SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Badenhausser Isabelle) "

Sökning: WFRF:(Badenhausser Isabelle)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alignier, Audrey, et al. (författare)
  • Configurational crop heterogeneity increases within-field plant diversity
  • 2020
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 57:4, s. 654-663
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing landscape heterogeneity by restoring semi-natural elements to reverse farmland biodiversity declines is not always economically feasible or acceptable to farmers due to competition for land. We hypothesized that increasing the heterogeneity of the crop mosaic itself, hereafter referred to as crop heterogeneity, can have beneficial effects on within-field plant diversity. Using a unique multi-country dataset from a cross-continent collaborative project covering 1,451 agricultural fields within 432 landscapes in Europe and Canada, we assessed the relative effects of compositional and configurational crop heterogeneity on within-field plant diversity components. We also examined how these relationships were modulated by the position within the field. We found strong positive effects of configurational crop heterogeneity on within-field plant alpha and gamma diversity in field interiors. These effects were as high as the effect of semi-natural cover. In field borders, effects of crop heterogeneity were limited to alpha diversity. We suggest that a heterogeneous crop mosaic may overcome the high negative impact of management practices on plant diversity in field interiors, whereas in field borders, where plant diversity is already high, landscape effects are more limited. Synthesis and applications. Our study shows that increasing configurational crop heterogeneity is beneficial to within-field plant diversity. It opens up a new effective and complementary way to promote farmland biodiversity without taking land out of agricultural production. We therefore recommend adopting manipulation of crop heterogeneity as a specific, effective management option in future policy measures, perhaps adding to agri-environment schemes, to contribute to the conservation of farmland plant diversity.
  •  
2.
  • Le Provost, Gaëtane, et al. (författare)
  • Land-use history impacts functional diversity across multiple trophic groups
  • 2020
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 117:3, s. 1573-1579
  • Tidskriftsartikel (refereegranskat)abstract
    • Land-use change is a major driver of biodiversity loss worldwide. Although biodiversity often shows a delayed response to land-use change, previous studies have typically focused on a narrow range of current landscape factors and have largely ignored the role of land-use history in shaping plant and animal communities and their functional characteristics. Here, we used a unique database of 220,000 land-use records to investigate how 20-y of land-use changes have affected functional diversity across multiple trophic groups (primary producers, mutualists, herbivores, invertebrate predators, and vertebrate predators) in 75 grassland fields with a broad range of land-use histories. The effects of land-use history on multitrophic trait diversity were as strong as other drivers known to impact biodiversity, e.g., grassland management and current landscape composition. The diversity of animal mobility and resourceacquisition traits was lower in landscapes where much of the land had been historically converted from grassland to crop. In contrast, functional biodiversity was higher in landscapes containing old permanent grasslands, most likely because they offer a stable and high-quality habitat refuge for species with low mobility and specialized feeding niches. Our study shows that grassland-to-crop conversion has long-lasting impacts on the functional biodiversity of agricultural ecosystems. Accordingly, land-use legacy effects must be considered in conservation programs aiming to protect agricultural biodiversity. In particular, the retention of permanent grassland sanctuaries within intensive landscapes may offset ecological debts.
  •  
3.
  • Scheper, Jeroen, et al. (författare)
  • Biodiversity and pollination benefits trade off against profit in an intensive farming system
  • 2023
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - 0027-8424. ; 120:28
  • Tidskriftsartikel (refereegranskat)abstract
    • Agricultural expansion and intensification have boosted global food production but have come at the cost of environmental degradation and biodiversity loss. Biodiversity-friendly farming that boosts ecosystem services, such as pollination and natural pest control, is widely being advocated to maintain and improve agricultural productivity while safeguarding biodiversity. A vast body of evidence showing the agronomic benefits of enhanced ecosystem service delivery represent important incentives to adopt practices enhancing biodiversity. However, the costs of biodiversity-friendly management are rarely taken into account and may represent a major barrier impeding uptake by farmers. Whether and how biodiversity conservation, ecosystem service delivery, and farm profit can go hand in hand is unknown. Here, we quantify the ecological, agronomic, and net economic benefits of biodiversity-friendly farming in an intensive grassland–sunflower system in Southwest France. We found that reducing land-use intensity on agricultural grasslands drastically enhances flower availability and wild bee diversity, including rare species. Biodiversity-friendly management on grasslands furthermore resulted in an up to 17% higher revenue on neighboring sunflower fields through positive effects on pollination service delivery. However, the opportunity costs of reduced grassland forage yields consistently exceeded the economic benefits of enhanced sunflower pollination. Our results highlight that profitability is often a key constraint hampering adoption of biodiversity-based farming and uptake critically depends on society’s willingness to pay for associated delivery of public goods such as biodiversity.
  •  
4.
  • Sirami, Clélia, et al. (författare)
  • Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions
  • 2019
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 116:33, s. 16442-16447
  • Tidskriftsartikel (refereegranskat)abstract
    • Agricultural landscape homogenization has detrimental effects on biodiversity and key ecosystem services. Increasing agricultural landscape heterogeneity by increasing seminatural cover can help to mitigate biodiversity loss. However, the amount of seminatural cover is generally low and difficult to increase in many intensively managed agricultural landscapes. We hypothesized that increasing the heterogeneity of the crop mosaic itself (hereafter “crop heterogeneity”) can also have positive effects on biodiversity. In 8 contrasting regions of Europe and North America, we selected 435 landscapes along independent gradients of crop diversity and mean field size. Within each landscape, we selected 3 sampling sites in 1, 2, or 3 crop types. We sampled 7 taxa (plants, bees, butterflies, hoverflies, carabids, spiders, and birds) and calculated a synthetic index of multitrophic diversity at the landscape level. Increasing crop heterogeneity was more beneficial for multitrophic diversity than increasing seminatural cover. For instance, the effect of decreasing mean field size from 5 to 2.8 ha was as strong as the effect of increasing seminatural cover from 0.5 to 11%. Decreasing mean field size benefited multitrophic diversity even in the absence of seminatural vegetation between fields. Increasing the number of crop types sampled had a positive effect on landscape-level multitrophic diversity. However, the effect of increasing crop diversity in the landscape surrounding fields sampled depended on the amount of seminatural cover. Our study provides large-scale, multitrophic, cross-regional evidence that increasing crop heterogeneity can be an effective way to increase biodiversity in agricultural landscapes without taking land out of agricultural production.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy