film and a gas phase processes. The results of the present study showed that CVD of TiN on a cemented carbide using Fe and Ni in the binder phase, must be optimized in order to avoid corrosion or unwanted phases. Methods to achieve this are presented in this paper.
  •  
40.
  • Zhang, Yaqian, et al. (författare)
  • Measuring residual stresses in individual on-chip interconnects using synchrotron nanodiffraction
  • 2024
  • Ingår i: Applied Physics Letters. - 0003-6951 .- 1077-3118. ; 124:8
  • Tidskriftsartikel (refereegranskat)abstract
    • As the dimensions of interconnects in integrated circuits continue to shrink, an urgent need arises to understand the physical mechanism associated with electromigration. Using x-ray nanodiffraction, we analyzed the stresses in Blech-structured pure Cu lines subjected to different electromigration conditions. The results suggest that the measured residual stresses in the early stages of electromigration are related to relaxation of stresses caused by thermal expansion mismatch, while a developing current-induced stress leads to reductions in the residual stress after longer test times. These findings not only validate the feasibility of measuring stress in copper lines using nanodiffraction but also highlight the need for a further understanding, particularly through in situ electromigration experiments with x-ray nanodiffraction analysis.
  •  
41.
  • Öhman, Sebastian, 1991-, et al. (författare)
  • Selective kinetic growth and role of local coordination in forming Al2TiO5-based coatings at lower temperatures
  • 2021
  • Ingår i: Materials Advances. - : Royal Society of Chemistry. - 2633-5409. ; 2:17, s. 5737-5751
  • Tidskriftsartikel (refereegranskat)abstract
    • Negative thermal expansion is an elusive property found among certain materials, whose potential applications have remained limited due to the many challenges faced in their synthesis. Herein, we report the successful formation of aluminium titanate-based coatings (Al2TiO5), a material renowned for its low-to-negative thermal expansion, by the co-deposition of aluminium-isopropoxide and titanium-isopropoxide in a hot-wall chemical vapour deposition instrument. While coatings grown at 450 °C were amorphous as-deposited, a short-range order into the Al2TiO5-phase was found and analysed by using Raman spectroscopy. Upon subsequent annealing at 700 °C for 3 hours, crystalline coatings were achieved without forming any binary phases. The selective synthesis of the Al2TiO5 phase is ascribed to the precursors’ inherent chemical similarities, resulting in a kinetic targeting of this phase and a short-range homogeneity, entailing its preferred crystallisation. The role of local coordination is expressed by demonstrating the formation of intergrowth phases ascribed to lower coordinating interstices in the compound. Both the formation and crystallisation temperatures reported herein, as well as the timescales needed for the synthesises, are considerably lower than any conventional adopted solid-state techniques used so far to attain the Al2TiO5 phase.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-41 av 41
Typ av publikation
tidskriftsartikel (39)
doktorsavhandling (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (40)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Olsson, Eva, 1960 (16)
Andersson, Mats, 196 ... (12)
Müller, Christian, 1 ... (12)
Wang, Ergang, 1981 (11)
Inganäs, Olle (8)
Gustafsson, Stefan, ... (8)
visa fler...
Andrén, Hans-Olof, 1 ... (8)
Hörnqvist Colliander ... (4)
Haglund, Åsa, 1976 (3)
Ive, Tommy, 1968 (3)
Boman, Mats (3)
Norgren, S (3)
Xu, Xiaofeng, 1984 (3)
Sanz-Velasco, Anke, ... (3)
Adolph, David, 1971 (2)
Larsson, Henrik (2)
Lindahl, Erik (2)
Lindahl, E (2)
Gao, Feng (2)
Fahlman, Mats (1)
Sun, Jie, 1977 (1)
Ruban, Andrei V. (1)
Tang, Z. (1)
Liu, Johan, 1960 (1)
Aboulfadl, Hisham, 1 ... (1)
Thuvander, Mattias, ... (1)
Nordstierna, Lars, 1 ... (1)
Persson, Petter (1)
Melianas, Armantas (1)
Lara Avila, Samuel, ... (1)
Larsson, T (1)
Panas, Itai, 1959 (1)
Kubatkin, Sergey, 19 ... (1)
Törndahl, Tobias, 19 ... (1)
Larsson, Anders, 195 ... (1)
Enejder, Annika, 196 ... (1)
Desmaris, Vincent, 1 ... (1)
Höök, Fredrik, 1966 (1)
Yakimova, Rositsa (1)
Edvinsson, Tomas, Pr ... (1)
Langhammer, Christop ... (1)
Nugroho, Ferry, 1986 (1)
Sattari, Mohammad, 1 ... (1)
Meledin, Denis, 1974 (1)
Balasubramanian, T. (1)
Hedström, Svante (1)
Stark, A (1)
Yurgens, Avgust, 195 ... (1)
Stattin, Martin, 198 ... (1)
Zakharov, A. A. (1)
visa färre...
Lärosäte
Chalmers tekniska högskola (41)
Linköpings universitet (9)
Lunds universitet (6)
Uppsala universitet (5)
Kungliga Tekniska Högskolan (3)
Språk
Engelska (41)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (34)
Teknik (29)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy