SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(BURCH R) "

Sökning: WFRF:(BURCH R)

  • Resultat 1-50 av 201
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wang, H. D., et al. (författare)
  • Global, regional, and national under-5 mortality, adult mortality, age-specific mortality, and life expectancy, 1970-2016: a systematic analysis for the Global Burden of Disease Study 2016
  • 2017
  • Ingår i: Lancet. - 0140-6736 .- 1474-547X. ; 390:10100, s. 1084-1150
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Detailed assessments of mortality patterns, particularly age-specific mortality, represent a crucial input that enables health systems to target interventions to specific populations. Understanding how all-cause mortality has changed with respect to development status can identify exemplars for best practice. To accomplish this, the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) estimated age-specific and sex-specific all-cause mortality between 1970 and 2016 for 195 countries and territories and at the subnational level for the five countries with a population greater than 200 million in 2016. Methods We have evaluated how well civil registration systems captured deaths using a set of demographic methods called death distribution methods for adults and from consideration of survey and census data for children younger than 5 years. We generated an overall assessment of completeness of registration of deaths by dividing registered deaths in each location-year by our estimate of all-age deaths generated from our overall estimation process. For 163 locations, including subnational units in countries with a population greater than 200 million with complete vital registration (VR) systems, our estimates were largely driven by the observed data, with corrections for small fluctuations in numbers and estimation for recent years where there were lags in data reporting (lags were variable by location, generally between 1 year and 6 years). For other locations, we took advantage of different data sources available to measure under-5 mortality rates (U5MR) using complete birth histories, summary birth histories, and incomplete VR with adjustments; we measured adult mortality rate (the probability of death in individuals aged 15-60 years) using adjusted incomplete VR, sibling histories, and household death recall. We used the U5MR and adult mortality rate, together with crude death rate due to HIV in the GBD model life table system, to estimate age-specific and sex-specific death rates for each location-year. Using various international databases, we identified fatal discontinuities, which we defined as increases in the death rate of more than one death per million, resulting from conflict and terrorism, natural disasters, major transport or technological accidents, and a subset of epidemic infectious diseases; these were added to estimates in the relevant years. In 47 countries with an identified peak adult prevalence for HIV/AIDS of more than 0.5% and where VR systems were less than 65% complete, we informed our estimates of age-sex-specific mortality using the Estimation and Projection Package (EPP)-Spectrum model fitted to national HIV/AIDS prevalence surveys and antenatal clinic serosurveillance systems. We estimated stillbirths, early neonatal, late neonatal, and childhood mortality using both survey and VR data in spatiotemporal Gaussian process regression models. We estimated abridged life tables for all location-years using age-specific death rates. We grouped locations into development quintiles based on the Sociodemographic Index (SDI) and analysed mortality trends by quintile. Using spline regression, we estimated the expected mortality rate for each age-sex group as a function of SDI. We identified countries with higher life expectancy than expected by comparing observed life expectancy to anticipated life expectancy on the basis of development status alone. Findings Completeness in the registration of deaths increased from 28% in 1970 to a peak of 45% in 2013; completeness was lower after 2013 because of lags in reporting. Total deaths in children younger than 5 years decreased from 1970 to 2016, and slower decreases occurred at ages 5-24 years. By contrast, numbers of adult deaths increased in each 5-year age bracket above the age of 25 years. The distribution of annualised rates of change in age-specific mortality rate differed over the period 2000 to 2016 compared with earlier decades: increasing annualised rates of change were less frequent, although rising annualised rates of change still occurred in some locations, particularly for adolescent and younger adult age groups. Rates of stillbirths and under-5 mortality both decreased globally from 1970. Evidence for global convergence of death rates was mixed; although the absolute difference between age-standardised death rates narrowed between countries at the lowest and highest levels of SDI, the ratio of these death rates-a measure of relative inequality-increased slightly. There was a strong shift between 1970 and 2016 toward higher life expectancy, most noticeably at higher levels of SDI. Among countries with populations greater than 1 million in 2016, life expectancy at birth was highest for women in Japan, at 86.9 years (95% UI 86.7-87.2), and for men in Singapore, at 81.3 years (78.8-83.7) in 2016. Male life expectancy was generally lower than female life expectancy between 1970 and 2016, and the gap between male and female life expectancy increased with progression to higher levels of SDI. Some countries with exceptional health performance in 1990 in terms of the difference in observed to expected life expectancy at birth had slower progress on the same measure in 2016. Interpretation Globally, mortality rates have decreased across all age groups over the past five decades, with the largest improvements occurring among children younger than 5 years. However, at the national level, considerable heterogeneity remains in terms of both level and rate of changes in age-specific mortality; increases in mortality for certain age groups occurred in some locations. We found evidence that the absolute gap between countries in age-specific death rates has declined, although the relative gap for some age-sex groups increased. Countries that now lead in terms of having higher observed life expectancy than that expected on the basis of development alone, or locations that have either increased this advantage or rapidly decreased the deficit from expected levels, could provide insight into the means to accelerate progress in nations where progress has stalled. Copyright (C) The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Vos, Theo, et al. (författare)
  • Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013
  • 2015
  • Ingår i: The Lancet. - 1474-547X .- 0140-6736. ; 386:9995, s. 743-800
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Up-to-date evidence about levels and trends in disease and injury incidence, prevalence, and years lived with disability (YLDs) is an essential input into global, regional, and national health policies. In the Global Burden of Disease Study 2013 (GBD 2013), we estimated these quantities for acute and chronic diseases and injuries for 188 countries between 1990 and 2013. Methods Estimates were calculated for disease and injury incidence, prevalence, and YLDs using GBD 2010 methods with some important refinements. Results for incidence of acute disorders and prevalence of chronic disorders are new additions to the analysis. Key improvements include expansion to the cause and sequelae list, updated systematic reviews, use of detailed injury codes, improvements to the Bayesian meta-regression method (DisMod-MR), and use of severity splits for various causes. An index of data representativeness, showing data availability, was calculated for each cause and impairment during three periods globally and at the country level for 2013. In total, 35 620 distinct sources of data were used and documented to calculated estimates for 301 diseases and injuries and 2337 sequelae. The comorbidity simulation provides estimates for the number of sequelae, concurrently, by individuals by country, year, age, and sex. Disability weights were updated with the addition of new population-based survey data from four countries. Findings Disease and injury were highly prevalent; only a small fraction of individuals had no sequelae. Comorbidity rose substantially with age and in absolute terms from 1990 to 2013. Incidence of acute sequelae were predominantly infectious diseases and short-term injuries, with over 2 billion cases of upper respiratory infections and diarrhoeal disease episodes in 2013, with the notable exception of tooth pain due to permanent caries with more than 200 million incident cases in 2013. Conversely, leading chronic sequelae were largely attributable to non-communicable diseases, with prevalence estimates for asymptomatic permanent caries and tension-type headache of 2.4 billion and 1.6 billion, respectively. The distribution of the number of sequelae in populations varied widely across regions, with an expected relation between age and disease prevalence. YLDs for both sexes increased from 537.6 million in 1990 to 764.8 million in 2013 due to population growth and ageing, whereas the age-standardised rate decreased little from 114.87 per 1000 people to 110.31 per 1000 people between 1990 and 2013. Leading causes of YLDs included low back pain and major depressive disorder among the top ten causes of YLDs in every country. YLD rates per person, by major cause groups, indicated the main drivers of increases were due to musculoskeletal, mental, and substance use disorders, neurological disorders, and chronic respiratory diseases; however HIV/AIDS was a notable driver of increasing YLDs in sub-Saharan Africa. Also, the proportion of disability-adjusted life years due to YLDs increased globally from 21.1% in 1990 to 31.2% in 2013. Interpretation Ageing of the world's population is leading to a substantial increase in the numbers of individuals with sequelae of diseases and injuries. Rates of YLDs are declining much more slowly than mortality rates. The non-fatal dimensions of disease and injury will require more and more attention from health systems. The transition to non-fatal outcomes as the dominant source of burden of disease is occurring rapidly outside of sub-Saharan Africa. Our results can guide future health initiatives through examination of epidemiological trends and a better understanding of variation across countries.
  •  
6.
  • Forouzanfar, Mohammad H, et al. (författare)
  • Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990-2013 : a systematic analysis for the Global Burden of Disease Study 2013.
  • 2015
  • Ingår i: The Lancet. - 0140-6736 .- 1474-547X. ; 386:10010, s. 2287-2323
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The Global Burden of Disease, Injuries, and Risk Factor study 2013 (GBD 2013) is the first of a series of annual updates of the GBD. Risk factor quantification, particularly of modifiable risk factors, can help to identify emerging threats to population health and opportunities for prevention. The GBD 2013 provides a timely opportunity to update the comparative risk assessment with new data for exposure, relative risks, and evidence on the appropriate counterfactual risk distribution.METHODS: Attributable deaths, years of life lost, years lived with disability, and disability-adjusted life-years (DALYs) have been estimated for 79 risks or clusters of risks using the GBD 2010 methods. Risk-outcome pairs meeting explicit evidence criteria were assessed for 188 countries for the period 1990-2013 by age and sex using three inputs: risk exposure, relative risks, and the theoretical minimum risk exposure level (TMREL). Risks are organised into a hierarchy with blocks of behavioural, environmental and occupational, and metabolic risks at the first level of the hierarchy. The next level in the hierarchy includes nine clusters of related risks and two individual risks, with more detail provided at levels 3 and 4 of the hierarchy. Compared with GBD 2010, six new risk factors have been added: handwashing practices, occupational exposure to trichloroethylene, childhood wasting, childhood stunting, unsafe sex, and low glomerular filtration rate. For most risks, data for exposure were synthesised with a Bayesian meta-regression method, DisMod-MR 2.0, or spatial-temporal Gaussian process regression. Relative risks were based on meta-regressions of published cohort and intervention studies. Attributable burden for clusters of risks and all risks combined took into account evidence on the mediation of some risks such as high body-mass index (BMI) through other risks such as high systolic blood pressure and high cholesterol.FINDINGS: All risks combined account for 57·2% (95% uncertainty interval [UI] 55·8-58·5) of deaths and 41·6% (40·1-43·0) of DALYs. Risks quantified account for 87·9% (86·5-89·3) of cardiovascular disease DALYs, ranging to a low of 0% for neonatal disorders and neglected tropical diseases and malaria. In terms of global DALYs in 2013, six risks or clusters of risks each caused more than 5% of DALYs: dietary risks accounting for 11·3 million deaths and 241·4 million DALYs, high systolic blood pressure for 10·4 million deaths and 208·1 million DALYs, child and maternal malnutrition for 1·7 million deaths and 176·9 million DALYs, tobacco smoke for 6·1 million deaths and 143·5 million DALYs, air pollution for 5·5 million deaths and 141·5 million DALYs, and high BMI for 4·4 million deaths and 134·0 million DALYs. Risk factor patterns vary across regions and countries and with time. In sub-Saharan Africa, the leading risk factors are child and maternal malnutrition, unsafe sex, and unsafe water, sanitation, and handwashing. In women, in nearly all countries in the Americas, north Africa, and the Middle East, and in many other high-income countries, high BMI is the leading risk factor, with high systolic blood pressure as the leading risk in most of Central and Eastern Europe and south and east Asia. For men, high systolic blood pressure or tobacco use are the leading risks in nearly all high-income countries, in north Africa and the Middle East, Europe, and Asia. For men and women, unsafe sex is the leading risk in a corridor from Kenya to South Africa.INTERPRETATION: Behavioural, environmental and occupational, and metabolic risks can explain half of global mortality and more than one-third of global DALYs providing many opportunities for prevention. Of the larger risks, the attributable burden of high BMI has increased in the past 23 years. In view of the prominence of behavioural risk factors, behavioural and social science research on interventions for these risks should be strengthened. Many prevention and primary care policy options are available now to act on key risks.FUNDING: Bill & Melinda Gates Foundation.
  •  
7.
  • Naghavi, Mohsen, et al. (författare)
  • Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013
  • 2015
  • Ingår i: The Lancet. - 1474-547X .- 0140-6736. ; 385:9963, s. 117-171
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Up-to-date evidence on levels and trends for age-sex-specifi c all-cause and cause-specifi c mortality is essential for the formation of global, regional, and national health policies. In the Global Burden of Disease Study 2013 (GBD 2013) we estimated yearly deaths for 188 countries between 1990, and 2013. We used the results to assess whether there is epidemiological convergence across countries. Methods We estimated age-sex-specifi c all-cause mortality using the GBD 2010 methods with some refinements to improve accuracy applied to an updated database of vital registration, survey, and census data. We generally estimated cause of death as in the GBD 2010. Key improvements included the addition of more recent vital registration data for 72 countries, an updated verbal autopsy literature review, two new and detailed data systems for China, and more detail for Mexico, UK, Turkey, and Russia. We improved statistical models for garbage code redistribution. We used six different modelling strategies across the 240 causes; cause of death ensemble modelling (CODEm) was the dominant strategy for causes with sufficient information. Trends for Alzheimer's disease and other dementias were informed by meta-regression of prevalence studies. For pathogen-specifi c causes of diarrhoea and lower respiratory infections we used a counterfactual approach. We computed two measures of convergence (inequality) across countries: the average relative difference across all pairs of countries (Gini coefficient) and the average absolute difference across countries. To summarise broad findings, we used multiple decrement life-tables to decompose probabilities of death from birth to exact age 15 years, from exact age 15 years to exact age 50 years, and from exact age 50 years to exact age 75 years, and life expectancy at birth into major causes. For all quantities reported, we computed 95% uncertainty intervals (UIs). We constrained cause-specific fractions within each age-sex-country-year group to sum to all-cause mortality based on draws from the uncertainty distributions. Findings Global life expectancy for both sexes increased from 65.3 years (UI 65.0-65.6) in 1990, to 71.5 years (UI 71.0-71.9) in 2013, while the number of deaths increased from 47.5 million (UI 46.8-48.2) to 54.9 million (UI 53.6-56.3) over the same interval. Global progress masked variation by age and sex: for children, average absolute diff erences between countries decreased but relative diff erences increased. For women aged 25-39 years and older than 75 years and for men aged 20-49 years and 65 years and older, both absolute and relative diff erences increased. Decomposition of global and regional life expectancy showed the prominent role of reductions in age-standardised death rates for cardiovascular diseases and cancers in high-income regions, and reductions in child deaths from diarrhoea, lower respiratory infections, and neonatal causes in low-income regions. HIV/AIDS reduced life expectancy in southern sub-Saharan Africa. For most communicable causes of death both numbers of deaths and age-standardised death rates fell whereas for most non-communicable causes, demographic shifts have increased numbers of deaths but decreased age-standardised death rates. Global deaths from injury increased by 10.7%, from 4.3 million deaths in 1990 to 4.8 million in 2013; but age-standardised rates declined over the same period by 21%. For some causes of more than 100 000 deaths per year in 2013, age-standardised death rates increased between 1990 and 2013, including HIV/AIDS, pancreatic cancer, atrial fibrillation and flutter, drug use disorders, diabetes, chronic kidney disease, and sickle-cell anaemias. Diarrhoeal diseases, lower respiratory infections, neonatal causes, and malaria are still in the top five causes of death in children younger than 5 years. The most important pathogens are rotavirus for diarrhoea and pneumococcus for lower respiratory infections. Country-specific probabilities of death over three phases of life were substantially varied between and within regions. Interpretation For most countries, the general pattern of reductions in age-sex specifi c mortality has been associated with a progressive shift towards a larger share of the remaining deaths caused by non-communicable disease and injuries. Assessing epidemiological convergence across countries depends on whether an absolute or relative measure of inequality is used. Nevertheless, age-standardised death rates for seven substantial causes are increasing, suggesting the potential for reversals in some countries. Important gaps exist in the empirical data for cause of death estimates for some countries; for example, no national data for India are available for the past decade.
  •  
8.
  • Newton, J. N., et al. (författare)
  • Changes in health in England, with analysis by English regions and areas of deprivation, 1990-2013 : A systematic analysis for the Global Burden of Disease Study 2013
  • 2015
  • Ingår i: The Lancet. - : Lancet Publishing Group. - 0140-6736 .- 1474-547X. ; 386:10010, s. 2257-2274
  • Tidskriftsartikel (refereegranskat)abstract
    • Background In the Global Burden of Disease Study 2013 (GBD 2013), knowledge about health and its determinants has been integrated into a comparable framework to inform health policy. Outputs of this analysis are relevant to current policy questions in England and elsewhere, particularly on health inequalities. We use GBD 2013 data on mortality and causes of death, and disease and injury incidence and prevalence to analyse the burden of disease and injury in England as a whole, in English regions, and within each English region by deprivation quintile. We also assess disease and injury burden in England attributable to potentially preventable risk factors. England and the English regions are compared with the remaining constituent countries of the UK and with comparable countries in the European Union (EU) and beyond. Methods We extracted data from the GBD 2013 to compare mortality, causes of death, years of life lost (YLLs), years lived with a disability (YLDs), and disability-adjusted life-years (DALYs) in England, the UK, and 18 other countries (the first 15 EU members [apart from the UK] and Australia, Canada, Norway, and the USA [EU15+]). We extended elements of the analysis to English regions, and subregional areas defined by deprivation quintile (deprivation areas). We used data split by the nine English regions (corresponding to the European boundaries of the Nomenclature for Territorial Statistics level 1 [NUTS 1] regions), and by quintile groups within each English region according to deprivation, thereby making 45 regional deprivation areas. Deprivation quintiles were defined by area of residence ranked at national level by Index of Multiple Deprivation score, 2010. Burden due to various risk factors is described for England using new GBD methodology to estimate independent and overlapping attributable risk for five tiers of behavioural, metabolic, and environmental risk factors. We present results for 306 causes and 2337 sequelae, and 79 risks or risk clusters. Findings Between 1990 and 2013, life expectancy from birth in England increased by 5·4 years (95% uncertainty interval 5·0-5·8) from 75·9 years (75·9-76·0) to 81·3 years (80·9-81·7); gains were greater for men than for women. Rates of age-standardised YLLs reduced by 41·1% (38·3-43·6), whereas DALYs were reduced by 23·8% (20·9-27·1), and YLDs by 1·4% (0·1-2·8). For these measures, England ranked better than the UK and the EU15+ means. Between 1990 and 2013, the range in life expectancy among 45 regional deprivation areas remained 8·2 years for men and decreased from 7·2 years in 1990 to 6·9 years in 2013 for women. In 2013, the leading cause of YLLs was ischaemic heart disease, and the leading cause of DALYs was low back and neck pain. Known risk factors accounted for 39·6% (37·7-41·7) of DALYs; leading behavioural risk factors were suboptimal diet (10·8% [9·1-12·7]) and tobacco (10·7% [9·4-12·0]). Interpretation Health in England is improving although substantial opportunities exist for further reductions in the burden of preventable disease. The gap in mortality rates between men and women has reduced, but marked health inequalities between the least deprived and most deprived areas remain. Declines in mortality have not been matched by similar declines in morbidity, resulting in people living longer with diseases. Health policies must therefore address the causes of ill health as well as those of premature mortality. Systematic action locally and nationally is needed to reduce risk exposures, support healthy behaviours, alleviate the severity of chronic disabling disorders, and mitigate the effects of socioeconomic deprivation. Funding Bill & Melinda Gates Foundation and Public Health England. © 2015 Newton et al. Open Access article distributed under the terms of CC BY.
  •  
9.
  •  
10.
  • Le Contel, O., et al. (författare)
  • Lower Hybrid Drift Waves and Electromagnetic Electron Space-Phase Holes Associated With Dipolarization Fronts and Field-Aligned Currents Observed by the Magnetospheric Multiscale Mission During a Substorm
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 122:12, s. 12236-12257
  • Tidskriftsartikel (refereegranskat)abstract
    • We analyze two ion scale dipolarization fronts associated with field-aligned currents detected by the Magnetospheric Multiscale mission during a large substorm on 10 August 2016. The first event corresponds to a fast dawnward flow with an antiparallel current and could be generated by the wake of a previous fast earthward flow. It is associated with intense lower hybrid drift waves detected at the front and propagating dawnward with a perpendicular phase speed close to the electric drift and the ion thermal velocity. The second event corresponds to a flow reversal: from southwward/dawnward to northward/duskward associated with a parallel current consistent with a brief expansion of the plasma sheet before the front crossing and with a smaller lower hybrid drift wave activity. Electromagnetic electron phase-space holes are detected near these low-frequency drift waves during both events. The drift waves could accelerate electrons parallel to the magnetic field and produce the parallel electron drift needed to generate the electron holes. Yet we cannot rule out the possibility that the drift waves are produced by the antiparallel current associated with the fast flows, leaving the source for the electron holes unexplained.
  •  
11.
  • Breuillard, H., et al. (författare)
  • The Properties of Lion Roars and Electron Dynamics in Mirror Mode Waves Observed by the Magnetospheric MultiScale Mission
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 123:1, s. 93-103
  • Tidskriftsartikel (refereegranskat)abstract
    • Mirror mode waves are ubiquitous in the Earth's magnetosheath, in particular behind the quasi-perpendicular shock. Embedded in these nonlinear structures, intense lion roars are often observed. Lion roars are characterized by whistler wave packets at a frequency similar to 100Hz, which are thought to be generated in the magnetic field minima. In this study, we make use of the high time resolution instruments on board the Magnetospheric MultiScale mission to investigate these waves and the associated electron dynamics in the quasi-perpendicular magnetosheath on 22 January 2016. We show that despite a core electron parallel anisotropy, lion roars can be generated locally in the range 0.05-0.2f(ce) by the perpendicular anisotropy of electrons in a particular energy range. We also show that intense lion roars can be observed up to higher frequencies due to the sharp nonlinear peaks of the signal, which appear as sharp spikes in the dynamic spectra. As a result, a high sampling rate is needed to estimate correctly their amplitude, and the latter might have been underestimated in previous studies using lower time resolution instruments. We also present for the first-time 3-D high time resolution electron velocity distribution functions in mirror modes. We demonstrate that the dynamics of electrons trapped in the mirror mode structures are consistent with the Kivelson and Southwood (1996) model. However, these electrons can also interact with the embedded lion roars: first signatures of electron quasi-linear pitch angle diffusion and possible signatures of nonlinear interaction with high-amplitude wave packets are presented. These processes can lead to electron untrapping from mirror modes.
  •  
12.
  • Eastwood, J. P., et al. (författare)
  • Ion-scale secondary flux ropes generated by magnetopause reconnection as resolved by MMS
  • 2016
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 43:10, s. 4716-4724
  • Tidskriftsartikel (refereegranskat)abstract
    • New Magnetospheric Multiscale (MMS) observations of small-scale (similar to 7 ion inertial length radius) flux transfer events (FTEs) at the dayside magnetopause are reported. The 10 km MMS tetrahedron size enables their structure and properties to be calculated using a variety of multispacecraft techniques, allowing them to be identified as flux ropes, whose flux content is small (similar to 22 kWb). The current density, calculated using plasma and magnetic field measurements independently, is found to be filamentary. Intercomparison of the plasma moments with electric and magnetic field measurements reveals structured non-frozen-in ion behavior. The data are further compared with a particle-in-cell simulation. It is concluded that these small-scale flux ropes, which are not seen to be growing, represent a distinct class of FTE which is generated on the magnetopause by secondary reconnection.
  •  
13.
  • Grun, E., et al. (författare)
  • The 2016 Feb 19 outburst of comet 67P/CG : an ESA Rosetta multi-instrument study
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 462, s. S220-S234
  • Tidskriftsartikel (refereegranskat)abstract
    • On 2016 Feb 19, nine Rosetta instruments serendipitously observed an outburst of gas and dust from the nucleus of comet 67P/Churyumov-Gerasimenko. Among these instruments were cameras and spectrometers ranging from UV over visible to microwave wavelengths, in situ gas, dust and plasma instruments, and one dust collector. At 09: 40 a dust cloud developed at the edge of an image in the shadowed region of the nucleus. Over the next two hours the instruments recorded a signature of the outburst that significantly exceeded the background. The enhancement ranged from 50 per cent of the neutral gas density at Rosetta to factors > 100 of the brightness of the coma near the nucleus. Dust related phenomena (dust counts or brightness due to illuminated dust) showed the strongest enhancements (factors > 10). However, even the electron density at Rosetta increased by a factor 3 and consequently the spacecraft potential changed from similar to-16 V to -20 V during the outburst. A clear sequence of events was observed at the distance of Rosetta ( 34 km from the nucleus): within 15 min the Star Tracker camera detected fast particles (similar to 25 m s(-1)) while 100 mu m radius particles were detected by the GIADA dust instrument similar to 1 h later at a speed of 6 m s(-1). The slowest were individual mm to cm sized grains observed by the OSIRIS cameras. Although the outburst originated just outside the FOV of the instruments, the source region and the magnitude of the outburst could be determined.
  •  
14.
  • Khotyaintsev, Yuri V., et al. (författare)
  • Electron jet of asymmetric reconnection
  • 2016
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:11, s. 5571-5580
  • Tidskriftsartikel (refereegranskat)abstract
    • We present Magnetospheric Multiscale observations of an electron-scale current sheet and electron outflow jet for asymmetric reconnection with guide field at the subsolar magnetopause. The electron jet observed within the reconnection region has an electron Mach number of 0.35 and is associated with electron agyrotropy. The jet is unstable to an electrostatic instability which generates intense waves with E-vertical bar amplitudes reaching up to 300mVm(-1) and potentials up to 20% of the electron thermal energy. We see evidence of interaction between the waves and the electron beam, leading to quick thermalization of the beam and stabilization of the instability. The wave phase speed is comparable to the ion thermal speed, suggesting that the instability is of Buneman type, and therefore introduces electron-ion drag and leads to braking of the electron flow. Our observations demonstrate that electrostatic turbulence plays an important role in the electron-scale physics of asymmetric reconnection.
  •  
15.
  • Nakamura, R., et al. (författare)
  • Transient, small-scale field-aligned currents in the plasma sheet boundary layer during storm time substorms
  • 2016
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 43:10, s. 4841-4849
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on field-aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small-scale field-aligned currents were found embedded in fluctuating PSBL flux tubes near the separatrix region. We resolve, for the first time, short-lived earthward (downward) intense field-aligned current sheets with thicknesses of a few tens of kilometers, which are well below the ion scale, on flux tubes moving equatorward/earthward during outward plasma sheet expansion. They coincide with upward field-aligned electron beams with energies of a few hundred eV. These electrons are most likely due to acceleration associated with a reconnection jet or high-energy ion beam-produced disturbances. The observations highlight coupling of multiscale processes in PSBL as a consequence of magnetotail reconnection.
  •  
16.
  • Torbert, R. B., et al. (författare)
  • Electron-scale dynamics of the diffusion region during symmetric magnetic reconnection in space
  • 2018
  • Ingår i: Science. - : AMER ASSOC ADVANCEMENT SCIENCE. - 0036-8075 .- 1095-9203. ; 362:6421, s. 1391-1395
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetic reconnection is an energy conversion process that occurs in many astrophysical contexts including Earth's magnetosphere, where the process can be investigated in situ by spacecraft. On 11 July 2017, the four Magnetospheric Multiscale spacecraft encountered a reconnection site in Earth's magnetotail, where reconnection involves symmetric inflow conditions. The electron-scale plasma measurements revealed (i) super-Alfvenic electron jets reaching 15,000 kilometers per second; (ii) electron meandering motion and acceleration by the electric field, producing multiple crescent-shaped structures in the velocity distributions; and (iii) the spatial dimensions of the electron diffusion region with an aspect ratio of 0.1 to 0.2, consistent with fast reconnection. The well-structured multiple layers of electron populations indicate that the dominant electron dynamics are mostly laminar, despite the presence of turbulence near the reconnection site.
  •  
17.
  • Zhou, M., et al. (författare)
  • Observations of an Electron Diffusion Region in Symmetric Reconnection with Weak Guide Field
  • 2019
  • Ingår i: Astrophysical Journal. - : IOP PUBLISHING LTD. - 0004-637X .- 1538-4357. ; 870:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Magnetospheric Multiscale spacecraft encountered an electron diffusion region (EDR) in a symmetric reconnection in the Earth's magnetotail. The EDR contained a guide field of about 2 nT, which was 13% of the magnetic field in the inflow region, and its thickness was about 2 local electron inertial lengths. Intense energy dissipation, a super-Alfvenic electron jet, electron nongyrotropy, and crescent-shaped electron velocity distributions were observed in association with this EDR. These features are similar to those of the EDRs in asymmetric reconnection at the dayside magnetopause. Electrons gained about 50% of their energy from the immediate upstream to the EDR. Crescent electron distributions were seen at the boundary of the EDR, while highly curved magnetic field lines inside the EDR may have gyrotropized the electrons. The EDR was characterized by a parallel current that was carried by antiparallel drifting electrons that were probably accelerated by a parallel electric field along the guide field. These results reveal the essential electron physics of the EDR and provide a significant example of an EDR in symmetric reconnection with a weak guide field.
  •  
18.
  • Alqeeq, S. W., et al. (författare)
  • Investigation of the homogeneity of energy conversion processes at dipolarization fronts from MMS measurements
  • 2022
  • Ingår i: Physics of Plasmas. - : American Institute of Physics (AIP). - 1070-664X .- 1089-7674. ; 29:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on six dipolarization fronts (DFs) embedded in fast earthward flows detected by the Magnetospheric Multiscale mission during a substorm event on 23 July 2017. We analyzed Ohm's law for each event and found that ions are mostly decoupled from the magnetic field by Hall fields. However, the electron pressure gradient term is also contributing to the ion decoupling and likely responsible for an electron decoupling at DF. We also analyzed the energy conversion process and found that the energy in the spacecraft frame is transferred from the electromagnetic field to the plasma (J & BULL; E > 0) ahead or at the DF, whereas it is the opposite (J & BULL; E < 0) behind the front. This reversal is mainly due to a local reversal of the cross-tail current indicating a substructure of the DF. In the fluid frame, we found that the energy is mostly transferred from the plasma to the electromagnetic field (J & BULL; E & PRIME; < 0) and should contribute to the deceleration of the fast flow. However, we show that the energy conversion process is not homogeneous at the electron scales due to electric field fluctuations likely related to lower-hybrid drift waves. Our results suggest that the role of DF in the global energy cycle of the magnetosphere still deserves more investigation. In particular, statistical studies on DF are required to be carried out with caution due to these electron scale substructures.
  •  
19.
  • Alqeeq, S. W., et al. (författare)
  • Two Classes of Equatorial Magnetotail Dipolarization Fronts Observed by Magnetospheric Multiscale Mission : A Statistical Overview
  • 2023
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 128:10
  • Tidskriftsartikel (refereegranskat)abstract
    • We carried out a statistical study of equatorial dipolarization fronts (DFs) detected by the Magnetospheric Multiscale mission during the full 2017 Earth's magnetotail season. We found that two DF classes are distinguished: class I (74.4%) corresponds to the standard DF properties and energy dissipation and a new class II (25.6%). This new class includes the six DF discussed in Alqeeq et al. (2022, ) and corresponds to a bump of the magnetic field associated with a minimum in the ion and electron pressures and a reversal of the energy conversion process. The possible origin of this second class is discussed. Both DF classes show that the energy conversion process in the spacecraft frame is driven by the diamagnetic current dominated by the ion pressure gradient. In the fluid frame, it is driven by the electron pressure gradient. In addition, we have shown that the energy conversion processes are not homogeneous at the electron scale mostly due to the variations of the electric fields for both DF classes.
  •  
20.
  • Breuillard, H., et al. (författare)
  • Multispacecraft analysis of dipolarization fronts and associated whistler wave emissions using MMS data
  • 2016
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:14, s. 7279-7286
  • Tidskriftsartikel (refereegranskat)abstract
    • Dipolarization fronts (DFs), embedded in bursty bulk flows, play a crucial role in Earth's plasma sheet dynamics because the energy input from the solar wind is partly dissipated in their vicinity. This dissipation is in the form of strong low-frequency waves that can heat and accelerate energetic electrons up to the high-latitude plasma sheet. However, the dynamics of DF propagation and associated low-frequency waves in the magnetotail are still under debate due to instrumental limitations and spacecraft separation distances. In May 2015 the Magnetospheric Multiscale (MMS) mission was in a string-of-pearls configuration with an average intersatellite distance of 160km, which allows us to study in detail the microphysics of DFs. Thus, in this letter we employ MMS data to investigate the properties of dipolarization fronts propagating earthward and associated whistler mode wave emissions. We show that the spatial dynamics of DFs are below the ion gyroradius scale in this region (approximate to 500km), which can modify the dynamics of ions in the vicinity of the DF (e.g., making their motion nonadiabatic). We also show that whistler wave dynamics have a temporal scale of the order of the ion gyroperiod (a few seconds), indicating that the perpendicular temperature anisotropy can vary on such time scales.
  •  
21.
  • Breuillard, H., et al. (författare)
  • New Insights into the Nature of Turbulence in the Earth's Magnetosheath Using Magnetospheric MultiScale Mission Data
  • 2018
  • Ingår i: Astrophysical Journal. - : IOP PUBLISHING LTD. - 0004-637X .- 1538-4357. ; 859:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Earth's magnetosheath, which is characterized by highly turbulent fluctuations, is usually divided into two regions of different properties as a function of the angle between the interplanetary magnetic field and the shock normal. In this study, we make use of high-time resolution instruments on board the Magnetospheric MultiScale spacecraft to determine and compare the properties of subsolar magnetosheath turbulence in both regions, i. e., downstream of the quasi-parallel and quasi-perpendicular bow shocks. In particular, we take advantage of the unprecedented temporal resolution of the Fast Plasma Investigation instrument to show the density fluctuations down to sub-ion scales for the first time. We show that the nature of turbulence is highly compressible down to electron scales, particularly in the quasi-parallel magnetosheath. In this region, the magnetic turbulence also shows an inertial (Kolmogorov-like) range, indicating that the fluctuations are not formed locally, in contrast with the quasi-perpendicular magnetosheath. We also show that the electromagnetic turbulence is dominated by electric fluctuations at sub-ion scales (f > 1Hz) and that magnetic and electric spectra steepen at the largest-electron scale. The latter indicates a change in the nature of turbulence at electron scales. Finally, we show that the electric fluctuations around the electron gyrofrequency are mostly parallel in the quasi-perpendicular magnetosheath, where intense whistlers are observed. This result suggests that energy dissipation, plasma heating, and acceleration might be driven by intense electrostatic parallel structures/waves, which can be linked to whistler waves.
  •  
22.
  • Burch, J. L., et al. (författare)
  • Electron-scale measurements of magnetic reconnection in space
  • 2016
  • Ingår i: Science. - : AMER ASSOC ADVANCEMENT SCIENCE. - 0036-8075 .- 1095-9203. ; 352:6290, s. 1189-
  • Forskningsöversikt (refereegranskat)abstract
    • Magnetic reconnection is a fundamental physical process in plasmas whereby stored magnetic energy is converted into heat and kinetic energy of charged particles. Reconnection occurs in many astrophysical plasma environments and in laboratory plasmas. Using measurements with very high time resolution, NASA's Magnetospheric Multiscale (MMS) mission has found direct evidence for electron demagnetization and acceleration at sites along the sunward boundary of Earth's magnetosphere where the interplanetary magnetic field reconnects with the terrestrial magnetic field. We have (i) observed the conversion of magnetic energy to particle energy; (ii) measured the electric field and current, which together cause the dissipation of magnetic energy; and (iii) identified the electron population that carries the current as a result of demagnetization and acceleration within the reconnection diffusion/dissipation region.
  •  
23.
  • Burch, J. L., et al. (författare)
  • Localized Oscillatory Energy Conversion in Magnetopause Reconnection
  • 2018
  • Ingår i: Geophysical Research Letters. - : AMER GEOPHYSICAL UNION. - 0094-8276 .- 1944-8007. ; 45:3, s. 1237-1245
  • Tidskriftsartikel (refereegranskat)abstract
    • Data from the NASA Magnetospheric Multiscale mission are used to investigate asymmetric magnetic reconnection at the dayside boundary between the Earth's magnetosphere and the solar wind. High-resolution measurements of plasmas and fields are used to identify highly localized (similar to 15 electron Debye lengths) standing wave structures with large electric field amplitudes (up to 100 mV/m). These wave structures are associated with spatially oscillatory energy conversion, which appears as alternatingly positive and negative values of J . E. For small guide magnetic fields the wave structures occur in the electron stagnation region at the magnetosphere edge of the electron diffusion region. For larger guide fields the structures also occur near the reconnection X-line. This difference is explained in terms of channels for the out-of-plane current (agyrotropic electrons at the stagnation point and guide field-aligned electrons at the X-line).
  •  
24.
  • Chasapis, A., et al. (författare)
  • Electron Heating at Kinetic Scales in Magnetosheath Turbulence
  • 2017
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 836:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a statistical study of coherent structures at kinetic scales, using data from the Magnetospheric Multiscale mission in the Earth's magnetosheath. We implemented the multi-spacecraft partial variance of increments (PVI) technique to detect these structures, which are associated with intermittency at kinetic scales. We examine the properties of the electron heating occurring within such structures. We find that, statistically, structures with a high PVI index are regions of significant electron heating. We also focus on one such structure, a current sheet, which shows some signatures consistent with magnetic reconnection. Strong parallel electron heating coincides with whistler emissions at the edges of the current sheet.
  •  
25.
  • Ergun, R. E., et al. (författare)
  • Drift waves, intense parallel electric fields, and turbulence associated with asymmetric magnetic reconnection at the magnetopause
  • 2017
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 44:7, s. 2978-2986
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations of magnetic reconnection at Earth's magnetopause often display asymmetric structures that are accompanied by strong magnetic field (B) fluctuations and large-amplitude parallel electric fields (E-||). The B turbulence is most intense at frequencies above the ion cyclotron frequency and below the lower hybrid frequency. The B fluctuations are consistent with a thin, oscillating current sheet that is corrugated along the electron flow direction (along the X line), which is a type of electromagnetic drift wave. Near the X line, electron flow is primarily due to a Hall electric field, which diverts ion flow in asymmetric reconnection and accompanies the instability. Importantly, the drift waves appear to drive strong parallel currents which, in turn, generate large-amplitude (similar to 100mV/m) E-|| in the form of nonlinear waves and structures. These observations suggest that turbulence may be common in asymmetric reconnection, penetrate into the electron diffusion region, and possibly influence the magnetic reconnection process.
  •  
26.
  • Ergun, R. E., et al. (författare)
  • Magnetic Reconnection, Turbulence, and Particle Acceleration : Observations in the Earth's Magnetotail
  • 2018
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing Ltd. - 0094-8276 .- 1944-8007. ; 45:8, s. 3338-3347
  • Tidskriftsartikel (refereegranskat)abstract
    • We report observations of turbulent dissipation and particle acceleration from large-amplitude electric fields (E) associated with strong magnetic field (B) fluctuations in the Earth's plasma sheet. The turbulence occurs in a region of depleted density with anti-earthward flows followed by earthward flows suggesting ongoing magnetic reconnection. In the turbulent region, ions and electrons have a significant increase in energy, occasionally >100 keV, and strong variation. There are numerous occurrences of |E| >100 mV/m including occurrences of large potentials (>1 kV) parallel to B and occurrences with extraordinarily large J · E (J is current density). In this event, we find that the perpendicular contribution of J · E with frequencies near or below the ion cyclotron frequency (fci) provide the majority net positive J · E. Large-amplitude parallel E events with frequencies above fci to several times the lower hybrid frequency provide significant dissipation and can result in energetic electron acceleration.
  •  
27.
  • Farrugia, C. J., et al. (författare)
  • Effects in the Near-Magnetopause Magnetosheath Elicited by Large-Amplitube Alfvenic Fluctuations Terminating in a Field and Flow Discontinuity
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 123:11, s. 8983-9004
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper we report on a sequence of large-amplitude Alfvenic fluctuations terminating in a field and flow discontinuity and their effects on electromagnetic fields and plasmas in the near-magnetopause magnetosheath. An arc-polarized structure in the magnetic field was observed by the Time History of Events and Macroscale Interactions during Substorms-C in the solar wind, indicative of nonlinear Alfven waves. It ends with a combined tangential discontinuity/vortex sheet, which is strongly inclined to the ecliptic plane and at which there is a sharp rise in the density and a drop in temperature. Several effects resulting from this structure were observed by the Magnetospheric Multiscale spacecraft in the magnetosheath close to the subsolar point (11:30 magnetic local time) and somewhat south of the geomagnetic equator (-33 degrees magnetic latitude): (i) kinetic Alfven waves; (ii) a peaking of the electric and magnetic field strengths where E . J becomes strong and negative (-1 nW/m(3)) just prior to an abrupt dropout of the fields; (iii) evolution in the pitch angle distribution of energetic (a few tens of kilo-electron-volts) ions (H+, Hen+, and On+) and electrons inside a high-density region, which we attribute to gyrosounding of the tangential discontinuity/vortex sheet structure passing by the spacecraft; (iv) field-aligned acceleration of ions and electrons that could be associated with localized magnetosheath reconnection inside the high-density region; and (v) variable and strong flow changes, which we argue to be unrelated to reconnection at partial magnetopause crossings and likely result from deflections of magnetosheath flow by a locally deformed, oscillating magnetopause.
  •  
28.
  • Hasegawa, H., et al. (författare)
  • Magnetic Field Annihilation in a Magnetotail Electron Diffusion Region With Electron-Scale Magnetic Island
  • 2022
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 127:7
  • Tidskriftsartikel (refereegranskat)abstract
    • We present observations in Earth's magnetotail by the Magnetospheric Multiscale spacecraft that are consistent with magnetic field annihilation, rather than magnetic topology change, causing fast magnetic-to-electron energy conversion in an electron-scale current sheet. Multi-spacecraft analysis for the magnetic field reconstruction shows that an electron-scale magnetic island was embedded in the observed electron diffusion region (EDR), suggesting an elongated shape of the EDR. Evidence for the annihilation was revealed in the form of the island growing at a rate much lower than expected for the standard X-type geometry of the EDR, which indicates that magnetic flux injected into the EDR was not ejected from the X-point or accumulated in the island, but was dissipated in the EDR. This energy conversion process is in contrast to that in the standard EDR of a reconnecting current sheet where the energy of antiparallel magnetic fields is mostly converted to electron bulk-flow energy. Fully kinetic simulation also demonstrates that an elongated EDR is subject to the formation of electron-scale magnetic islands in which fast but transient annihilation can occur. Consistent with the observations and simulation, theoretical analysis shows that fast magnetic diffusion can occur in an elongated EDR in the presence of nongyrotropic electron effects. We suggest that the annihilation in elongated EDRs may contribute to the dissipation of magnetic energy in a turbulent collisionless plasma.
  •  
29.
  • Hasegawa, H., et al. (författare)
  • Reconstruction of the Electron Diffusion Region of Magnetotail Reconnection seen by the MMS Spacecraft on 11July 2017
  • 2019
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 124:1, s. 122-138
  • Tidskriftsartikel (refereegranskat)abstract
    • We present results from the reconstruction of the electron diffusion region of magnetotail reconnection observed by the Magnetospheric Multiscale (MMS) spacecraft on 11 July 2017. In the event, the conditions were suited for the reconstruction technique, developed by Sonnerup et al. (2016, https://doi.org/10.1002/2016JA022430), that produces magnetic field and electron streamline maps based on a two-dimensional, time-independent, inertialess form of electron magnetohydrodynamic equation, assuming an approximately symmetric current sheet and negligible guide magnetic field. For such a two-dimensional and steady structure, the X line orientation can be estimated from a method based on Ampere's law using single-spacecraft measurements of the magnetic field and electric current density. Our reconstruction results indicate that although the X point was not captured inside its tetrahedron, MMS approached the X point as close as one electron inertial length similar to 27 km. The opening angle of the recovered separatrix field line, combined with theory, suggests that the dimensionless reconnection rate was 0.17, which is consistent with the measured reconnection electric field 2-4 mV/m. The stagnation point of the reconstructed electron flow is shifted earthward of the X point by similar to 90 km, one possible interpretation of which is discussed. The energy conversion rate j . E' in the electron frame tends to be higher near the stagnation point, consistent with earlier observations and simulations, and is not correlated with the amplitude of broadband electrostatic waves observed in the upper-hybrid frequency range. The latter suggests that the waves did not contribute to energy dissipation in this particular electron diffusion region. Plain Language Summary Magnetic reconnection is a fundamental plasma process that controls transfer of solar wind energy and mass to planetary magnetospheres and causes explosive energy release associated with solar flares and sudden auroral brightening. National Aeronautics and Space Administration's Magnetospheric Multiscale (MMS) mission, which consists of four identical spacecraft launched in March 2015, aims at elucidating how magnetic reconnection works with unprecedented high temporal and spatial resolution measurements of charged particles and electromagnetic fields in space. MMS has been observing the Earth's magnetotail since May 2017 and encountered the central region of magnetic reconnection, called the electron diffusion region, on 11 July 2017. In this study, we present two-dimensional images of this region recovered from the MMS electron and magnetic field measurements, showing that the electron flow pattern in the electron diffusion region is not as simple as predicted by theory. The results provide new insights about the reconnection process in the actual space environment.
  •  
30.
  • Hwang, K-J, et al. (författare)
  • Magnetic Reconnection Inside a Flux Rope Induced by Kelvin-Helmholtz Vortices
  • 2020
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 125:4
  • Tidskriftsartikel (refereegranskat)abstract
    • On 5 May 2017, MMS observed a crater-type flux rope on the dawnside tailward magnetopause with fluctuations. The boundary-normal analysis shows that the fluctuations can be attributed to nonlinear Kelvin-Helmholtz (KH) waves. Reconnection signatures such as flow reversals and Joule dissipation were identified at the leading and trailing edges of the flux rope. In particular, strong northward electron jets observed at the trailing edge indicated midlatitude reconnection associated with the 3-D structure of the KH vortex. The scale size of the flux rope, together with reconnection signatures, strongly supports the interpretation that the flux rope was generated locally by KH vortex-induced reconnection. The center of the flux rope also displayed signatures of guide-field reconnection (out-of-plane electron jets, parallel electron heating, and Joule dissipation). These signatures indicate that an interface between two interlinked flux tubes was undergoing interaction, causing a local magnetic depression, resulting in an M-shaped crater flux rope, as supported by reconstruction.
  •  
31.
  • Hwang, K. -J, et al. (författare)
  • Sequential Observations of Flux Transfer Events, Poleward-Moving Auroral Forms, and Polar Cap Patches
  • 2020
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 125:6
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the observation of solar wind-magnetosphere-ionosphere interactions using a series of flux transfer events (FTEs) observed by Magnetospheric MultiScale (MMS) mission located near the dayside magnetopause on 18 December 2017. The FTEs were observed to propagate duskward and either southward or slightly northward, as predicted under duskward and southward interplanetary magnetic field (IMF). The Cooling model also predicted a significant dawnward propagation of northward-moving FTEs. Near the MMS footprint, a series of poleward-moving auroral forms (PMAFs) occurred almost simultaneously with those FTEs. They propagated poleward and westward, consistent with the modeled FTE propagation. The intervals between FTEs, relatively consistent with those between PMAFs, strongly suggest a one-to-one correspondence between the dayside transients and ionospheric responses. The FTEs embedded in continuous reconnection observed by MMS and corresponding PMAFs individually occurred during persistent auroral activity recorded by an all-sky imager strongly indicate that those FTEs/PMAFs resulted from the temporal modulation of the reconnection rate during continuous reconnection. With the decay of the PMAFs associated with the FTEs, patch-like plasma density enhancements were detected to form and propagate poleward and then dawnward. Propagation to the dawn was also suggested by the Super Dual Auroral Radar Network (SuperDARN) convection and Global Positioning System (GPS) total electron content data. We relate the temporal variation of the driving solar-wind and magnetospheric mechanism to that of the high-latitude and polar ionospheric responses and estimate the response time.
  •  
32.
  • Hwang, K. -J, et al. (författare)
  • Small-Scale Flux Transfer Events Formed in the Reconnection Exhaust Region Between Two X Lines
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 123:10, s. 8473-8488
  • Tidskriftsartikel (refereegranskat)abstract
    • We report MMS observations of the ion-scale flux transfer events (FTEs) that may involve two main X lines and tearing instability between the two X lines. The four spacecraft detected multiple isolated regions with enhanced magnetic field strength and bipolar B-n signatures normal to the nominal magnetopause, indicating FTEs. The currents within the FTEs flow mostly parallel to B, and the magnetic tension force is balanced by the total pressure gradient force. During these events, the plasma bulk flow velocity was directed southward. Detailed analysis of the magnetic and electric field and plasma moments variations suggests that the FTEs were initially embedded within the exhaust region north of an X line but were later located southward/downstream of a subsequent X line. The cross sections of the individual FTEs are in the range of similar to 2.5-6.8 ion inertial lengths. The observations suggest the formation of multiple secondary FTEs. The presence of an X line in the exhaust region southward of a second X line results from the southward drift of an old X line and the reformation of a new X line. The current layer between the two X lines is unstable to the tearing instability, generating multiple ion-scale flux-rope-type secondary islands.
  •  
33.
  • Lapenta, G., et al. (författare)
  • On the origin of the crescent-shaped distributions observed by MMS at the magnetopause
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 122:2, s. 2024-2039
  • Tidskriftsartikel (refereegranskat)abstract
    • MMS observations recently confirmed that crescent-shaped electron velocity distributions in the plane perpendicular to the magnetic field occur in the electron diffusion region near reconnection sites at Earth's magnetopause. In this paper, we reexamine the origin of the crescent-shaped distributions in the light of our new finding that ions and electrons are drifting in opposite directions when displayed in magnetopause boundary-normal coordinates. Therefore, E x B drifts cannot cause the crescent shapes. We performed a high-resolution multiscale simulation capturing subelectron skin-depth scales. The results suggest that the crescent-shaped distributions are caused by meandering orbits without necessarily requiring any additional processes found at the magnetopause such as the highly asymmetric magnetopause ambipolar electric field. We use an adiabatic Hamiltonian model of particle motion to confirm that conservation of canonical momentum in the presence of magnetic field gradients causes the formation of crescent shapes without invoking asymmetries or the presence of an E x B drift. An important consequence of this finding is that we expect crescent-shaped distributions also to be observed in the magnetotail, a prediction that MMS will soon be able to test.
  •  
34.
  • Le Contel, O., et al. (författare)
  • Whistler mode waves and Hall fields detected by MMS during a dayside magnetopause crossing
  • 2016
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:12, s. 5943-5952
  • Tidskriftsartikel (refereegranskat)abstract
    • We present Magnetospheric Multiscale (MMS) mission measurements during a full magnetopause crossing associated with an enhanced southward ion flow. A quasi-steady magnetospheric whistler mode wave emission propagating toward the reconnection region with quasi-parallel and oblique wave angles is detected just before the opening of the magnetic field lines and the detection of escaping energetic electrons. Its source is likely the perpendicular temperature anisotropy of magnetospheric energetic electrons. In this region, perpendicular and parallel currents as well as the Hall electric field are calculated and found to be consistent with the decoupling of ions from the magnetic field and the crossing of a magnetospheric separatrix region. On the magnetosheath side, Hall electric fields are found smaller as the density is larger but still consistent with the decoupling of ions. Intense quasi-parallel whistler wave emissions are detected propagating both toward and away from the reconnection region in association with a perpendicular anisotropy of the high-energy part of the magnetosheath electron population and a strong perpendicular current, which suggests that in addition to the electron diffusion region, magnetosheath separatrices could be a source region for whistler waves.
  •  
35.
  • Voros, Z., et al. (författare)
  • MMS Observation of Magnetic Reconnection in the Turbulent Magnetosheath
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 122:11, s. 11442-11467
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper we use the full armament of the MMS (Magnetospheric Multiscale) spacecraft to study magnetic reconnection in the turbulent magnetosheath downstream of a quasi-parallel bow shock. Contrarily to the magnetopause and magnetotail cases, only a few observations of reconnection in the magnetosheath have been reported. The case study in this paper presents, for the first time, both fluid-scale and kinetic-scale signatures of an ongoing reconnection in the turbulent magnetosheath. The spacecraft are crossing the reconnection inflow and outflow regions and the ion diffusion region (IDR). Inside the reconnection outflows D shape ion distributions are observed. Inside the IDR mixing of ion populations, crescent-like velocity distributions and ion accelerations are observed. One of the spacecraft skims the outer region of the electron diffusion region, where parallel electric fields, energy dissipation/conversion, electron pressure tensor agyrotropy, electron temperature anisotropy, and electron accelerations are observed. Some of the difficulties of the observations of magnetic reconnection in turbulent plasma are also outlined.
  •  
36.
  • Yordanova, Emiliya, et al. (författare)
  • Electron scale structures and magnetic reconnection signatures in the turbulent magnetosheath
  • 2016
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:12, s. 5969-5978
  • Tidskriftsartikel (refereegranskat)abstract
    • Collisionless space plasma turbulence can generate reconnecting thin current sheets as suggested by recent results of numerical magnetohydrodynamic simulations. The Magnetospheric Multiscale (MMS) mission provides the first serious opportunity to verify whether small ion-electron-scale reconnection, generated by turbulence, resembles the reconnection events frequently observed in the magnetotail or at the magnetopause. Here we investigate field and particle observations obtained by the MMS fleet in the turbulent terrestrial magnetosheath behind quasi-parallel bow shock geometry. We observe multiple small-scale current sheets during the event and present a detailed look of one of the detected structures. The emergence of thin current sheets can lead to electron scale structures. Within these structures, we see signatures of ion demagnetization, electron jets, electron heating, and agyrotropy suggesting that MMS spacecraft observe reconnection at these scales.
  •  
37.
  • Zhou, M., et al. (författare)
  • Coalescence of Macroscopic Flux Ropes at the Subsolar Magnetopause : Magnetospheric Multiscale Observations
  • 2017
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 119:5
  • Tidskriftsartikel (refereegranskat)abstract
    • We report unambiguous in situ observation of the coalescence of macroscopic flux ropes by the magnetospheric multiscale (MMS) mission. Two coalescing flux ropes with sizes of similar to 1 R-E were identified at the subsolar magnetopause by the occurrence of an asymmetric quadrupolar signature in the normal component of the magnetic field measured by the MMS spacecraft. An electron diffusion region (EDR) with a width of four local electron inertial lengths was embedded within the merging current sheet. The EDR was characterized by an intense parallel electric field, significant energy dissipation, and suprathermal electrons. Although the electrons were organized by a large guide field, the small observed electron pressure nongyrotropy may be sufficient to support a significant fraction of the parallel electric field within the EDR. Since the flux ropes are observed in the exhaust region, we suggest that secondary EDRs are formed further downstream of the primary reconnection line between the magnetosheath and magnetospheric fields.
  •  
38.
  • Zhou, M., et al. (författare)
  • Magnetospheric Multiscale Observations of an Ion Diffusion Region With Large Guide Field at the Magnetopause : Current System, Electron Heating, and Plasma Waves
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 123:3, s. 1834-1852
  • Tidskriftsartikel (refereegranskat)abstract
    • We report Magnetospheric Multiscale (MMS) observations of a reconnecting current sheet in the presence of a weak density asymmetry with large guide field at the dayside magnetopause. An ion diffusion region (IDR) was detected associated with this current sheet. Parallel current dominated over the perpendicular current in the IDR, as found in previous studies of component reconnection. Electrons were preferentially heated parallel to the magnetic field within the IDR. The heating was manifested as a flattop distribution below 400eV. Two types of electromagnetic electron whistler waves were observed within the regions where electrons were heated. One type of whistler wave was associated with nonlinear structures in E-|| with amplitudes up to 20mV/m. The other type was not associated with any structures in E-||. Poynting fluxes of these two types of whistler waves were directed away from the X-line. We suggest that the nonlinear evolution of the oblique whistler waves gave rise to the solitary structures in E-||. There was a perpendicular super-Alfvenic outflow jet that was carried by magnetized electrons. Intense electrostatic lower hybrid drift waves were localized in the current sheet center and were probably driven by the super-Alfvenic electron jet, the velocity of which was approximately equal to the diamagnetic drift of demagnetized ions. Our observations suggest that the guide field significantly modified the structures (Hall electromagnetic fields and current system) and wave properties in the IDR.
  •  
39.
  • Zhou, M., et al. (författare)
  • Observation of high-frequency electrostatic waves in the vicinity of the reconnection ion diffusion region by the spacecraft of the Magnetospheric Multiscale (MMS) mission
  • 2016
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 43:10, s. 4808-4815
  • Tidskriftsartikel (refereegranskat)abstract
    • We report Magnetospheric Multiscale observations of high-frequency electrostatic waves in the vicinity of the reconnection ion diffusion region on the dayside magnetopause. The ion diffusion region is identified during two magnetopause crossings by the Hall electromagnetic fields, the slippage of ions with respect to the magnetic field, and magnetic energy dissipation. In addition to electron beam modes that have been previously detected at the separatrix on the magnetospheric side of the magnetopause, we report, for the first time, the existence of electron cyclotron harmonic waves at the magnetosheath separatrix. Broadband waves between the electron cyclotron and electron plasma frequencies, which were probably generated by electron beams, were found within the magnetopause current sheet. Contributions by these high-frequency waves to the magnetic energy dissipation were negligible in the diffusion regions as compared to those of lower-frequency waves.
  •  
40.
  • Alm, L., et al. (författare)
  • Differing Properties of Two Ion-Scale Magnetopause Flux Ropes
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 123:1, s. 114-131
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, we present results from the Magnetospheric Multiscale constellation encountering two ion-scale, magnetopause flux ropes. The two flux ropes exhibit very different properties and internal structure. In the first flux rope, there are large differences in the currents observed by different satellites, indicating variations occurring over sub-d(i) spatial scales, and time scales on the order of the ion gyroperiod. In addition, there is intense wave activity and particle energization. The interface between the two flux ropes exhibits oblique whistler wave activity. In contrast, the second flux rope is mostly quiescent, exhibiting little activity throughout the encounter. Changes in the magnetic topology and field line connectivity suggest that we are observing flux rope coalescence.
  •  
41.
  • Alm, L., et al. (författare)
  • EDR signatures observed by MMS in the 16 October event presented in a 2-D parametric space
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 122:3, s. 3262-3276
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a method for mapping the position of satellites relative to the X line using the measured B-L and B-N components of the magnetic field and apply it to the Magnetospheric multiscale (MMS) encounter with the electron diffusion region (EDR) which occurred on 13:07 UT on 16 October 2015. Mapping the data to our parametric space succeeds in capturing many of the signatures associated with magnetic reconnection and the electron diffusion region. This offers a method for determining where in the reconnection region the satellites were located. In addition, parametric mapping can also be used to present data from numerical simulations. This facilitates comparing data from simulations with data from in situ observations as one can avoid the complicated process using boundary motion analysis to determine the geometry of the reconnection region. In parametric space we can identify the EDR based on the collocation of several reconnection signatures, such as electron nongyrotropy, electron demagnetization, parallel electric fields, and energy dissipation. The EDR extends 2-3km in the normal direction and in excess of 20km in the tangential direction. It is clear that the EDR occurs on the magnetospheric side of the topological X line, which is expected in asymmetric reconnection. Furthermore, we can observe a north-south asymmetry, where the EDR occurs north of the peak in out-of-plane current, which may be due to the small but finite guide field.
  •  
42.
  • Argall, M. R., et al. (författare)
  • Electron Dynamics Within the Electron Diffusion Region of Asymmetric Reconnection
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 123:1, s. 146-162
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate the agyrotropic nature of electron distribution functions and their substructure to illuminate electron dynamics in a previously reported electron diffusion region (EDR) event. In particular, agyrotropy is examined as a function of energy to reveal detailed finite Larmor radius effects for the first time. It is shown that the previously reported approximate to 66eV agyrotropic "crescent" population that has been accelerated as a result of reconnection is evanescent in nature because it mixes with a denser, gyrotopic background. Meanwhile, accelerated agyrotropic populations at 250 and 500eV are more prominent because the background plasma at those energies is more tenuous. Agyrotropy at 250 and 500eV is also more persistent than at 66eV because of finite Larmor radius effects; agyrotropy is observed 2.5 ion inertial lengths from the EDR at 500eV, but only in close proximity to the EDR at 66eV. We also observe linearly polarized electrostatic waves leading up to and within the EDR. They have wave normal angles near 90 degrees, and their occurrence and intensity correlate with agyrotropy. Within the EDR, they modulate the flux of 500eV electrons travelling along the current layer. The net electric field intensifies the reconnection current, resulting in a flow of energy from the fields into the plasma. Plain Language Summary The process of reconnection involves an explosive transfer of magnetic energy into particle energy. When energetic particles contact modern technology such as satellites, cell phones, or other electronic devices, they can cause random errors and failures. Exactly how particles are energized via reconnection, however, is still unknown. Fortunately, the Magnetospheric Multiscale mission is finally able to detect and analyze reconnection processes. One recent finding is that energized particles take on a crescent-shaped configuration in the vicinity of reconnection and that this crescent shape is related to the energy conversion process. In our paper, we explain why the crescent shape has not been observed until now and inspect particle motions to determine what impact it has on energy conversion. When reconnection heats the plasma, the crescent shape forms from the cool, tenuous particles. As plasmas from different regions mix, dense, nonheated plasma obscures the crescent shape in our observations. The highest-energy particle population created by reconnection, though, also contains features of the crescent shape that are more persistent but appear less dramatically in the data.
  •  
43.
  • Burch, J. L., et al. (författare)
  • High-Frequency Wave Generation in Magnetotail Reconnection : Linear Dispersion Analysis
  • 2019
  • Ingår i: Geophysical Research Letters. - : AMER GEOPHYSICAL UNION. - 0094-8276 .- 1944-8007. ; 46:8, s. 4089-4097
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma and wave measurements from the NASA Magnetospheric Multiscale mission are presented for magnetotail reconnection events on 3 July and 11 July 2017. Linear dispersion analyses were performed using distribution functions comprising up to six drifting bi-Maxwellian distributions. In both events electron crescent-shaped distributions are shown to be responsible for upper hybrid waves near the X-line. In an adjacent location within the 3 July event a monodirectional field-aligned electron beam drove parallel-propagating beam-mode waves. In the 11 July event an electron distribution consisting of a drifting core and two crescents was shown to generate upper-hybrid and beam-mode waves at three different frequencies, explaining the observed broadband waves. Multiple harmonics of the upper hybrid waves were observed but cannot be explained by the linear dispersion analysis since they result from nonlinear beam interactions. Plain Language Summary Magnetic reconnection is a process that occurs throughout the universe in ionized gases (plasmas) containing embedded magnetic fields. This process converts magnetic energy to electron and ion energy, causing phenomena such as solar flares and auroras. The NASA Magnetospheric Multiscale mission has shown that in magnetic reconnection regions there are intense electric field oscillations or waves and that electrons form crescent and beam-like populations propagating both along and perpendicular to the magnetic field. This study shows that the observed electron populations are responsible for high-frequency waves including their propagation directions and frequency ranges.
  •  
44.
  • Burch, J. L., et al. (författare)
  • Wave Phenomena and Beam-Plasma Interactions at the Magnetopause Reconnection Region
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 123:2, s. 1118-1133
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper reports on Magnetospheric Multiscale observations of whistler mode chorus and higher-frequency electrostatic waves near and within a reconnection diffusion region on 23 November 2016. The diffusion region is bounded by crescent-shaped electron distributions and associated dissipation just upstream of the X-line and by magnetic field-aligned currents and electric fields leading to dissipation near the electron stagnation point. Measurements were made southward of the X-line as determined by southward directed ion and electron jets. We show that electrostatic wave generation is due to magnetosheath electron beams formed by the electron jets as they interact with a cold background plasma and more energetic population of magnetospheric electrons. On the magnetosphere side of the X-line the electron beams are accompanied by a strong perpendicular electron temperature anisotropy, which is shown to be the source of an observed rising-tone whistler mode chorus event. We show that the apex of the chorus event and the onset of electrostatic waves coincide with the opening of magnetic field lines at the electron stagnation point.
  •  
45.
  • Denton, R. E., et al. (författare)
  • Determining L-M-N Current Sheet Coordinates at the Magnetopause From Magnetospheric Multiscale Data
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 123:3, s. 2274-2295
  • Tidskriftsartikel (refereegranskat)abstract
    • We discuss methods to determine L-M-N coordinate systems for current sheet crossings observed by the Magnetospheric Multiscale (MMS) spacecraft mission during ongoing reconnection, where e(L) is the direction of the reconnecting component of the magnetic field, B, and e(N) is normal to the magnetopause. We present and test a new hybrid method, with e(L) estimated as the maximum variance direction of B (MVAB) and e(N) as the direction of maximum directional derivative of B, and then adjust these directions to be perpendicular. In the best case, only small adjustment is needed. Results from this method, applied to an MMS crossing of the dayside magnetopause at 1305:45UT on 16 October 2015, are discussed and compared with those from other methods for which e(N) is obtained by other means. Each of the other evaluations can be combined with e(L) from MVAB in a generalized hybrid approach to provide an L-M-N system. The quality of the results is judged by eigenvalue ratios, constancy of directions using different data segments and methods, and expected sign and magnitude of the normal component of B. For this event, the hybrid method appears to produce e(N) accurate to within less than 10 degrees. We discuss variance analysis using the electric current density, J, or the J x B force, which yield promising results, and minimum Faraday residue analysis and MVAB alone, which can be useful for other events. We also briefly discuss results from our hybrid method and MVAB alone for a few other MMS reconnection events. Plain Language Summary We discuss methods for determining coordinate systems in order to study magnetic reconnection events at the magnetopause, the boundary between the ionized gas in the region of space dominated by the Earth's magnetic field and the ionized gas coming from the solar wind. We introduce a new method that combines results from multiple methods in order to determine the three coordinate directions in space. We demonstrate this method by applying it to an event observed by the Magnetospheric Multiscale spacecraft on 16 October 2015 and at other times.
  •  
46.
  • Eastwood, J. P., et al. (författare)
  • Guide Field Reconnection : Exhaust Structure and Heating
  • 2018
  • Ingår i: Geophysical Research Letters. - : AMER GEOPHYSICAL UNION. - 0094-8276 .- 1944-8007. ; 45:10, s. 4569-4577
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetospheric Multiscale observations are used to probe the structure and temperature profile of a guide field reconnection exhaust similar to 100 ion inertial lengths downstream from the X-line in the Earth's magnetosheath. Asymmetric Hall electric and magnetic field signatures were detected, together with a density cavity confined near 1 edge of the exhaust and containing electron flow toward the X-line. Electron holes were also detected both on the cavity edge and at the Hall magnetic field reversal. Predominantly parallel ion and electron heating was observed in the main exhaust, but within the cavity, electron cooling and enhanced parallel ion heating were found. This is explained in terms of the parallel electric field, which inhibits electron mixing within the cavity on newly reconnected field lines but accelerates ions. Consequently, guide field reconnection causes inhomogeneous changes in ion and electron temperature across the exhaust.
  •  
47.
  • Ergun, R. E., et al. (författare)
  • Magnetospheric Multiscale observations of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the magnetopause
  • 2016
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:11, s. 5626-5634
  • Tidskriftsartikel (refereegranskat)abstract
    • We report observations from the Magnetospheric Multiscale satellites of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the Earth's magnetopause. The observed waves have parallel electric fields (E-||) with amplitudes on the order of 100mV/m and display nonlinear characteristics that suggest a possible net E-||. These waves are observed within the ion diffusion region and adjacent to (within several electron skin depths) the electron diffusion region. They are in or near the magnetosphere side current layer. Simulation results support that the strong electrostatic linear and nonlinear wave activities appear to be driven by a two stream instability, which is a consequence of mixing cold (<10eV) plasma in the magnetosphere with warm (similar to 100eV) plasma from the magnetosheath on a freshly reconnected magnetic field line. The frequent observation of these waves suggests that cold plasma is often present near the magnetopause.
  •  
48.
  • Ergun, R. E., et al. (författare)
  • Magnetospheric Multiscale Satellites Observations of Parallel Electric Fields Associated with Magnetic Reconnection
  • 2016
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 116:23
  • Tidskriftsartikel (refereegranskat)abstract
    • We report observations from the Magnetospheric Multiscale satellites of parallel electric fields (E-vertical bar vertical bar) associated with magnetic reconnection in the subsolar region of the Earth's magnetopause. E-vertical bar vertical bar events near the electron diffusion region have amplitudes on the order of 100 mV/m, which are significantly larger than those predicted for an antiparallel reconnection electric field. This Letter addresses specific types of E-vertical bar vertical bar events, which appear as large-amplitude, near unipolar spikes that are associated with tangled, reconnected magnetic fields. These E-vertical bar vertical bar events are primarily in or near a current layer near the separatrix and are interpreted to be double layers that may be responsible for secondary reconnection in tangled magnetic fields or flux ropes. These results are telling of the three-dimensional nature of magnetopause reconnection and indicate that magnetopause reconnection may be often patchy and/or drive turbulence along the separatrix that results in flux ropes and/or tangled magnetic fields.
  •  
49.
  • Ergun, R. E., et al. (författare)
  • Observations of Particle Acceleration in Magnetic Reconnection-driven Turbulence
  • 2020
  • Ingår i: Astrophysical Journal. - : IOP PUBLISHING LTD. - 0004-637X .- 1538-4357. ; 898:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Magnetospheric Multiscale Mission observes, in detail, charged particle heating and substantial nonthermal acceleration in a region of strong turbulence (vertical bar delta B vertical bar/vertical bar B vertical bar similar to 1, where B is the magnetic field) that surrounds a magnetic reconnection X-line. Magnetic reconnection enables magnetic field annihilation in a volume that far exceeds that of the diffusion region. The formidable magnetic field annihilation breaks into strong, intermittent turbulence with magnetic field energy as the driver. The strong, intermittent turbulence appears to generate the necessary conditions for nonthermal acceleration. It creates intense, localized currents (J) and unusually large-amplitude electric fields (E). The combination of turbulence-generated E and J results in a significant net positive mean of J center dot E, which signifies particle energization. Ion and electron heating rates are such that they experience a fourfold increase from their initial temperature. Importantly, the strong turbulence also generates magnetic holes or depletions in vertical bar B vertical bar that can trap particles. Trapping considerably increases the dwell time of a subset of particles in the turbulent region, which results in significant nonthermal particle acceleration. The direct observation of strong turbulence that is enabled by magnetic reconnection with nonthermal particle acceleration has far-reaching implications, since turbulence in plasmas is pervasive and may occupy significant volumes of the interstellar medium and intergalactic space. For example, strong turbulence from magnetic field annihilation in the supernova nebulae may dominate large volumes. As such, this observed energization process could plausibly contribute to the supply and development of the cosmic-ray spectrum.
  •  
50.
  • Eriksson, S., et al. (författare)
  • Magnetospheric Multiscale observations of magnetic reconnection associated with Kelvin-Helmholtz waves
  • 2016
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:11, s. 5606-5615
  • Tidskriftsartikel (refereegranskat)abstract
    • The four Magnetospheric Multiscale (MMS) spacecraft recorded the first direct evidence of reconnection exhausts associated with Kelvin-Helmholtz (KH) waves at the duskside magnetopause on 8 September 2015 which allows for local mass and energy transport across the flank magnetopause. Pressure anisotropy-weighted Walen analyses confirmed in-plane exhausts across 22 of 42 KH-related trailing magnetopause current sheets (CSs). Twenty-one jets were observed by all spacecraft, with small variations in ion velocity, along the same sunward or antisunward direction with nearly equal probability. One exhaust was only observed by the MMS-1,2 pair, while MMS-3,4 traversed a narrow CS (1.5 ion inertial length) in the vicinity of an electron diffusion region. The exhausts were locally 2-D planar in nature as MMS-1,2 observed almost identical signatures separated along the guide-field. Asymmetric magnetic and electric Hall fields are reported in agreement with a strong guide-field and a weak plasma density asymmetry across the magnetopause CS.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 201
Typ av publikation
tidskriftsartikel (199)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (199)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Burch, J. L. (150)
Ergun, R. E. (129)
Russell, C. T. (127)
Torbert, R. B. (116)
Giles, B. L. (114)
Lindqvist, Per-Arne (113)
visa fler...
Khotyaintsev, Yuri V ... (98)
Strangeway, R. J. (89)
Gershman, D. J. (76)
Lavraud, B. (65)
Le Contel, O. (52)
Graham, Daniel B. (42)
Pollock, C. J. (41)
Phan, T. D. (41)
Wilder, F. D. (40)
Magnes, W. (39)
Dorelli, J. C. (39)
Nakamura, R. (37)
Paterson, W. R. (37)
Saito, Y. (36)
Fuselier, S. A. (34)
Khotyaintsev, Yu. V. (30)
Eastwood, J. P. (29)
Moore, T. E. (28)
Goodrich, K. A. (27)
Vaivads, Andris (26)
Argall, M. R. (26)
Ahmadi, N. (25)
Avanov, L. A. (25)
Plaschke, F. (24)
Chen, L. -J (24)
André, Mats (23)
Burch, J. (23)
Pollock, C. (23)
Stawarz, J. E. (22)
Giles, B. (20)
Wang, S (19)
Eriksson, S. (19)
Retino, A. (19)
Hesse, M (18)
Shay, M. A. (18)
Khotyaintsev, Yuri (17)
Baumjohann, W. (17)
Cassak, P. A. (17)
Hwang, K. J. (17)
Zhou, M. (16)
Marklund, Göran (16)
Avanov, L. (16)
Drake, J. F. (15)
Goldstein, R. (15)
visa färre...
Lärosäte
Uppsala universitet (156)
Kungliga Tekniska Högskolan (129)
Göteborgs universitet (16)
Karolinska Institutet (11)
Högskolan Dalarna (5)
Lunds universitet (4)
visa fler...
Mittuniversitetet (4)
Umeå universitet (1)
Luleå tekniska universitet (1)
Stockholms universitet (1)
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (201)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (177)
Medicin och hälsovetenskap (17)
Teknik (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy