SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Backman Ludvig) "

Sökning: WFRF:(Backman Ludvig)

  • Resultat 1-50 av 61
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alexanderson, Helena, et al. (författare)
  • An Arctic perspective on dating Mid-Late Pleistocene environmental history
  • 2014
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 92, s. 9-31
  • Forskningsöversikt (refereegranskat)abstract
    • To better understand Pleistocene climatic changes in the Arctic, integrated palaeoenvironmental andpalaeoclimatic signals from a variety of marine and terrestrial geological records as well as geochronologicage control are required, not least for correlation to extra-Arctic records. In this paper we discuss,from an Arctic perspective, methods and correlation tools that are commonly used to date ArcticPleistocene marine and terrestrial events. We review the state of the art of Arctic geochronology, withfocus on factors that affect the possibility and quality of dating, and support this overview by examples ofapplication of modern dating methods to Arctic terrestrial and marine sequences.Event stratigraphy and numerical ages are important tools used in the Arctic to correlate fragmentedterrestrial records and to establish regional stratigraphic schemes. Age control is commonly provided byradiocarbon, luminescence or cosmogenic exposure ages. Arctic Ocean deep-sea sediment successionscan be correlated over large distances based on geochemical and physical property proxies for sedimentcomposition, patterns in palaeomagnetic records and, increasingly, biostratigraphic data. Many of theseproxies reveal cyclical patterns that provide a basis for astronomical tuning.Recent advances in dating technology, calibration and age modelling allow for measuring smallerquantities of material and to more precisely date previously undatable material (i.e. foraminifera for 14C,and single-grain luminescence). However, for much of the Pleistocene there are still limits to the resolutionof most dating methods. Consequently improving the accuracy and precision (analytical andgeological uncertainty) of dating methods through technological advances and better understanding ofprocesses are important tasks for the future. Another challenge is to better integrate marine andterrestrial records, which could be aided by targeting continental shelf and lake records, exploringproxies that occur in both settings, and by creating joint research networks that promote collaborationbetween marine and terrestrial geologists and modellers.
  •  
2.
  • Andersson, Gustav, et al. (författare)
  • Nerve distributions in insertional Achilles tendinopathy - a comparison of bone, bursae and tendon
  • 2017
  • Ingår i: Histology and Histopathology. - 0213-3911 .- 1699-5848. ; 32:3, s. 263-270
  • Tidskriftsartikel (refereegranskat)abstract
    • Background/Aim. In a condition of pain in the Achilles tendon insertion there are multiple structures involved, such as the Achilles tendon itself, the retrocalcaneal bursa and a bony protrusion at the calcaneal tuberosity called Haglund's deformity. The innervation patterns of these structures are scarcely described, and the subcutaneous calcaneal bursa is traditionally not considered to be involved in the pathology. This study aimed at describing the innervation patterns of the four structures described above to provide a better understanding of possible origins of pain at the Achilles tendon insertion.Methods. Biopsies were taken from 10 patients with insertional Achilles tendinopathy, which had pathological changes in the subcutaneous and retrocalcaneal bursae, a Haglund deformity and Achilles tendon tendinopathy as verified by ultrasound. The biopsies were stained using immunohistochemistry in order to delineate the innervation patterns in the structures involved in insertional Achilles tendinopathy.Results. Immunohistochemical examinations found that the subcutaneous bursa scored the highest using a semi-quantitative evaluation of the degree of innervation when compared to the retrocalcaneal bursa, the Achilles tendon, and the calcaneal bone.Conclusions. These findings suggest that the subcutaneous bursa, which is traditionally not included in surgical treatment, may be a clinically important factor in insertional Achilles tendinopathy.
  •  
3.
  • Andersson, Gustav, et al. (författare)
  • Substance P accelerates hypercellularity and angiogenesis in tendon tissue and enhances paratendinitis in response to Achilles tendon overuse in a tendinopathy model
  • 2011
  • Ingår i: British Journal of Sports Medicine. - Loughborough : British Assoc. of Sport and Medicine. - 0306-3674 .- 1473-0480. ; 45:13, s. 1017-1022
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Tenocytes produce substance P (SP) and its receptor (neurokinin-1 receptor (NK-1R) is expressed throughout the tendon tissue, expecially in patients with tendinopathy and tissue changes (tendinosis) including hypercellularity and vascular proliferation. Considering the known effects of SP, one might ask whether SP contributes to these canges.Objectives To test whether development of tendinosislike changes (hypercellularity and angiogenesis) is accelerated during a 1-week course of ecercise with local administration of SP in an establish Achilles tendinopathy model.Methods Rabbits were subjected to a protocol of Achilles tendon overuse for 1 week, in conjunction with SP injections in the paratenon. Exercised control animals received NaCl injections or no injections, and unexercised, uninjected controls were also used. Tenocyte number and vascular density, as well as paratendinous inflammation, were evaluated. Immunohistochemistry and in sity hybridisation to detect NK-1R were conducted.Results There was a significant increase in tenocyte number in the SP-injected and NaCl-injected groups compared with both unexercised and exercised, uninjected controls. Tendon blood vessels increased in number in the SP-injected group compared with unexercised controls, a finding not seen in NaCl-injected controls or in uninjected, exercised animals. Paratendinous inflammation was more pronounced in the SP-injected group than in the NaCl controls. NK-1R was detected in blood vessel walls, nerves, inflammatory cells and tenocytes.Conclusions SP accelerated the development of tendinosis-like changes in the rabbit. Achilles tendon, which supports theories of a potential role of SP in tendinosis development; a fact of clinical interest since SP effects can be effectively blocked. The angiogenic response to SP injections seems related to parateninitis.
  •  
4.
  • Andersson, Gustav, 1983-, et al. (författare)
  • Substance P induces tendinosis-like changes in a rabbit model of Achilles tendon overuse
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • BACKGROUND: In previous studies we found evidence favouring that human Achilles tendon cells (tenocytes) are capable of producing the neuropeptide substance P (SP). Furthermore, the preferred receptor for SP (the neurokinin-1 receptor, NK-1 R) was widely expressed throughout the tendon, especially in patients suffering from chronic tendon pain (tendinopathy) with tissue changes (tendinosis) including hypercellularity and vascular proliferation. Considering known effects of SP, one might ask whether SP contributes to tendon cell proliferation and neovascularisation in tendinosis. We have an established animal (rabbit) model of Achilles tendinopathy based on overuse in the form of repetitive exercise. Recent studies with this model have shown that tendinosis-like changes are present after 3 weeks of exercise, but not after only 1 week. The current study aimed to test whether the development of tendinosis-like changes would be accelerated during a 1 week course of exercise with repetitive local administration of SP. MATERIAL AND METHODS: Four groups of animals (5-6 New Zealand white rabbits per group) were used. Three groups were subjected to the previously established protocol of Achilles tendon overuse for 1 week. One of these groups was given repetitive SP injections in the paratendinous tissue of the Achilles tendon, whereas one group (‘NaCl controls’) was given an equivalent schedule of saline injections. Two additional control groups existed: One in which the animals were neither subjected to the overuse protocol nor to any injections (‘untrained controls’), and one in which the animals trained for 1 week but were not given any injections (‘1 week controls’). Tenocyte number, vascular density, and the possible occurrence of paratendinous inflammation were evaluated. Immunohistochemistry and in situ hybridisation to detect NK-1 R were also conducted. RESULTS: There was a significant increase in tenocyte number in the SP-injected group compared to both untrained controls and 1 week controls. However, the same phenomenon was noticed for NaCl controls, i.e. tenocyte number was significantly increased in response to NaCl injections compared to untrained controls. There was an increase in the number of tendon blood vessels in the SP-injected group as compared to untrained controls, and this increase in vascularity was not seen for the NaCl controls or the 1 week controls. Paratendinous inflammation, as evidenced by invasion of inflammatory cells in the paratenon, was clearly more pronounced in the SP-injected group than in the NaCl controls. NK-1 R was detected in blood vessel walls, on nerves, on inflammatory cells, and on tenocytes. DISCUSSION AND CONCLUSIONS: The observations suggest that SP induces tenocyte proliferation and angiogenesis in the rabbit Achilles tendon, thus supporting a potential role of this neuropeptide in the processes that occur in tendinosis. The study corroborates findings on the human Achilles tendon in that NK-1 R was expressed on tenocytes and tendon blood vessel walls, thereby providing a potential anatomic basis for the observed effects of SP on the development of tendinosis. The hypercellularity observed in response to NaCl injections might be due increased tissue pressure or to stimulation of endogenous SPproduction, a phenomenon not unheard of. The angiogenic effect of SP injections, on the other hand, appeared to be more specifically related to an induction of inflammation in the paratendon.
  •  
5.
  • Backman, Ludvig, et al. (författare)
  • Endogenous substance P production in the Achilles tendon increases with loading in an in vivo model of tendinopathy : peptidergic elevation preceding tendinosis-like tissue changes
  • 2011
  • Ingår i: Journal of Musculoskeletal and Neuronal Interactions - JMNI. - : International Society of Musculoskeletal and Neuronal Interactions. - 1108-7161. ; 11:2, s. 133-140
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: To quantify the intratendinous levels of substance P (SP) at different stages of overload in an established modelfor Achilles tendinopathy (rabbit). Also, to study the distribution of the SP-receptor, the NK-1R, and the source of SP, in thetendon. Methods: Animals were subjected to the overuse protocol for 1, 3 or 6 weeks. One additional group served as unexercisedcontrols. Immunoassay (EIA), immunohistochemistry (IHC), and in situ hybridisation (ISH) were performed.Results: EIA revealedincreased SP-levels in the Achilles tendon of the exercised limb in all the experimental groups as compared to in thecontrols (statistically significant; p=0.01). A similar trend in the unexercised Achilles tendon was observed but was not statisticallysignificant (p=0.14). IHC and in ISH illustrated reactions of both SP and NK-1R mainly in blood vessel walls, but the receptorwas also found on tenocytes.Conclusions: Achilles tendon SP-levels are elevated already after 1 week of loading. This showsthat increased SP-production precedes tendinosis, as tendinosis-like changes occur only after a minimum of 3 weeks of exercise,as shown in a recent study using this model. We propose that central neuronal mechanism may be involved as similar trends wereobserved in the contralateral Achilles tendon.
  •  
6.
  • Backman, Ludvig J, 1983-, et al. (författare)
  • Akt-mediated anti-apoptotic effects of substance P in Anti-Fas-induced apoptosis of human tenocytes
  • 2013
  • Ingår i: Journal of Cellular and Molecular Medicine (Print). - : Wiley-Blackwell. - 1582-1838 .- 1582-4934. ; 17:6, s. 723-733
  • Tidskriftsartikel (refereegranskat)abstract
    • Substance P (SP) and its receptor, the neurokinin-1 receptor (NK-1 R), are expressed by human tenocytes, and they are both up-regulated incases of tendinosis, a condition associated with excessive apoptosis. It is known that SP can phosphorylate/activate the protein kinase Akt,which has anti-apoptotic effects. This mechanism has not been studied for tenocytes. The aims of this study were to investigate if Anti-Fastreatment is a good apoptosis model for human tenocytes in vitro, if SP protects from Anti-Fas-induced apoptosis, and by which mechanismsSP mediates an anti-apoptotic response. Anti-Fas treatment resulted in a time- and dose-dependent release of lactate dehydrogenase (LDH), i.e.induction of cell death, and SP dose-dependently reduced the Anti-Fas-induced cell death through a NK-1 R specific pathway. The same trendwas seen for the TUNEL assay, i.e. SP reduced Anti-Fas-induced apoptosis via NK-1 R. In addition, it was shown that SP reduces Anti-Fas-induced decrease in cell viability as shown with crystal violet assay. Protein analysis using Western blot confirmed that Anti-Fas inducescleavage/activation of caspase-3 and cleavage of PARP; both of which were inhibited by SP via NK-1 R. Finally, SP treatment resulted in phosphorylation/activation of Akt as shown with Western blot, and it was confirmed that the anti-apoptotic effect of SP was, at least partly, inducedthrough the Akt-dependent pathway. In conclusion, we show that SP reduces Anti-Fas-induced apoptosis in human tenocytes and that this antiapoptoticeffect of SP is mediated through NK-1 R and Akt-specific pathways.
  •  
7.
  • Backman, Ludvig J, et al. (författare)
  • Alpha-2 adrenergic stimulation triggers Achilles tenocyte hypercellularity : comparison between two model systems
  • 2013
  • Ingår i: Scandinavian Journal of Medicine and Science in Sports. - : John Wiley & Sons. - 0905-7188 .- 1600-0838. ; 23:6, s. 687-696
  • Tidskriftsartikel (refereegranskat)abstract
    • The histopathology of tendons with painful tendinopathy is often tendinosis, a fibrosis-like condition of unclear pathogenesis characterized by tissue changes including hypercellularity. The primary tendon cells (tenocytes) have been shown to express adrenoreceptors (mainly alpha-2A) as well as markers of catecholamine production, particularly in tendinosis. It is known that adrenergic stimulation can induce proliferation in other cells. The present study investigated the effects of an exogenously administered alpha-2 adrenergic agonist in an established in vivo Achilles tendinosis model (rabbit) and also in an in vitro human tendon cell culture model. The catecholamine producing enzyme tyrosine hydroxylase and the alpha-2A-adrenoreceptor (α(2A) AR) were expressed by tenocytes, and alpha-2 adrenergic stimulation had a proliferative effect on these cells, in both models. The proliferation was inhibited by administration of an α(2A) AR antagonist, and the in vitro model further showed that the proliferative alpha-2A effect was mediated via a mitogenic cell signaling pathway involving phosphorylation of extracellular-signal-regulated kinases 1 and 2. The results indicate that catecholamines produced by tenocytes in tendinosis might contribute to the proliferative nature of the pathology through stimulation of the α(2A) AR, pointing to a novel target for future therapies. The study furthermore shows that animal models are not necessarily required for all aspects of this research.
  •  
8.
  • Backman, Ludvig J, et al. (författare)
  • Low range of ankle dorsiflexion predisposes for patellar tendinopathy in junior elite basketball players : a 1-year prospective study
  • 2011
  • Ingår i: American Journal of Sports Medicine. - : SAGE Publications. - 0363-5465 .- 1552-3365. ; 39:12, s. 2626-2633
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Patellar tendinopathy (PT) is one of the most common reasons for sport-induced pain of the knee. Low ankle dorsiflexion range might predispose for PT because of load-bearing compensation in the patellar tendon. PURPOSE: The purpose of this 1-year prospective study was to analyze if a low ankle dorsiflexion range increases the risk of developing PT for basketball players. STUDY DESIGN: Cohort study (prognosis); Level of evidence, 2. METHODS: Ninety junior elite basketball players were examined for different characteristics and potential risk factors for PT, including ankle dorsiflexion range in the dominant and nondominant leg. Data were collected over a 1-year period and follow-up, including reexamination, was made at the end of the year. RESULTS: Seventy-five players met the inclusion criteria. At the follow-up, 12 players (16.0%) had developed unilateral PT. These players were found to have had a significantly lower mean ankle dorsiflexion range at baseline than the healthy players, with a mean difference of -4.7° (P = .038) for the dominant limb and -5.1° (P = .024) for the nondominant limb. Complementary statistical analysis showed that players with dorsiflexion range less than 36.5° had a risk of 18.5% to 29.4% of developing PT within a year, as compared with 1.8% to 2.1% for players with dorsiflexion range greater than 36.5°. Limbs with a history of 2 or more ankle sprains had a slightly less mean ankle dorsiflexion range compared to those with 0 or 1 sprain (mean difference, -1.5° to -2.5°), although this was only statistically significant for nondominant legs. CONCLUSION: This study clearly shows that low ankle dorsiflexion range is a risk factor for developing PT in basketball players. In the studied material, an ankle dorsiflexion range of 36.5° was found to be the most appropriate cutoff point for prognostic screening. This might be useful information in identifying at-risk individuals in basketball teams and enabling preventive actions. A history of ankle sprains might contribute to reduced ankle dorsiflexion range.
  •  
9.
  • Backman, Ludvig J., et al. (författare)
  • Substance P reduces TNF-α-induced apoptosis in human tenocytes through NK-1 receptor stimulation
  • 2014
  • Ingår i: British Journal of Sports Medicine. - : BMJ Publishing Group Ltd. - 0306-3674 .- 1473-0480. ; 48:19, s. 1414-1420
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: It has been hypothesised that an upregulation of the neuropeptide substance P (SP) and its preferred receptor, the neurokinin-1 receptor (NK-1 R), is a causative factor in inducing tenocyte hypercellularity, a characteristic of tendinosis, through both proliferative and antiapoptotic stimuli. We have demonstrated earlier that SP stimulates proliferation of human tenocytes in culture.AIM: The aim of this study was to investigate whether SP can mediate an antiapoptotic effect in tumour necrosis factor-α (TNF-α)-induced apoptosis of human tenocytes in vitro.RESULTS: A majority (approximately 75%) of tenocytes in culture were immunopositive for TNF Receptor-1 and TNF Receptor-2. Exposure of the cells to TNF-α significantly decreased cell viability, as shown with crystal violet staining. TNF-α furthermore significantly increased the amount of caspase-10 and caspase-3 mRNA, as well as both BID and cleaved-poly ADP ribosome polymerase (c-PARP) protein. Incubation of SP together with TNF-α resulted in a decreased amount of BID and c-PARP, and in a reduced lactate dehydrogenase release, as compared to incubation with TNF-α alone. The SP effect was blocked with a NK-1 R inhibitor.DISCUSSION: This study shows that SP, through stimulation of the NK-1 R, has the ability to reduce TNF-α-induced apoptosis of human tenocytes. Considering that SP has previously been shown to stimulate tenocyte proliferation, the study confirms SP as a potent regulator of cell-turnover in tendon tissue, capable of stimulating hypercellularity through different mechanisms. This gives further support for the theory that the upregulated amount of SP seen in tendinosis could contribute to hypercellularity.
  •  
10.
  • Backman, Ludvig, 1983- (författare)
  • Neuropeptide and catecholamine effects on tenocytes in tendinosis development : studies on two model systems with focus on proliferation and apoptosis
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Background: Achilles tendinopathy is a common clinical syndrome of chronic Achilles tendon pain combined with thickening of the tendon and impaired tendon function. Tendinopathy is often, but not always, induced by mechanical overload, and is frequently accompanied by abnormalities at the tissue level, such as hypercellularity and angiogenesis, in which case the condition is called tendinosis. In tendinosis, there are no signs of intratendinous inflammation, but occasionally increased apoptosis is observed. Tendinosis is often hard to treat and its pathogenesis is still not clear. Recently, a new hypothesis has gained support, suggesting a biochemical model based on the presence of a non-neuronal production of classically neuronal signal substances by the primary tendon cells (tenocytes) in tendinosis. The possible functional importance of these signal substances in tendons is unknown and needs to be studied. In particular, the neuropeptide substance P (SP) and catecholamines are of interest in this regard, since these substances have been found to be up-regulated in tendinosis. As both SP and catecholamines are known to exert effects in other tissues resulting in changes similar to those characteristic of tendinosis, it is possible that they have a role in tendinosis development. It is furthermore unknown what elicits the increased intratendinous neuropeptide production in tendinosis, but given that tendon overload is a prominent riskfactor, it is possible that mechanical stimuli are involved.The hypothesis of this thesis work was that intratendinous production of SP is up-regulated in response to load of Achilles tendons/tenocytes, and thatstimulation of the preferred SP receptor, the neurokinin-1 receptor (NK-1 R), aswell as stimulation of the catecholamine α2 adrenoreceptors, contribute to the hypercellularity seen in tendinosis, via increased proliferation and/or decreased apoptosis, and that SP stimulates tendon angiogenesis. The purpose of the studies was to test this hypothesis. To achieve this, two model systems were used: One in vivo (rabbit Achilles tendon overload model of tendinosis) and one in vitro (human primary Achilles tendon cell culture model).Results: In the rabbit Achilles tendon tissue, SP and NK-1 R expression was extensive in the blood vessel walls, but also to some extent seen in the tenocytes. Quantification of endogenously produced SP in vivo confirmed intratendinous production of the peptide. The production of SP by human tendon cells in vitro was furthermore demonstrated. The catecholamine synthesizing enzyme tyrosine hydroxylase (TH), as well as the α2A adrenoreceptor (α2A AR), were detected in the tenocytes, both in vivo in the rabbit tissue and in vitro in the human tendon cells. As a response to mechanical loading in the in vivo model, the intratendinous levels of SP increased, and this elevation was found to precede distinct tendinosis changes. The in vitro model demonstrated the same response to load, i.e. an increased SP expression, but in this case also a decrease in the NK-1 R expression. In the in vivo model, exogenously administered SP, as well as clonidine (an α2 AR agonist), accelerated tenocyte hypercellularity, an effect that was not seen when administrating a specific α2A AR antagonist. Exogenous administration of SP also resulted in intratendinous angiogenesis and paratendinous inflammation. In the in vitro model, both SP and clonidine had proliferative effects on the human tenocytes, specifically mediated via NK-1R and α2A AR, respectively; both of which in turn involved activation/phosphorylation of the extracellular signal-regulated kinases 1 and 2 (ERK1/2). Exogenously administered SP, in Anti-Fas induced apoptosis of the tenocytes in vitro, confirmed SP to have an anti-apoptotic effect on these cells. This effect was specifically mediated via NK-1 R and the known anti-apoptotic Akt pathway.Conclusions: In summary, this thesis concludes that stimulation of NK-1 R and α2A AR on tenocytes, both in vitro and in vivo, mediates significant cell signalling effects leading to processes known to occur in tendinosis, including hypercellularity. The pathological role of the hypercellularity in tendinosis is still unclear, but it is likely to affect collagen metabolism/turnover and arrangement, and thereby indirectly tendon biomechanical function. Additional evidence is here provided showing that SP not only causes tenocyte proliferation, but also contributes to anti-apoptotic events. Furthermore, it was concluded that SP may be involved in the development of tendinosis, since its production is increased in response to load, preceding tendinosis, and since SP accelerates tendinosis changes, through some mechanistic pathways here delineated. These findings suggest that inhibition of SP, and possibly also catecholamines, could be beneficial in the reconstitution/normalization of tendon structure in tendinosis.
  •  
11.
  • Backman, Ludvig, et al. (författare)
  • Substance P is a mechanoresponsive, autocrine regulator of human tenocyte proliferation
  • 2011
  • Ingår i: PLOS ONE. - San Francisco, USA : Public Library of Science. - 1932-6203. ; 6:11, s. e27209-
  • Tidskriftsartikel (refereegranskat)abstract
    • It has been hypothesised that substance P (SP) may be produced by primary fibroblastic tendon cells (tenocytes), and that this production, together with the widespread distribution of the neurokinin-1 receptor (NK-1 R) in tendon tissue, could play an important role in the development of tendinopathy, a condition of chronic tendon pain and thickening. The aim of this study was to examine the possibility of endogenous SP production and the expression of NK-1 R by human tenocytes. Because tendinopathy is related to overload, and because the predominant tissue pathology (tendinosis) underlying early tendinopathy is characterized by tenocyte hypercellularity, the production of SP in response to loading/strain and the effects of exogenously administered SP on tenocyte proliferation were also studied. A cell culture model of primary human tendon cells was used. The vast majority of tendon cells were immunopositive for the tenocyte/fibroblast markers tenomodulin and vimentin, and immunocytochemical counterstaining revealed that positive immunoreactions for SP and NK-1 R were seen in a majority of these cells. Gene expression analyses showed that mechanical loading (strain) of tendon cell cultures using the FlexCell (R) technique significantly increased the mRNA levels of SP, whereas the expression of NK-1 R mRNA decreased in loaded as compared to unloaded tendon cells. Reduced NK-1 R protein was also observed, using Western blot, after exogenously administered SP at a concentration of 10(-7) M. SP exposure furthermore resulted in increased cell metabolism, increased cell viability, and increased cell proliferation, all of which were found to be specifically mediated via the NK-1 R; this in turn involving a common mitogenic cell signalling pathway, namely phosphorylation of ERK1/2. This study indicates that SP, produced by tenocytes in response to mechanical loading, may regulate proliferation through an autocrine loop involving the NK-1 R.
  •  
12.
  • Borbely, Gabor, 1981-, et al. (författare)
  • The role of neurokinin A in corneal wound repair
  • 2015
  • Ingår i: Investigative Ophthalmology and Visual Science. - Rockville, MD, USA : Assoc Research Vision Ophthalmology Inc. - 0146-0404 .- 1552-5783. ; 56:7
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
13.
  • Chen, Jialin, et al. (författare)
  • Ascorbic Acid Promotes the Stemness of Corneal Epithelial Stem/Progenitor Cells and Accelerates Epithelial Wound Healing in the Cornea
  • 2017
  • Ingår i: Stem Cells Translational Medicine. - : WILEY. - 2157-6564 .- 2157-6580. ; 6:5, s. 1356-1365
  • Tidskriftsartikel (refereegranskat)abstract
    • High concentration of ascorbic acid (vitamin C) has been found in corneal epithelium of various species. However, the specific functions and mechanisms of ascorbic acid in the repair of corneal epithelium are not clear. In this study, it was found that ascorbic acid accelerates corneal epithelial wound healing in vivo in mouse. In addition, ascorbic acid enhanced the stemness of cultured mouse corneal epithelial stem/progenitor cells (TKE2) in vitro, as shown by elevated clone formation ability and increased expression of stemness markers (especially p63 and SOX2). The contribution of ascorbic acid on the stemness enhancement was not dependent on the promotion of Akt phosphorylation, as concluded by using Akt inhibitor, nor was the stemness found to be dependent on the regulation of oxidative stress, as seen by the use of two other antioxidants (GMEE and NAC). However, ascorbic acid was found to promote extracellular matrix (ECM) production, and by using two collagen synthesis inhibitors (AzC and CIS), the increased expression of p63 and SOX2 by ascorbic acid was decreased by around 50%, showing that the increased stemness by ascorbic acid can be attributed to its regulation of ECM components. Moreover, the expression of p63 and SOX2 was elevated when TKE2 cells were cultured on collagen I coated plates, a situation that mimics the in vivo situation as collagen I is the main component in the corneal stroma. This study shows direct therapeutic benefits of ascorbic acid on corneal epithelial wound healing and provides new insights into the mechanisms involved.
  •  
14.
  • Chen, Jialin, et al. (författare)
  • Characterization and comparison of post-natal rat Achilles tendon-derived stem cells at different development stages
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Tendon stem/progenitor cells (TSPCs) are a potential cell source for tendon tissue engineering. The striking morphological and structural changes of tendon tissue during development indicate the complexity of TSPCs at different stages. This study aims to characterize and compare post-natal rat Achilles tendon tissue and TSPCs at different stages of development. The tendon tissue showed distinct differences during development: the tissue structure became denser and more regular, the nuclei became spindle-shaped and the cell number decreased with time. TSPCs derived from 7 day Achilles tendon tissue showed the highest self-renewal ability, cell proliferation, and differentiation potential towards mesenchymal lineage, compared to TSPCs derived from 1 day and 56 day tissue. Microarray data showed up-regulation of several groups of genes in TSPCs derived from 7 day Achilles tendon tissue, which may account for the unique cell characteristics during this specific stage of development. Our results indicate that TSPCs derived from 7 day Achilles tendon tissue is a superior cell source as compared to TSPCs derived from 1 day and 56 day tissue, demonstrating the importance of choosing a suitable stem cell source for effective tendon tissue engineering and regeneration.
  •  
15.
  • Chen, Jialin, et al. (författare)
  • Ciliary Neurotrophic Factor Promotes the Migration of Corneal Epithelial Stem/progenitor Cells by Up-regulation of MMPs through the Phosphorylation of Akt
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • The migration of limbal epithelial stem cells is important for the homeostasis and regeneration of corneal epithelium. Ciliary neurotrophic factor (CNTF) has been found to promote corneal epithelial wound healing by activating corneal epithelial stem/progenitor cells. However, the possible effect of CNTF on the migration of corneal epithelial stem/progenitor cells is not clear. This study found the expression of CNTF in mouse corneal epithelial stem/progenitor cells (TKE2) to be up-regulated after injury, on both gene and protein level. CNTF promoted migration of TKE2 in a dose-dependent manner and the peak was seen at 10 ng/ml. The phosphorylation level of Akt (p-Akt), and the expression of MMP3 and MMP14, were up-regulated after CNTF treatment both in vitro and in vivo. Akt and MMP3 inhibitor treatment delayed the migration effect by CNTF. Finally, a decreased expression of MMP3 and MMP14 was observed when Akt inhibitor was applied both in vitro and in vivo. This study provides new insights into the role of CNTF on the migration of corneal epithelial stem/progenitor cells and its inherent mechanism of Up-regulation of matrix metalloproteinases through the Akt signalling pathway.
  •  
16.
  • Chen, Jialin, et al. (författare)
  • Fos Promotes Early Stage Teno-Lineage Differentiation of Tendon Stem/Progenitor Cells in Tendon
  • 2017
  • Ingår i: Stem Cells Translational Medicine. - : John Wiley & Sons. - 2157-6564 .- 2157-6580. ; 6:11, s. 2009-2019
  • Tidskriftsartikel (refereegranskat)abstract
    • Stem cells have been widely used in tendon tissue engineering. The lack of refined and controlled differentiation strategy hampers the tendon repair and regeneration. This study aimed to find new effective differentiation factors for stepwise tenogenic differentiation. By microarray screening, the transcript factor Fos was found to be expressed in significantly higher amounts in postnatal Achilles tendon tissue derived from 1 day as compared with 7-days-old rats. It was further confirmed that expression of Fos decreased with time in postnatal rat Achilles tendon, which was accompanied with the decreased expression of multiply tendon markers. The expression of Fos also declined during regular in vitro cell culture, which corresponded to the loss of tendon phenotype. In a cell-sheet and a three-dimensional cell culture model, the expression of Fos was upregulated as compared with in regular cell culture, together with the recovery of tendon phenotype. In addition, significant higher expression of tendon markers was found in Fos-overexpressed tendon stem/progenitor cells (TSPCs), and Fos knock-down gave opposite results. In situ rat tendon repair experiments found more normal tendon-like tissue formed and higher tendon markers expression at 4 weeks postimplantation of Fos-overexpressed TSPCs derived nonscaffold engineering tendon (cell-sheet), as compared with the control group. This study identifies Fos as a new marker and functional driver in the early stage teno-lineage differentiation of tendon, which paves the way for effective stepwise tendon differentiation and future tendon regeneration.
  •  
17.
  • Chen, Jialin, et al. (författare)
  • Hydroxycamptothecin and substratum stiffness synergistically regulate fibrosis of human corneal fibroblasts
  • 2023
  • Ingår i: ACS Biomaterials Science & Engineering. - : American Chemical Society (ACS). - 2373-9878. ; 9:2, s. 959-967
  • Tidskriftsartikel (refereegranskat)abstract
    • Corneal fibrosis is a common outcome of inappropriate repair associated with trauma or ocular infection. Altered biomechanical properties with increased corneal stiffness is a feature of fibrosis that cause corneal opacities, resulting in severe visual impairment and even blindness. The present study aims to determine the effect of hydroxycamptothecin (HCPT) and matrix stiffness on transforming growth factor-β1 (TGF-β1)-induced fibrotic processes in human corneal fibroblasts (HTK cells). HTK cells were cultured on substrates with different stiffnesses ("soft", ∼261 kPa; "stiff", ∼2.5 × 103 kPa) and on tissue culture plastic (TCP, ∼106 kPa) and simultaneously treated with or without 1 μg/mL HCPT and 10 ng/mL TGF-β1. We found that HCPT induced decreased cell viability and antiproliferative effects on HTK cells. TGF-β1-induced expression of fibrosis-related genes (FN1, ACTA2) was reduced if the cells were simultaneously treated with HCPT. Substrate stiffness did not affect the expression of fibrosis-related genes. The TGF-β1 induced expression of FN1 on both soft and stiff substrates was reduced if cells were simultaneously treated with HCPT. However, this trend was not seen for ACTA2, i.e., the TGF-β1 induced expression of ACTA2 was not reduced by simultaneous treatment of HCPT in either soft or stiff substrate. Instead, HCPT treatment in the presence of TGF-β1 resulted in increased gene expression of keratocyte phenotype makers (LUM, KERA, AQP1, CHTS6) on both substrate stiffnesses. In addition, the protein expression of keratocyte phenotype makers LUM and ALDH3 was increased in HTK cells simultaneously treated with TGF-β1 and HCPT on stiff substrate as compared to control, i.e., without HCPT. In conclusion, we found that HCPT can reduce TGF-β1-induced fibrosis and promote the keratocyte phenotype in a substrate stiffness dependent manner. Thus, HCPT stimulation might be an approach to stimulate keratocytes in the appropriate healing stage to avoid or reverse fibrosis and achieve more optimal corneal wound healing.
  •  
18.
  • Chen, Jialin, et al. (författare)
  • Mechanical stress potentiates the differentiation of periodontal ligament stem cells into keratocytes
  • 2018
  • Ingår i: British Journal of Ophthalmology. - : BMJ Publishing Group Ltd. - 0007-1161 .- 1468-2079. ; 102:4, s. 562-569
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims To explore the role of corneal-shaped static mechanical strain on the differentiation of human periodontal ligament stem cells (PDLSCs) into keratocytes and the possible synergistic effects of mechanics and inducing medium. Methods PDLSCs were exposed to 3% static dome-shaped mechanical strain in a Flexcell Tension System for 3 days and 7 days. Keratocyte phenotype was determined by gene expression of keratocyte markers. Keratocyte differentiation (inducing) medium was introduced in the Flexcell system, either continuously or intermittently combined with mechanical stimulation. The synergistic effects of mechanics and inducing medium on keratocyte differentiation was evaluated by gene and protein expression of keratocyte markers. Finally, a multilamellar cell sheet was assembled by seeding PDLSCs on a collagen membrane and inducing keratocyte differentiation. The transparency of the cell sheet was assessed, and typical markers of native human corneal stroma were evaluated by immunofluorescence staining. Results Dome-shaped mechanical stimulation promoted PDLSCs to differentiate into keratocytes, as shown by the upregulation of ALDH3A1, CD34, LUM, COL I and COL V. The expression of integrins were also upregulated after mechanical stimulation, including integrin alpha 1, alpha 2, beta 1 and non-muscle myosin II B. A synergistic effect of mechanics and inducing medium was found on keratocyte differentiation. The cell sheets were assembled under the treatment of mechanics and inducing medium simultaneously. The cell sheets were transparent, multilamellar and expressed typical markers of corneal stroma. Conclusion Dome-shaped mechanical stimulation promotes differentiation of PDLSCs into keratocytes and has synergistic effects with inducing medium. Multilamellar cell sheets that resemble native human corneal stroma show potential for future clinical applications.
  •  
19.
  • Chen, Jialin, et al. (författare)
  • Regulation of Keratocyte Phenotype and Cell Behavior by Substrate Stiffness
  • 2020
  • Ingår i: ACS Biomaterials Science & Engineering. - : American Chemical Society (ACS). - 2373-9878. ; 6:9, s. 5162-5171
  • Tidskriftsartikel (refereegranskat)abstract
    • Corneal tissue engineering is an alternative way to solve the problem of lack of corneal donor tissue in corneal transplantation. Keratocytes with a normal phenotype and function in tissue-engineered cornea would be critical for corneal regeneration. Although the role of extracellular/substrate material stiffness is well-known for the regulation of the cell phenotype and cell behavior in many different cell types, its effects in keratocyte culture have not yet been thoroughly studied. This project studied the effect of substrate stiffness on the keratocyte phenotype marker expression and typical cell behavior (cell adhesion, proliferation, and migration), and the possible mechanisms involved. Human primary keratocytes were cultured on tissue culture plastic (TCP, similar to 10(6) kPa) or on plates with the stiffness equivalent of physiological human corneal stroma (25 kPa) or vitreous body (1 kPa). The expression of keratocyte phenotype markers, cell adhesion, proliferation, and migration were compared. The results showed that the stiffness of the substrate material regulates the phenotype marker expression and cell behavior of cultured keratocytes. Physiological corneal stiffness (25 kPa) superiorly preserved the cell phenotype when compared to the TCP and 1 kPa group. Keratocytes had a larger cell area when cultured on 25 kPa plates as compared to on TCP. Treatment of cells with NSC 23766 (Rac1 inhibitor) mimicked the response in the cell phenotype and behavior seen in the transition from soft materials to stiff materials, including the cytoskeletal structure, expression of keratocyte phenotype markers, and cell behavior. In conclusion, this study shows that substrate stiffness regulates the cell phenotype marker expression and cell behavior of keratocytes by Rac1-mediated cytoskeletal reorganization. This knowledge contributes to the development of corneal tissue engineering.
  •  
20.
  • Chen, Jialin, et al. (författare)
  • Substance P and patterned silk biomaterial stimulate periodontal ligament stem cells to form corneal stroma in a bioengineered three-dimensional model
  • 2017
  • Ingår i: Stem Cell Research & Therapy. - : BIOMED CENTRAL LTD. - 1757-6512. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: We aimed to generate a bioengineered multi-lamellar human corneal stroma tissue in vitro by differentiating periodontal ligament stem cells (PDLSCs) towards keratocytes on an aligned silk membrane.Methods: Human PDLSCs were isolated and identified. The neuropeptide substance P (SP) was added in keratocyte differentiation medium (KDM) to evaluate its effect on keratocyte differentiation of PDLSCs. PDLSCs were then seeded on patterned silk membrane and cultured with KDM and SP. Cell alignment was evaluated and the expression of extracellular matrix (ECM) components of corneal stroma was detected. Finally, multi-lamellar tissue was constructed in vitro by PDLSCs seeded on patterned silk membranes, which were stacked orthogonally and stimulated by KDM supplemented with SP for 18 days. Sections were prepared and subsequently stained with hematoxylin and eosin or antibodies for immunofluorescence observation of human corneal stroma-related proteins.Results: SP promoted the expression of corneal stroma-related collagens (collagen types I, III, V, and VI) during the differentiation induced by KDM. Patterned silk membrane guided cell alignment of PDLSCs, and important ECM components of the corneal stroma were shown to be deposited by the cells. The constructed multi-lamellar tissue was found to support cells growing between every two layers and expressing the main type of collagens (collagen types I and V) and proteoglycans (lumican and keratocan) of normal human corneal stroma.Conclusions: Multi-lamellar human corneal stroma-like tissue can be constructed successfully in vitro by PDLSCs seeded on orthogonally aligned, multi-layered silk membranes with SP supplementation, which shows potential for future corneal tissue engineering.
  •  
21.
  • Chen, Zhixuan, et al. (författare)
  • Effects of Zinc, Magnesium, and Iron Ions on Bone Tissue Engineering
  • 2022
  • Ingår i: ACS Biomaterials Science & Engineering. - : American Chemical Society (ACS). - 2373-9878. ; 8:6, s. 2321-2335
  • Forskningsöversikt (refereegranskat)abstract
    • Large-sized bone defects are a great challenge in clinics and considerably impair the quality of patients' daily life. Tissue engineering strategies using cells, scaffolds, and bioactive molecules to regulate the microenvironment in bone regeneration is a promising approach. Zinc, magnesium, and iron ions are natural elements in bone tissue and participate in many physiological processes of bone metabolism and therefore have great potential for bone tissue engineering and regeneration. In this review, we performed a systematic analysis on the effects of zinc, magnesium, and iron ions in bone tissue engineering. We focus on the role of these ions in properties of scaffolds (mechanical strength, degradation, osteogenesis, antibacterial properties, etc.). We hope that our summary of the current research achievements and our notifications of potential strategies to improve the effects of zinc, magnesium, and iron ions in scaffolds for bone repair and regeneration will find new inspiration and breakthroughs to inspire future research.
  •  
22.
  • Chi, Jiayu, et al. (författare)
  • Topographic Orientation of Scaffolds for Tissue Regeneration : Recent Advances in Biomaterial Design and Applications
  • 2022
  • Ingår i: Biomimetics. - : MDPI. - 2313-7673. ; 7:3
  • Forskningsöversikt (refereegranskat)abstract
    • Tissue engineering to develop alternatives for the maintenance, restoration, or enhancement of injured tissues and organs is gaining more and more attention. In tissue engineering, the scaffold used is one of the most critical elements. Its characteristics are expected to mimic the native extracellular matrix and its unique topographical structures. Recently, the topographies of scaffolds have received increasing attention, not least because different topographies, such as aligned and random, have different repair effects on various tissues. In this review, we have focused on various technologies (electrospinning, directional freeze-drying, magnetic freeze-casting, etching, and 3-D printing) to fabricate scaffolds with different topographic orientations, as well as discussed the physicochemical (mechanical properties, porosity, hydrophilicity, and degradation) and biological properties (morphology, distribution, adhesion, proliferation, and migration) of different topographies. Subsequently, we have compiled the effect of scaffold orientation on the regeneration of vessels, skin, neural tissue, bone, articular cartilage, ligaments, tendons, cardiac tissue, corneas, skeletal muscle, and smooth muscle. The compiled information in this review will facilitate the future development of optimal topographical scaffolds for the regeneration of certain tissues. In the majority of tissues, aligned scaffolds are more suitable than random scaffolds for tissue repair and regeneration. The underlying mechanism explaining the various effects of aligned and random orientation might be the differences in “contact guidance”, which stimulate certain biological responses in cells.
  •  
23.
  •  
24.
  • Dennhag, Nils, 1989-, et al. (författare)
  • fhl2b mediates extraocular muscle protection in zebrafish models of muscular dystrophies and its ectopic expression ameliorates affected body muscles
  • 2024
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In muscular dystrophies, muscle fibers loose integrity and die, causing significant suffering and premature death. Strikingly, the extraocular muscles (EOMs) are spared, functioning well despite the disease progression. Although EOMs have been shown to differ from body musculature, the mechanisms underlying this inherent resistance to muscle dystrophies remain unknown. Here, we demonstrate important differences in gene expression as a response to muscle dystrophies between the EOMs and trunk muscles in zebrafish via transcriptomic profiling. We show that the LIM-protein Fhl2 is increased in response to the knockout of desmin, plectin and obscurin, cytoskeletal proteins whose knockout causes different muscle dystrophies, and contributes to disease protection of the EOMs. Moreover, we show that ectopic expression of fhl2b can partially rescue the muscle phenotype in the zebrafish Duchenne muscular dystrophy model sapje, significantly improving their survival. Therefore, Fhl2 is a protective agent and a candidate target gene for therapy of muscular dystrophies.
  •  
25.
  •  
26.
  • Dowdeswell, J. A., et al. (författare)
  • High-resolution geophysical observations of the Yermak Plateau and northern Svalbard margin : Implications for ice-sheet grounding and deep-keeled icebergs
  • 2010
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 29:25-26, s. 3518-3531
  • Tidskriftsartikel (refereegranskat)abstract
    • High-resolution geophysical evidence on the seafloor morphology and acoustic stratigraphy of the Yermak Plateau and northern Svalbard margin between 79°20′ and 81°30′N and 5° and 22°E is presented. Geophysical datasets are derived from swath bathymetry and sub-bottom acoustic profiling and are combined with existing cores to derive chronological control. Seafloor landforms, in the form of ice-produced lineations, iceberg ploughmarks of various dimensions (including features over 80 m deep and down to about 1000 m), and a moat indicating strong currents are found. The shallow stratigraphy of the Yermak Plateau shows three acoustic units: the first with well-developed stratification produced by hemipelagic sedimentation, often draped over a strong and undulating internal reflector; a second with an undulating upper surface and little acoustic penetration, indicative of the action of ice; a third unit of an acoustically transparent facies, resulting from debris flows. Core chronology suggests a MIS 6 age for the undulating seafloor above about 580 m. There are several possible explanations, including: (a) the flow of a major grounded ice sheet across the plateau crest from Svalbard (least likely given the consolidation state of the underlying sediments); (b) the more transient encroachment of relatively thin ice from Svalbard; or (c) the drift across the plateau of an ice-shelf remnant or megaberg from the Arctic Basin. The latter is our favoured explanation given the evidence currently at our disposal.
  •  
27.
  • El-Habta, Roine, et al. (författare)
  • Adipose stem cells enhance myoblast proliferation via acetylcholine and extracellular signal-regulated kinase 1/2 signaling
  • 2018
  • Ingår i: Muscle and Nerve. - : WILEY. - 0148-639X .- 1097-4598. ; 57:2, s. 305-311
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: In this study we investigated the interaction between adipose tissue-derived stem cells (ASCs) and myoblasts in co-culture experiments. Methods: Specific inductive media were used to differentiate ASCs in vitro into a Schwann cell-like phenotype (differentiated adipose tissuederived stem cells, or dASCs) and, subsequently, the expression of acetylcholine (ACh)-related machinery was determined. In addition, the expression of muscarinic ACh receptors was examined in denervated rat gastrocnemius muscles. Results: In contrast to undifferentiated ASCs, dASCs expressed more choline acetyltransferase and vesicular acetylcholine transporter. When co-cultured with myoblasts, dASCs enhanced the proliferation rate, as did ACh administration alone. Western blotting and pharmacological inhibitor studies showed that phosphorylated extracellular signal-regulated kinase 1/2 signaling mediated these effects. In addition, denervated muscle showed higher expression of muscarinic ACh receptors than control muscle. Discussion: Our findings suggest that dASCs promote proliferation of myoblasts through paracrine secretion of ACh, which could explain some of their regenerative capacity in vivo.
  •  
28.
  • El-Habta, Roine, et al. (författare)
  • Anti-apoptotic effect of adipose tissue-derived stromal vascular fraction in denervated rat muscle
  • 2021
  • Ingår i: Stem Cell Research & Therapy. - : BioMed Central (BMC). - 1757-6512. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Recovery of muscle function after peripheral nerve injury is often poor, and this can be attributed to muscle fiber atrophy and cell death. In the current study, we have investigated the effects of stromal vascular fraction (SVF) on muscle cell apoptosis and its potential to preserve muscle tissue following denervation.Methods: Rat gastrocnemius muscle was denervated by sciatic nerve transection. At 2 and 4 weeks after injury, muscles were examined histologically and apoptosis was measured using TUNEL assay and PCR array for a range of apoptotic genes. Additionally, an in vitro TNF-α apoptosis model was established using SVF cells co-cultured indirectly with primary rat myoblasts. Annexin V and TUNEL were used together with Western blotting to investigate the signaling pathways.Results: Denervated muscles showed significantly higher TUNEL reactivity at 2 and 4 weeks following nerve injury, and an increased expression of caspase family genes, mitochondria-related apoptotic genes, and tumor necrosis factor family genes. In cultured rat primary myoblasts, Annexin V labeling was significantly increased at 12 h after TNF-α treatment, and this was followed by a significant increase in TUNEL reactivity at 48 h. Western blotting showed that caspase-7 was activated/cleaved as well as the downstream substrate, poly (ADP-ribose) polymerase (PARP). Co-culture of myoblasts with SVF significantly reduced all these measures of apoptosis. Bax and Bcl-2 levels were not changed suggesting that the TNF-α-induced apoptosis occurred via mitochondria-independent pathways. The protective effect of SVF was also shown in vivo; injections of SVF cells into denervated muscle significantly improved the mean fiber area and diameter, as well as reduced the levels of TUNEL reactivity.Conclusions: This study provides new insights into how adipose tissue-derived cells might provide therapeutic benefits by preserving muscle tissue.
  •  
29.
  • El-Habta, Roine, 1988- (författare)
  • Cell therapy for denervated tissue
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Background: Peripheral nerve injury results in denervation of tendons and muscles. The biology of denervated muscle has been well studied but little is known about the associated tendons. Denervation of muscle leads to atrophy which includes muscle fiber shrinkage and cell death, a process that is influenced by the lack of acetylcholine (ACh) signaling to the muscle cells. Recovery of long-term denervated muscle function is often poor. This thesis describes how a cell therapy approach using adipose tissue-derived stromal vascular fraction (SVF) may be used to protect and regenerate denervated muscle. Previous studies have shown how adipose tissue-dervied stem cells (ASCs), commonly expanded from the SVF, have pro-regenerative effects on the injured peripheral nervous system, and how ASCs differentiated towards a “Schwann cell-like phenotype” (dASCs) reduce muscle atrophy. In this thesis work, we studied the possible mechanisms underlying the regenerative potential of both SVF and culture expanded dASCs.Hypotheses: We hypothesized that: 1) denervated tendon displays morphological and biochemical properties that resemble the chronic degenerative tendon condition known as tendinosis; 2) denervated muscle up-regulates expression of muscarinic acetylcholine (ACh) receptors and apoptosis-associated signaling mechanisms; 3) dASCs enhance the proliferation of myoblasts in vitro through secretion of ACh; 4) SVF influences the proliferation, differentiation, and survival of myoblasts in vitro via secretion of growth factors; and 5) SVF can preserve denervated muscle tissue. To test our hypotheses, two model systems were used: an in vitro model based on indirect co-culture, and an in vivo rat sciatic nerve transection model.Results: Denervated tendon displayed morphological changes similar to tendinosis, including hypercellularity, disfigurement of cells, and disorganized collagen architecture, along with an increased expression of type I and type III collagen. In addition, levels of neurokinin 1 receptor (NK-1R) were upregulated in the tendon cells. In denervated muscle, there was an increased expression of muscarinic ACh receptors, as well as of genes associated with apoptosis, such as caspases, cytokines (e.g., tumor necrosis factor-alpha; TNF-a), and death domain receptors. We subsequently used TNF-aas an inducer of apoptosis in an in vitrorat primary myoblast culture model. TNF-aactivated/cleaved caspase 7 and increased poly ADP-ribose polymerase (PARP) levels. Moreover, Annexin V and TUNEL were increased after TNF-atreatment. Indirect co-culture with SVF significantly reduced all these measures of apoptosis. Proliferation studies showed that both dASCs and SVF enhanced growth of myoblasts in vitro. With dASCs, the effect was partially explained by secretion of ACh, and for SVF by released growth factors, such as hepatocyte growth factor (HGF). In both cases, the signal was mediated via phosphorylation of ERK1/2 (MAPK). HGF also had an inhibitory effect on the differentiation of myoblasts into myotubes. Finally, the protective effects of SVF were confirmed in vivo: injections of SVF into denervated muscle significantly increased the mean fiber area and diameter, as well as reduced the expression of apoptotic genes and TUNEL reactivity.Conclusions: Denervated tendons undergo severe degenerative changes similar to tendinosis. Furthermore, SVF has the ability to reduce muscle atrophy in vivo. Using in vitro systems, we showed that this might occur through secretion of growth factors which activate MAPK signaling and anti-apoptotic pathways. In conclusion, SVF offers a promising approach for future clinical application in the treatment of denervated muscle.
  •  
30.
  • El-Habta, Roine, et al. (författare)
  • Tendinosis-like changes in denervated rat Achilles tendon
  • 2018
  • Ingår i: BMC Musculoskeletal Disorders. - : BMC. - 1471-2474. ; 19
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Tendon disorders are common and lead to significant disability and pain. Our knowledge of the ‘tennis elbow’, the ‘jumpers knee’, and Achilles tendinosis has increased over the years, but changes in denervated tendons is yet to be described in detail. The aim of the present study was to investigate the morphological and biochemical changes in tendon tissue following two weeks of denervation using a unilateral sciatic nerve transection model in rat Achilles tendons.Methods: Tendons were compared with respect to cell number, nuclear roundness, and fiber structure. The non-denervated contralateral tendon served as a control. Also, the expression of neuromodulators such as substance P and its preferred receptor neurokinin-1 receptor, NK-1R, was evaluated using real-time qRT-PCR.Results: Our results showed that denervated tendons expressed morphological changes such as hypercellularity; disfigured cells; disorganization of the collagen network; increased production of type III collagen; and increased expression of NK-1R.Conclusion: Taken together these data provide new insights into the histopathology of denervated tendons showing that denervation causes somewhat similar changes in the Achilles tendon as does tendinosis in rats.
  •  
31.
  • El-Habta, Roine, et al. (författare)
  • The adipose tissue stromal vascular fraction secretome enhances the proliferation but inhibits the differentiation of myoblasts
  • 2018
  • Ingår i: Stem Cell Research & Therapy. - : BioMed Central. - 1757-6512. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Adipose tissue is an excellent source for isolation of stem cells for treating various clinical conditions including injuries to the neuromuscular system. Many previous studies have focused on differentiating these adipose stem cells (ASCs) towards a Schwann cell-like phenotype (dASCs), which can enhance axon regeneration and reduce muscle atrophy. However, the stromal vascular fraction (SVF), from which the ASCs are derived, also exerts broad regenerative potential and might provide a faster route to clinical translation of the cell therapies for treatment of neuromuscular disorders.Methods: The aim of this study was to establish the effects of SVF cells on the proliferation and differentiation of myoblasts using indirect co-culture experiments. A Growth Factor PCR Array was used to compare the secretomes of SVF and dASCs, and the downstream signaling pathways were investigated.Results: SVF cells, unlike culture-expanded dASCs, expressed and secreted hepatocyte growth factor (HGF) at concentrations sufficient to enhance the proliferation of myoblasts. Pharmacological inhibitor studies revealed that the signal is mediated via ERK1/2 phosphorylation and that the effect is significantly reduced by the addition of 100 pM Norleual, a specific HGF inhibitor. When myoblasts were differentiated into multinucleated myotubes, the SVF cells reduced the expression levels of fast-type myosin heavy chain (MyHC2) suggesting an inhibition of the differentiation process.Conclusions: In summary, this study shows the importance of HGF as a mediator of the SVF effects on myoblasts and provides further evidence for the importance of the secretome in cell therapy and regenerative medicine applications.
  •  
32.
  • Fong, Gloria, et al. (författare)
  • Human tenocytes are stimulated to proliferate by acetylcholine through an EGFR signalling pathway
  • 2013
  • Ingår i: Cell and Tissue Research. - : Springer-Verlag New York. - 0302-766X .- 1432-0878. ; 351:3, s. 465-475
  • Tidskriftsartikel (refereegranskat)abstract
    • Studies of human patellar and Achilles tendons have shown that primary tendon fibroblasts (tenocytes) not only have the capacity to produce acetylcholine (ACh) but also express muscarinic ACh receptors (mAChRs) through which ACh can exert its effects. In patients with tendinopathy (chronic tendon pain) with tendinosis, the tendon tissue is characterised by hypercellularity and angiogenesis, both of which might be influenced by ACh. In this study, we have tested the hypothesis that ACh increases the proliferation rate of tenocytes through mAChR stimulation and have examined whether this mechanism operates via the extracellular activation of the epidermal growth factor receptor (EGFR), as shown in other fibroblastic cells. By use of primary human tendon cell cultures, we identified cells expressing vimentin, tenomodulin and scleraxis and found that these cells also contained enzymes related to ACh synthesis and release (choline acetyltransferase and vesicular acetylcholine transporter). The cells furthermore expressed mAChRs of several subtypes. Exogenously administered ACh stimulated proliferation and increased the viability of tenocytes in vitro. When the cells were exposed to atropine (an mAChR antagonist) or the EGFR inhibitor AG1478, the proliferative effect of ACh decreased. Western blot revealed increased phosphorylation, after ACh stimulation, for both EGFR and the extracellular-signal-regulated kinases 1 and 2. Given that tenocytes have been shown to produce ACh and express mAChRs, this study provides evidence of a possible autocrine loop that might contribute to the hypercellularity seen in tendinosis tendon tissue.
  •  
33.
  • Fong, Gloria, 1986- (författare)
  • Influence of neuromodulators and mechanical loading on pathological cell and tissue characteristics in tendinosis
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Background: Tendinosis is a painful chronic, degenerative condition characterized by objective changes in the tissue structure of a tendon. Hallmark features in tendinosis tendons include increased number of cells (hypercellularity), extracellular matrix (ECM) degradation and disorganized collagen. The progression of these pathological changes seen in tendinosis is neither well characterized nor fully understood.Studies have suggested that there are biochemical and mechanical elements involved in tendinosis. From a biochemical perspective, studies have shown that the tendon cells, tenocytes, produce a number of neuronal signal substances/neuromodulators, such as substance P (SP) and acetylcholine (ACh), traditionally thought to be confined to the nervous system. Furthermore, it has been shown that the expression of these neuromodulators is elevated in tendinosis tendons as compared to normal healthy tendons. Interestingly, studies on other tissue types have revealed that both SP and ACh can induce tissue changes seen in tendinosis, such as hypercellularity and collagen disorganization. From a mechanical angle, it has been suggested that overload of tendons, including extensive strain on the primary tendon cells (tenocytes), causes the degenerative processes associated with tendinosis. In vivo studies have shown that in overloaded tendons, the presence of neuromodulators is elevated, not least SP, which also precedes the development of the tissue changes seen in tendinosis. This further supports the importance of combining biochemical factors and mechanical factors in the pathogenesis of tendinosis.Hypotheses: In this thesis project, we hypothesize: 1) that neuromodulators, such as SP and ACh when stimulating their preferred receptors, the neurokinin 1 (NK-1 R) and muscarinic receptors (mAChRs), respectively, can cause increased tenocyte proliferation; 2) that the effects of SP and ACh on tenocyte proliferation converge mechanistically via a shared signalling pathway; 3) that mechanical loading of tenocytes results in increased production of SP by the tenocytes; and 4) that SP enhances collagen remodelling by tenocytes via NK-1 R.Model system: In vitro studies offer insight into the function of healthy tendon matrix and the etiology of tendinopathy. Using a cell culture model of human primary tendon cells, highly controlled experiments were performed in this thesis project to study a subset of biological and mechanical parameters that are implicated in tendinosis. The FlexCell® Tension System was used to study the influence of mechanical loading on tenocytes. As well, a collagen gel contraction assay was used to examine the intrinsic ability of tenocytes to reorganise type I collagen matrices under the influence of the neuromodulator SP.Results: The studies showed that exogenous administration of SP and ACh results in increased tenocyte proliferation that is mediated via activation of the ERK1/2 mitogenic pathway when the preferred receptors of SP and ACh, the NK-1 R and mAChRs, respectively, are stimulated. Furthermore, the studies resulted in the novel finding that SP and ACh both converge mechanistically via transforming growth factor (TGF)-β1 and that a negative feedback mechanism is present in which TGF-β1 downregulates the expression of mAChRs and NK-1 R. The studies also showed that SP can increase collagen remodelling and upregulate expression of genes related to tendinosis. Finally, it was established that tenocytes are mechanoresponsive by showing that cyclic mechanical loading increases the expression of SP by human tenocytes.Conclusions: This thesis work concludes that stimulation of NK-1 R and mAChRs results in proliferation of human tenocytes, which both involve the ERK1/2 signalling pathway. It also shows that SP and ACh converge mechanistically via TGF-β1 in their contribution to tenocyte proliferation. The role of hypercellularity in tendinosis tissue is unknown. Possibly, it has different roles at different stages of the disease. The findings also show that SP increases collagen remodelling, suggesting that increased SP not only results in hypercellularity but also contributes to the collagen morphology in tendinosis.
  •  
34.
  • Fong, Gloria, et al. (författare)
  • Substance P enhances collagen remodeling and MMP-3 expression by human tenocytes
  • 2013
  • Ingår i: Journal of Orthopaedic Research. - HOBOKEN, NJ, USA : Wiley-Blackwell. - 0736-0266 .- 1554-527X. ; 31:1, s. 91-98
  • Tidskriftsartikel (refereegranskat)abstract
    • The loss of collagen organization is considered a hallmark histopathologic feature of tendinosis. At the cellular level, tenocytes have been shown to produce signal substances that were once thought to be restricted to neurons. One of the main neuropeptides implicated in tendinosis, substance P (SP), is known to influence collagen organization, particularly after injury. The aim of this study was to examine the influence of SP on collagen remodeling by primary human tendon cells cultured in vitro in three-dimensional collagen lattices. We found that SP stimulation led to an increased rate of collagen remodeling mediated via the neurokinin-1 receptor (NK-1 R), the preferred cell receptor for SP. Gene expression analysis showed that SP stimulation resulted in significant increases in MMP3, COL3A1 and ACTA2 mRNA levels in the collagen lattices. Furthermore, cyclic tensile loading of tendon cell cultures along with the administration of exogenous SP had an additive effect on MMP3 expression. Immunoblotting confirmed that SP increased MMP3 protein levels via the NK-1 R. This study indicates that SP, mediated via NK-1 R, increases collagen remodeling and leads to increased MMP3 mRNA and protein expression that is further enhanced by cyclic mechanical loading.
  •  
35.
  • Fong, Gloria, et al. (författare)
  • The Effects of Substance P and Acetylcholine on Human Tenocyte Proliferation Converge Mechanistically via TGF-β1
  • 2017
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 12:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous in vitro studies on human tendon cells (tenocytes) have demonstrated that the exogenous administration of substance P (SP) and acetylcholine (ACh) independently result in tenocyte proliferation, which is a prominent feature of tendinosis. Interestingly, the possible link between SP and ACh has not yet been explored in human tenocytes. Recent studies in other cell types demonstrate that both SP and ACh independently upregulate TGF-β1 expression via their respective receptors, the neurokinin 1 receptor (NK-1R) and muscarinic ACh receptors (mAChRs). Furthermore, TGF-β1 has been shown to downregulate NK-1R expression in human keratocytes. The aim of this study was to examine if TGF-β1 is the intermediary player involved in mediating the proliferative pathway shared by SP and ACh in human tenocytes. The results showed that exogenous administration of SP and ACh both caused significant upregulation of TGF-β1 at the mRNA and protein levels. Exposing cells to TGF-β1 resulted in increased cell viability of tenocytes, which was blocked in the presence of the TGFβRI/II kinase inhibitor. In addition, the proliferative effects of SP and ACh on tenocytes were reduced by the TGFβRI/II kinase inhibitor; this supports the hypothesis that the proliferative effects of these signal substances are mediated via the TGF-β axis. Furthermore, exogenous TGF-β1 downregulated NK-1R and mAChRs expression at both the mRNA and protein levels, and these effects were negated by simultaneous exposure to the TGFβRI/II kinase inhibitor, suggesting a negative feedback loop. In conclusion, the results indicate that TGF-β1 is the intermediary player through which the proliferative actions of both SP and ACh converge mechanistically.
  •  
36.
  • Hammerman, Malin, 1984- (författare)
  • Tendon Healing : Mechanical Loading, Microdamage and Gene Expression
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Mechanical loading and the inflammatory response during tendon healing might be important for the healing process. Mechanical loading can improve the healing tendon but the mechanism is not fully understood. The aim of this thesis was to further clarify the effect of mechanical loading on tendon healing and how mechanical loading affects the inflammatory response during the healing process.We used a rat Achilles tendon model to study healing. The rats were exposed to different degrees of loading by unloading methods such as paralysis of the calf muscles with Botox, tail suspension, and an orthosis (a boot). Full loading was achieved by free cage activity or treadmill walking. Microdamage in tendons, unloaded with Botox, was also investigated by needling. The healing tendons were evaluated in a materials testing machine (to analyze the mechanical properties), by gene expression analysis (microarray and PCR), or histology.Our results show that moderate loading (unloading with Botox) improves the mechanical properties of healing tendons compared to minimal loading (unloading with Botox in combination with tail suspension or a boot), especially the material properties. In accordance to these findings, expression of extracellular matrix genes were also increased by moderate compared to minimal loading.Full loading improved all mechanical properties and the expression of extracellular matrix genes was further increased compared to moderate loading. However, structural properties, such as the strength and the size of the healing tendon, were more affected by full loading. Full loading also affected the expression of inflammation-related genes during the early healing phase, 3 and 5 days after tendon injury, and increased the number of immune cells in the healing tendon tissue. Also microdamage of the healing tendon (detected by blood leakage) was increased by full loading compared to moderate loading during the early healing phase.Induced microdamage by repeated needling in the healing tendon tissue increased the structural properties of the healing tendon. The gene expression after needling was similar to the gene expression after full loading.The improvement of mechanical properties by loading in healing tendons was decreased by an anti-inflammatory drug called parecoxib, which decreases the production of prostaglandins by inhibiting COX-2 activity. The effect of parecoxib was reduced when loading was reduced but we could not confirm that the effect of parecoxib was related to the degree of loading. However, parecoxib abolished the stimulatory effect of microdamage.In conclusion, these studies show that moderate loading improves the quality of the healing tendon whereas full loading also increases the quantity of the healing tendon tissue. Full loading creates microdamage and increases inflammation during the early healing phase. The strong effect of full loading on the structural properties might be due to microdamage. Indeed, the anti-inflammatory drug parecoxib seems to impair mechanical stimulation of healing tendons by reducing the response to microdamage.
  •  
37.
  • Jakobsson, Martin, 1966-, et al. (författare)
  • An Arctic Ocean ice shelf during MIS 6 constrained by new geophysical and geological data
  • 2010
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 29:25-26, s. 3505-3517
  • Tidskriftsartikel (refereegranskat)abstract
    • The hypothesis of floating ice shelves covering the Arctic Ocean during glacial periods was developed in the 1970s. In its most extreme form, this theory involved a 1000 m thick continuous ice shelf covering the Arctic Ocean during Quaternary glacial maxima including the Last Glacial Maximum (LGM). While recent observations clearly demonstrate deep ice grounding events in the central Arctic Ocean, the ice shelf hypothesis has been difficult to evaluate due to a lack of information from key areas with severe sea ice conditions. Here we present new data from previously inaccessible, unmapped areas that constrain the spatial extent and timing of marine ice sheets during past glacials. These data include multibeam swath bathymetry and subbottom profiles portraying glaciogenic features on the Chukchi Borderland, southern Lomonosov Ridge north of Greenland, Morris Jesup Rise, and Yermak Plateau. Sediment cores from the mapped areas provide age constraints on the glaciogenic features. Combining these new geophysical and geological data with earlier results suggests that an especially extensive marine ice sheet complex, including an ice shelf, existed in the Amerasian Arctic Ocean during Marine Isotope Stage (MIS) 6. From a conceptual oceanographic model we speculate that the cold halocline of the Polar Surface Water may have extended to deeper water depths during MIS 6 inhibiting the warm Atlantic water from reaching the Amerasian Arctic Ocean and, thus, creating favorable conditions for ice shelf development. The hypothesis of a continuous 1000 m thick ice shelf is rejected because our mapping results show that several areas in the central Arctic Ocean substantially shallower than 1000 m water depth are free from glacial influence on the seafloor.
  •  
38.
  • Jonsson, Frida, et al. (författare)
  • Mutations in Collagen, Type XVII, Alpha 1 (COL17A1) Cause Epithelial Recurrent Erosion Dystrophy (ERED)
  • 2015
  • Ingår i: Human Mutation. - : John Wiley & Sons. - 1059-7794 .- 1098-1004. ; 36:4, s. 463-473
  • Tidskriftsartikel (refereegranskat)abstract
    • Corneal dystrophies are a clinically and genetically heterogeneous group of inherited disorders that bilaterally affect corneal transparency. They are defined according to the corneal layer affected and by their genetic cause. In this study, we identified a dominantly inherited epithelial recurrent erosion dystrophy (ERED)-like disease that is common in northern Sweden. Whole-exome sequencing resulted in the identification of a novel mutation, c.2816C>T, p.T939I, in the COL17A1 gene, which encodes collagen type XVII alpha 1. The variant segregated with disease in a genealogically expanded pedigree dating back 200 years. We also investigated a unique COL17A1 synonymous variant, c.3156C>T, identified in a previously reported unrelated dominant ERED-like family linked to a locus on chromosome 10q23-q24 encompassing COL17A1. We show that this variant introduces a cryptic donor site resulting in aberrant pre-mRNA splicing and is highly likely to be pathogenic. Bi-allelic COL17A1 mutations have previously been associated with a recessive skin disorder, junctional epidermolysis bullosa, with recurrent corneal erosions being reported in some cases. Our findings implicate presumed gain-of-function COL17A1 mutations causing dominantly inherited ERED and improve understanding of the underlying pathology.
  •  
39.
  • Li, Junhong, et al. (författare)
  • Secretome from myoblasts statically loaded at low intensity promotes tenocyte proliferation via the IGF-1 receptor pathway
  • 2023
  • Ingår i: The FASEB Journal. - : John Wiley & Sons. - 0892-6638 .- 1530-6860. ; 37:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Exercise is widely recognized as beneficial for tendon healing. Recently, it has been described that muscle-derived molecules secreted in response to static exercise influence tendon healing. In this study, the optimal static loading intensity for tendon healing and the composition of secretome released by myoblasts in response to different intensities of static strain were investigated. In an in vitro coculture model, myoblasts were mechanically loaded using a Flexcell Tension System. Tenocytes were seeded on transwell inserts that allowed communication between the tenocytes and myoblasts without direct contact. Proliferation and migration assays, together with RNA sequencing, were used to determine potential cellular signaling pathways. The secretome from myoblasts exposed to 2% static loading increased the proliferation and migration of the cocultured tenocytes. RNA-seq analysis revealed that this loading condition upregulated the expression of numerous genes encoding secretory proteins, including insulin-like growth factor-1 (IGF-1). Confirmation of IGF-1 expression and secretion was carried out using qPCR and enzyme-linked immunosorbt assay (ELISA), revealing a statistically significant upregulation in response to 2% static loading in comparison to both control conditions and higher loading intensities of 5% and 10%. Addition of an inhibitor of the IGF-1 receptor (PQ401) to the tenocytes significantly reduced myoblast secretome-induced tenocyte proliferation. In conclusion, IGF-1 may be an important molecule in the statically loaded myoblast secretome, which is responsible for influencing tenocytes during exercise-induced healing.
  •  
40.
  • Löwemark, Ludvig, et al. (författare)
  • Arctic Ocean manganese contents and sediment colour cycles
  • 2008
  • Ingår i: Polar Research. - : Norwegian Polar Institute. - 0800-0395 .- 1751-8369. ; 27:2, s. 105-113
  • Tidskriftsartikel (refereegranskat)abstract
    • Cyclical variations in colour and Mn content in sediments from the central Arctic Ocean have been interpreted to represent climatically controlled changes in the input of Mn from the Siberian hinterland and/or variations in the intermediate and deep water ventilation of the Arctic basins, although a diagenetic origin has not been excluded. A reinvestigation of core 96/12-1pc using an Itrax XRF core scanner confirms that these colour cycles are indeed controlled by variations in Mn content, although changes in the source region of the sediment may override the Mn-colour signal in certain intervals. The prominent Mn cycles show no correspondence to any of the other measured elements. This decoupling of the Mn and the bulk chemistry of the sediment is taken to indicate that the cycles observed are caused by variations in water column ventilation and riverine input rather than variations in sediment source or diagenesis. We therefore conclude that the Mn cycles do represent warm phases with increased ventilation and/or riverine input, and that they therefore could be used for chronostratigraphic correlation between cores from the central Arctic Ocean where traditional isotope stratigraphy is difficult or impossible to establish due to the lack of calcareous microfossils.
  •  
41.
  •  
42.
  • Mo, Qingyun, et al. (författare)
  • Regulation of osteogenic differentiation by the pro-inflammatory cytokines IL-1β and TNF-α : current conclusions and controversies
  • 2022
  • Ingår i: Human Cell. - : Springer. - 0914-7470 .- 1749-0774. ; 35, s. 957-971
  • Forskningsöversikt (refereegranskat)abstract
    • Treatment of complex bone fracture diseases is still a complicated problem that is urged to be solved in orthopedics. In bone tissue engineering, the use of mesenchymal stromal/stem cells (MSCs) for tissue repair brings hope to the medical field of bone diseases. MSCs can differentiate into osteoblasts and promote bone regeneration. An increasing number of studies show that the inflammatory microenvironment affects the osteogenic differentiation of MSCs. It is shown that TNF-α and IL-1β play different roles in the osteogenic differentiation of MSCs via different signal pathways. The main factors that affect the role of TNF-α and IL-1β in osteogenic differentiation of MSCs include concentration and the source of stem cells (different species and different tissues). This review in-depth analyzes the roles of pro-inflammatory cytokines in the osteogenic differentiation of MSCs and reveals some current controversies to provide a reference of comprehensively understanding.
  •  
43.
  • Mousavizadeh, Rouhollah, et al. (författare)
  • Dexamethasone decreases substance P expression in human tendon cells : an in vitro study
  • 2015
  • Ingår i: Rheumatology. - : Oxford University Press. - 1462-0324 .- 1462-0332. ; 54:2, s. 318-323
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Glucocorticoid injections are used by rheumatologists to treat chronic tendinopathy. Surprisingly, the mechanisms by which corticosteroids induce pain relief in this condition have not been investigated. Previous studies have shown local substance P (SP) levels to be correlated with tendon pain and tissue pathology. The objective of this study was to determine whether SP production in human tenocytes is modulated by exposure to dexamethasone.METHODS: Human tendon fibroblasts were cultured in the presence or absence of dexamethasone (1-400 nM), an inhibitor of the glucocorticoid receptor, RU486, recombinant TGF-β (2.5 or 5.0 ng/ml) or an inhibitor of the TGF-β receptor (A83.01), recombinant human IL-1β and IL-6. Expression levels of the genes encoding for SP (TAC1) and its preferred receptor (NK1R), IL-1α, IL-1β and IL-6 were determined with quantitative PCR and protein levels of SP were examined by EIA and western blot.RESULTS: Exposure of human tendon cells to dexamethasone resulted in a time-dependent reduction of mRNA for SP in both hamstrings and Achilles tenocytes, whereas NK1R was unaffected. The reduction of SP mRNA was dependent on signalling through the glucocorticoid receptor. SP protein was substantially decreased by dexamethasone. Dexamethasone also prevented induction of SP by IL-1β and by cyclic mechanical loading.CONCLUSION: This study demonstrates that dexamethasone treatment of human tendon fibroblasts reduces the expression of SP through a glucocorticoid receptor-dependent pathway. Drugs interfering with SP signalling could be a future target in the treatment of tendinopathy.
  •  
44.
  • Prittinen, Juha, 1989-, et al. (författare)
  • Microstructured collagen films for 3D corneal stroma modelling
  • 2022
  • Ingår i: Connective Tissue Research. - : Taylor & Francis Group. - 0300-8207 .- 1607-8438. ; 63:5, s. 443-452
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose/aim: Corneal injury is a major cause of impaired vision around the globe. The fine structure of the corneal stroma plays a pivotal role in the phenotype and behavior of the embedded cells during homeostasis and healing after trauma or infection. In order to study healing processes in the cornea, it is important to create culture systems that functionally mimic the natural environment.Materials and methods: Collagen solution was vitrified on top of a grated film to achieve thin collagen films with parallel microgrooves. Keratocytes (corneal stromal cells) were cultured on the films either as a single layer or as stacked layers of films and cells. SEM and F-actin staining were used to analyze the pattern transference onto the collagen and the cell orientation on the films. Cell viability was analyzed with MTS and live/dead staining. Keratocytes, fibroblasts, and myofibroblasts were cultured to study the pattern’s effect on phenotype.Results: A microstructured collagen film-based culture system that guides keratocytes (stromal cells) to their native, layerwise perpendicular orientation in 3D and that can support fibroblasts and myofibroblasts was created. The films are thin and transparent enough to observe cells at least three layers deep. The cells maintain viability in 2D and 3D cultures and the films can support fibroblast and myofibroblast phenotypes.Conclusions: The films provide an easily reproducible stroma model that maintains high cell viability and improves the preservation of the keratocyte phenotype in keratocytes that are differentiated to fibroblasts.
  •  
45.
  • Roux, Sandrine Le, et al. (författare)
  • Transforming Growth Factor Beta 1 Modulates the Functional Expression of the Neurokinin-1 Receptor in Human Keratocytes
  • 2016
  • Ingår i: Current Eye Research. - : Informa UK Limited. - 0271-3683 .- 1460-2202. ; 41:8, s. 1035-1043
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: Transforming growth factor beta 1 (TGF-β1) is a cytokine involved in a variety of processes, such as differentiation of fibroblasts into myofibroblasts. TGF-β1 has also been shown to delay the internalization of the neurokinin-1 receptor (NK-1 R) after its activation by its ligand, the neuropeptide substance P (SP). NK-1 R comprises two naturally occurring variants, a full-length and a truncated form, triggering different cellular responses. SP has been shown to affect important events in the cornea - such as stimulating epithelial cell proliferation - processes that are involved in corneal wound healing and thus in maintaining the transparency of the corneal stroma. An impaired signaling through NK-1 R could thus impact the visual quality. We hypothesize that TGF-β1 modulates the expression pattern of NK-1 R in human corneal stroma cells, keratocytes. The purpose of this study was to test that hypothesis.METHODS: Cultures of primary keratocytes were set up with cells derived from healthy human corneas, obtained from donated transplantation graft leftovers, and characterized by immunocytochemistry and Western blot. Immunocytochemistry for TGF-β receptors and NK-1 R was performed. Gene expression was assessed with real-time polymerase chain reaction (qPCR).RESULTS: Expression of TGF-β receptors was confirmed in keratocytes in vitro. Treating the cells with TGF-β1 significantly reduced the gene expression of NK-1 R. Furthermore, immunocytochemistry for NK-1 R demonstrated that it is specifically the expression of the full-length isotype of the receptor that is reduced after treatment with TGF-β1, which was also confirmed with qPCR using a specific probe for the full-length receptor.CONCLUSIONS: TGF-β1 down-regulates the gene expression of the full-length variant of NK-1 R in human keratocytes, which might impact its signaling pathway and thus explain the known delay in internalization after activation by SP seen with TGF-β1 treatment.
  •  
46.
  • Scott, Alex, et al. (författare)
  • Tendinopathy : Update on Pathophysiology
  • 2015
  • Ingår i: Journal of Orthopaedic and Sports Physical Therapy. - : Journal of Orthopaedic & Sports Physical Therapy (JOSPT). - 0190-6011 .- 1938-1344. ; 45:11, s. 833-841
  • Tidskriftsartikel (refereegranskat)abstract
    • Tendinopathy has become the accepted term to describe a spectrum of changes that occur in-damaged and/or diseased tendons. Over the past 2 decades, there have been new insights into tendon pathophysiology of relevance to clinicians, including (1) better characterization of the overuse injury process and the resultant structural and functional disruption in chronically painful tendons, (2) improved understanding of the pathomechanics associated with chronic tendon injury, and (3) greater knowledge about the influence of lifestyle factors and drugs on tendon pathology. The implications of these new insights are discussed.
  •  
47.
  • Sheng, Renwang, et al. (författare)
  • Material stiffness in cooperation with macrophage paracrine signals determines the tenogenic differentiation of mesenchymal stem cells
  • 2023
  • Ingår i: Advanced Science. - : John Wiley & Sons. - 2198-3844. ; 10:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Stiffness is an important physical property of biomaterials that determines stem cell fate. Guiding stem cell differentiation via stiffness modulation has been considered in tissue engineering. However, the mechanism by which material stiffness regulates stem cell differentiation into the tendon lineage remains controversial. Increasing evidence demonstrates that immune cells interact with implanted biomaterials and regulate stem cell behaviors via paracrine signaling; however, the role of this mechanism in tendon differentiation is not clear. In this study, polydimethylsiloxane (PDMS) substrates with different stiffnesses are developed, and the tenogenic differentiation of mesenchymal stem cells (MSCs) exposed to different stiffnesses and macrophage paracrine signals is investigated. The results reveal that lower stiffnesses facilitates tenogenic differentiation of MSCs, while macrophage paracrine signals at these stiffnesses suppress the differentiation. When exposed to these two stimuli, MSCs still exhibit enhanced tendon differentiation, which is further elucidated by global proteomic analysis. Following subcutaneous implantation in rats for 2 weeks, soft biomaterial induces only low inflammation and promotes tendon-like tissue formation. In conclusion, the study demonstrates that soft, rather than stiff, material has a greater potential to guide tenogenic differentiation of stem cells, which provides comprehensive evidence for optimized bioactive scaffold design in tendon tissue engineering.
  •  
48.
  • Sheng, Renwang, et al. (författare)
  • The Application of Mechanical Stimulations in Tendon Tissue Engineering
  • 2020
  • Ingår i: Stem Cells International. - : Hindawi Publishing Corporation. - 1687-9678 .- 1687-966X. ; 2020
  • Forskningsöversikt (refereegranskat)abstract
    • Tendon injury is the most common disease in the musculoskeletal system. The current treatment methods have many limitations, such as poor therapeutic effects, functional loss of donor site, and immune rejection. Tendon tissue engineering provides a new treatment strategy for tendon repair and regeneration. In this review, we made a retrospective analysis of applying mechanical stimulation in tendon tissue engineering, and its potential as a direction of development for future clinical treatment strategies. For this purpose, the following topics are discussed; (1) the context of tendon tissue engineering and mechanical stimulation; (2) the applications of various mechanical stimulations in tendon tissue engineering, as well as their inherent mechanisms; (3) the application of magnetic force and the synergy of mechanical and biochemical stimulation. With this, we aim at clarifying some of the main questions that currently exist in the field of tendon tissue engineering and consequently gain new knowledge that may help in the development of future clinical application of tissue engineering in tendon injury.
  •  
49.
  • Słoniecka, Marta, et al. (författare)
  • Acetylcholine enhances keratocyte proliferation through muscarinic receptor activation.
  • 2015
  • Ingår i: International Immunopharmacology. - : Elsevier BV. - 1567-5769 .- 1878-1705. ; 29:1, s. 57-62
  • Tidskriftsartikel (refereegranskat)abstract
    • Acetylcholine (ACh), a classical neurotransmitter, has been shown to be present in various non-neuronal cells, including cells of the eye, such as corneal epithelium and endothelium, and to have widespread physiological effects such as cytoskeleton reorganization, cellular proliferation, differentiation, and apoptosis. The aim of this study was to investigate the effect of ACh on corneal keratocyte proliferation, and the underlying mechanisms, in order to explore its possible effect in corneal wound healing. Primary culture of human keratocytes was established from donated corneas. Cell viability and fraction of proliferating cells were detected by MTS assay and BrdU incorporation ELISA, respectively. Expression of proliferative markers, PCNA and Ki-67, was detected by western blot and immunocytochemistry. Activation of the MAPK/Erk signaling pathway and its involvement in ACh-enhanced proliferation was determined by western blot analysis, MTS, and BrdU ELISA. We found that ACh enhanced keratocyte proliferation even at low concentrations. Stimulation of proliferation was mediated through activation of muscarinic ACh receptors (mAChRs). Western blot analysis revealed that ACh stimulation of keratocytes upregulated the expression of PCNA and Ki-67, and Ki-67 immunocytochemistry showed that ACh-treated cells were in an active phase of the cell cycle. ACh activated MAPK signaling, and this step was crucial for the ACh-enhanced proliferation, as inhibition of the MAPK pathway resulted in ACh having no proliferative effect. In conclusion, ACh enhances keratocyte proliferation and might thus play a role in proper corneal wound healing.
  •  
50.
  • Sloniecka, Marta, 1983-, et al. (författare)
  • Acetylcholine induces proliferation of keratocytes through activation of muscarinic receptors
  • 2015
  • Ingår i: Investigative Ophthalmology and Visual Science. - : Association for Research in Vision and Ophthalmology. - 0146-0404 .- 1552-5783. ; 56:7
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Purpose: The corneal wound healing response is a complex process involving cytokine-mediated interactions between epithelial cells, keratocytes of the stroma, corneal nerves, tear film, and cells of the immune system. The outcome of the response plays a critical role in the preservation of corneal transparency after injury. The wound healing cascade includes epithelial surface closure, keratocyte apoptosis, proliferation and migration, formation of myofibroblasts, and stromal remodeling. Acetylcholine (ACh) is regarded as a classical neurotransmitter. However, cells outside of the nervous system have been shown to contain and release ACh. It has been reported that ACh stimulates fibroblast and epithelial cells to proliferate, has an anti-inflammatory effect in macrophages, and upregulates collagen gene expression in fibroblasts. ACh, its muscarinic receptors (mAChRs) and choline acetyltransferase (ChAT; the enzyme responsible for synthesizing ACh) have been shown to be present in corneal epithelium. However, their role in the corneal stroma and corneal injury has not been extensively studied. We hypothesize that ACh, upon injury, induces corneal stroma cell proliferation, thus promoting the process of wound healing.Methods: Primary human corneal stroma cells were derived from healthy corneas obtained from the local cornea bank. Immunocytochemistry was performed to delineate intracellular presence of ChAT and to characterize mAChRs. Crystal violet and MTS assay were used to asses ACh induced cell proliferation. Expression of the proliferation markers PCNA and Ki67 was analyzed by western blot. To determine what type of ACh receptors are involved in ACh induced proliferation, atropine and mecamylamine were used to block muscarininc or nicotinic ACh receptors, respectively.Results: Stromal cells expressed ChAT as well as mAChRs of subtypes M1, M3, M4, and M5. Stimulation of stromal cells with ACh led to increased cell viability and metabolic activity. Expression of PCNA and Ki67 was upregulated in ACh treated cells. Furthermore, mAChRs were the receptor group primarily involved in ACh induced proliferation.Conclusions: Corneal stroma cells express ChAT and mAChRs. ACh induces stroma cell proliferation through mainly mAChRs, which suggest that ACh may play an important role in corneal wound healing i.e. wound closure and generation on myofibroblasts.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 61
Typ av publikation
tidskriftsartikel (47)
forskningsöversikt (6)
doktorsavhandling (4)
annan publikation (2)
konferensbidrag (2)
Typ av innehåll
refereegranskat (51)
övrigt vetenskapligt/konstnärligt (10)
Författare/redaktör
Backman, Ludvig J. (42)
Danielson, Patrik (24)
Chen, Jialin (21)
Zhang, Wei (16)
Andersson, Gustav (8)
Backman, Ludvig (7)
visa fler...
Backman, Jan (6)
Löwemark, Ludvig (6)
Kingham, Paul J. (5)
Fong, Gloria (5)
Zhou, Xin (5)
Scott, Alexander (4)
Danielson, Patrik, 1 ... (4)
Scott, Alex (4)
Chen, Zhixuan (4)
Alfredson, Håkan (3)
Sellen, Emma (3)
Forsgren, Sture (3)
Jakobsson, Martin, 1 ... (3)
Jakobsson, Martin (3)
Backman, Ludvig J, 1 ... (3)
Hell, Benjamin (3)
Zhou, Qingjun (3)
Mo, Qingyun (3)
Sheng, Renwang (3)
Spang, Christoph (2)
Evans, J. (2)
Arner, Anders (2)
Liu, Jing-Xia (2)
Kelk, Peyman (2)
O'Regan, Matt (2)
O'Regan, Matthew (2)
Lorentzon, Ronny (2)
Eriksson, Björn (2)
von Hofsten, Jonas (2)
Chen, Xiao (2)
Remeseiro, Silvia (2)
marcussen, C (2)
Danielson, Patrik, P ... (2)
Sloniecka, Marta, 19 ... (2)
Domellöf, Fatima Ped ... (2)
Nissen, Itzel (2)
Noormets, R. (2)
Hogan, K. A. (2)
Liu, Zeyu (2)
Zhu, Ting (2)
Ouyang, Hongwei (2)
Luo, Yifan (2)
Liu, Chuanquan (2)
Zhang, Yanan (2)
visa färre...
Lärosäte
Umeå universitet (54)
Stockholms universitet (6)
Lunds universitet (2)
Göteborgs universitet (1)
Linköpings universitet (1)
Språk
Engelska (61)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (50)
Naturvetenskap (8)
Teknik (2)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy