SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bakhtiari Hamed) "

Sökning: WFRF:(Bakhtiari Hamed)

  • Resultat 1-14 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Bakhtiari, Hamed, et al. (författare)
  • Multi-criteria optimal sizing of hybrid renewable energy systems including wind, photovoltaic, battery, and hydrogen storage with ɛ-constraint method
  • 2018
  • Ingår i: IET Renewable Power Generation. - : Institution of Engineering and Technology (IET). - 1752-1416 .- 1752-1424. ; 12, s. 883-892
  • Tidskriftsartikel (refereegranskat)abstract
    • Hybrid renewable energy systems (HRES) should be designed appropriately with an adequate combination of different renewable sources and various energy storage methods to overcome the problem of intermittency of renewable energy resources. A multi-criteria approach is proposed in this study to design an HRES including wind turbine, photovoltaic panels, fuel cell, electrolyser, hydrogen tank, and battery storage unit with an intermittent load. Three design criteria including loss of power supply probability, total energy loss (TEL), and the power difference between generation and storing capacity (as TELSUB) are taken into account in minimising the total cost of the system considering the interest rate and lifetime. The justifications and advantages of using these criteria are thoroughly discussed along with appropriate presentation of the results. The purpose of considering TEL and TELSUB is discussed thoroughly. The ɛ-constraint method is used to handle practical constraints of the proposed multi-criteria problem to construct a multi-objective fitness function. Shuffled frog leaping algorithm is implemented to achieve better optimal results. The proposed approach is implemented using real wind speed and solar irradiance data for a specific location with an intermittent load demand. The results verify performance of the proposed multi-criteria design procedure.
  •  
3.
  • Bakhtiari, Hamed, et al. (författare)
  • Predicting the stochastic behavior of uncertainty sources in planning a stand-alone renewable energy-based microgrid using Metropolis–coupled Markov chain Monte Carlo simulation
  • 2021
  • Ingår i: Applied Energy. - : Elsevier. - 0306-2619 .- 1872-9118. ; 290
  • Tidskriftsartikel (refereegranskat)abstract
    • Due to the lack of available flexibility sources to cope with different uncertainties in the real-time operation of stand-alone renewable energy-based microgrids, the stochastic behavior of uncertainty sources needs to be included in the planning stage. Since there is a high association between some of the uncertainty sources, defining a proper time series to represent the behavior of each source of uncertainty is a challenging issue. Consequently, uncertainty sources should be modeled in such a way that the designed microgrid be able to cope with all scenarios from probability and impact viewpoints. This paper proposes a modified Metropolis–coupled Markov chain Monte Carlo (MC)3 simulation to predict the stochastic behavior of different uncertainty sources in the planning of a stand-alone renewable energy-based microgrid. Solar radiation, wind speed, the water flow of a river, load consumption, and electricity price have been considered as primary sources of uncertainty. A novel data classification method is introduced within the (MC)3 simulation to model the time-dependency and the association between different uncertainty sources. Moreover, a novel curve-fitting approach is proposed to improve the accuracy of representing the multimodal distribution functions, modeling the Markov chain states, and the long-term probability of uncertainty sources. The predicted representative time series with the proposed modified (MC)3 model is benchmarked against the retrospective model, the long-term historical data, and the simple Monte Carlo simulation model to capture the stochastic behavior of uncertainty sources. The results show that the proposed model represents the probability distribution function of each source of uncertainty, the continuity of samples, time dependency, the association between different uncertainty sources, short-term and long-term trends, and the seasonality of uncertainty sources. Finally, results confirm that the proposed modified (MC)3 can appropriately predict all scenarios with high probability and impact.
  •  
4.
  • Bakhtiari, Hamed (författare)
  • Risk-Averse Planning, Operation, and Coordination of Energy Systems Considering Uncertainty Modeling and Flexibility Services
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Uncertainty sources affect the planning and operation of energy systems. Different system operators need proper alternatives to cope with these uncertainties and improve the operation of their systems from technical and economical viewpoints. This thesis focuses on the risk-averse planning, operation, and coordination of energy systems including the transmission systems, distribution systems, and stand-alone renewable energy-based microgrids. We develop the existing uncertainty modeling methods and propose new mathematical models, pricing strategies, and operational coordination frameworks to enhance the ability of system operators to cope with uncertainties in the real-time operation of the energy systems and the electricity markets.  From the uncertainty modeling viewpoint, when it comes to planning and operation of power systems with high penetration of renewable energy, since enough flexibility sources may not be available to cope with the uncertainties in the real-time operation, effective uncertainty sources need to be predicted accurately in the planning stage. Consequently, Bayesian statistics and a stochastic-probabilistic method based on Metropolis-coupled Markov chain Monte Carlo simulation are developed to predict the stochastic behavior of uncertainty sources in different energy systems. We utilized our proposed methods to model the stochastic behavior of wind speed, solar radiation, the water flow of a river, electrical load consumption, the behavior of electric vehicle customers, and the harmonic hosting capacity calculation in different case studies. A novel data classification and curve fitting methods are also proposed for deriving appropriate probability distribution functions (PDFs) based on long-term historical data. We consider demand response programs (DRPs), renewable energy sources, and the dynamic line rating as the embedded resources to prepare flexibility services in the ancillary service market. When it comes to utilizing DRPs, the uncertainty in customers' participation and responsiveness profoundly affects the real-time operation of power systems. Therefore, the risk associated with the utilization of uncertain DR is investigated. Moreover, we evaluate the eligibility conditions for risk-averse utilization of DRPs and apply the risk management cost to the pricing policy of DRPs. There are several flexibility service buyers in the power system that aim to activate flexibility services based on their objectives. Consequently, there are conflicts between the interest of different buyers that affect the system operation and pay-off mechanism in the electricity market. Accordingly, proper mathematical structures, coordination frameworks, decomposition techniques, and pay-off mechanisms are needed to be introduced to enhance the coordination between different buyers of the flexibility services. Therefore, we propose a look-ahead multi-interval framework for the TSO-DSO operational coordination problem. We develop the logic-based Benders decomposition technique for our large-scale optimization problem, which is a bilevel mixed-integer linear programming (MILP) problem. Finally, the results verify that the proposed uncertainty modeling techniques positively affect the planning and operation of different energy systems, especially stand-alone renewable energy-based microgrids. It is shown that the uncertainty of DRPs highly affected the operation of the power system and the ancillary service market. The ramping capability of reserves is introduced as an eligibility condition for risk-averse utilization of DRPs. Dynamic line rating can be used as a reliable flexibility source in the real-time operation of the power system. Furthermore, the results show that the proposed TSO-DSO coordination scheme can properly manage the conflict between the objectives of different flexibility service buyers. Finally, the Logic-based Benders decomposition (LBBD) can properly solve a large-scale bilevel MILP problem. The LBBD method also improves the execution time of MILP problems.
  •  
5.
  • Bakhtiari, Hamed, et al. (författare)
  • Risk-Averse Pricing Strategy for Demand Response
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Interruptible/curtailable demand response program (ICDRP) is a valuable ancillary service resource in electricity markets. Due to the uncertainty of customer behavior in a market, risk-based pricing for ICDRP is needed. It is also necessary to evaluate the eligibility conditions for utilizing uncertain ICDRP as an ancillary service. In this paper, we first propose a pricing strategy that allocates payoffs to the coalition of ICDRP participants considering risk management costs caused by the uncertain responsiveness of ICDRP participants while maximizing the system operator’s ability to cope with uncertainties and optimizing generation outputs and regulation price in the frequency regulation market. Then, we investigate the flexibility of predetermined reserves in the forward electricity market as an eligibility condition for risk-averse utilization of ICDRP. A risk-averse Shapley value method is developed in the proposed pricing strategy. Finally, we carry out numerical studies to illustrate the feasibility and effectiveness of the proposed pricing strategy to determine the incentives and penalties in a fair way. We also demonstrate the necessity of considering the uncertainties of ICDRP responsiveness in the required reserve selection process to successfully exploit the benefits of ICDRP in the frequency regulation market.
  •  
6.
  •  
7.
  • Bakhtiari, Hamed, et al. (författare)
  • TSO-DSO Operational Coordination Using a Look-Ahead Multi-Interval Framework
  • 2022
  • Ingår i: IEEE Transactions on Power Systems. - : Institute of Electrical and Electronics Engineers (IEEE). - 0885-8950 .- 1558-0679. ; , s. 1-18
  • Tidskriftsartikel (refereegranskat)abstract
    • With the rise of distributed energy resources and the increasing activation of flexibility resources by Distribution Systems Operators (DSOs), the Transmission System Operators (TSOs) need to co-ordinate their actions with those of the DSOs. This research uses a look-ahead multi-interval (LA-MI) framework for analyzing this coordination and explores two formulations. Firstly in the exogenous DSO model, a mixed-integer linear program is developed to reflect the pragmatic approach in many real situations whereby the TSO can only anticipate statistically the actions of the DSO. In the embedded DSO model, as a comparator, we propose a new organizational setup for the TSO-DSO operational coordination mechanism. In the resulting bilevel decomposition, a new method to calculate Benders cuts is developed and tested on a modified IEEE 118-bus test system as a transmission network and two modified IEEE 33-bus test systems as distribution networks. The benefits of the LA-MI coordination framework are substantial in comparison with the current Look-Ahead Single-Interval (LA-SI) coordination framework widely used in Europe. 
  •  
8.
  • Bakhtiari, Hamed, et al. (författare)
  • Uncertainty modeling methods for risk-averse planning and operation of stand-alone renewable energy-based microgrids
  • 2022
  • Ingår i: Renewable energy. - : Elsevier. - 0960-1481 .- 1879-0682. ; 199, s. 866-880
  • Tidskriftsartikel (refereegranskat)abstract
    • The accuracy of models to capture the uncertainty of renewables significantly affects the planning and operation of renewable energy-based stand-alone (REB-SA) microgrids. This paper aims to first study different stochastic and deterministic models for renewables, then evaluate the performance of an REB-SA microgrid planning problem and provide qualitative and quantitative comparisons. A modified Metropolis-coupled Markov chain Monte Carlo simulation is considered for the first time in the planning of an REB-SA microgrid to predict the behavior of renewables with minimum iterations. The modified model is benchmarked against two prevalent models including the retrospective model with worst-case scenarios and the Monte Carlo simulation. The operations of three designed microgrids (by these three methods) are evaluated using the last three-year historical data of a city in northern Sweden including solar radiation, wind speed, the water flow of a river, and load consumption. The impacts of the considered methods on using PV panels and hydrogen systems are investigated. The results verify that the modified model decreases the risk of planning and operation of an REB-SA microgrid from the energy and power shortage viewpoints. Moreover, the designed microgrid with the modified model can cope with all possible scenarios from economic, technical, and environmental viewpoints.
  •  
9.
  • Hajeforosh, Seyede Fatemeh, 1988-, et al. (författare)
  • Risk Assessment Criteria for Utilizing Dynamic Line Rating in Presence of Electric Vehicles Uncertainty
  • 2022
  • Ingår i: Electric power systems research. - : Elsevier. - 0378-7796 .- 1873-2046. ; 212
  • Tidskriftsartikel (refereegranskat)abstract
    • Dynamic line rating (DLR) is a grid enhancing technology to enable a more effective use of transmission capacity of existing infrastructure.~The growth in load consumption along with a high integration of electric vehicles (EV) highlights the potential of DLR utilization for reducing the congestion costs and overloading risks.~Selecting the proper lines for DLR implementation is necessary to exploit optimally the benefits of DLR. In this paper, we propose risk assessment criteria to select proper lines for DLR implementation to minimize the system operation costs and the risk of overloading caused by high EV integration.A stochastic method is introduced to model the uncertain behavior of EV in charging stations. Furthermore, we analyze the impact of inherent uncertainties in DLR by comparing different DLR percentiles. The benefits of using DLR in different percentiles are then quantified in terms of supply and interruption costs.The results show improvements in system supply cost, system reliability, and operation risks. 
  •  
10.
  • Nakhodchi, Naser, et al. (författare)
  • Including uncertainties in harmonic hosting capacity calculation of a fast EV charging station utilizing Bayesian statistics and harmonic correlation
  • 2023
  • Ingår i: Electric power systems research. - : Elsevier. - 0378-7796 .- 1873-2046. ; 214
  • Tidskriftsartikel (refereegranskat)abstract
    • The harmonic emission from an electric vehicle fast charger depends on factors like charger topology, EV type, initial state of charge of EV battery, as well as supply voltage and background distortion. This paper presents the results from harmonic current measurement of a fast charger for a period of one month in Sweden that has charged a variety of EVs from different brands under different state of charge and background distortion. Besides the common harmonic emission pattern, a high level of variation in emission is observed that can affect the aggregation of the emission from multiple chargers. To include such uncertainties, the harmonic hosting capacity is obtained for a fast EV charging station in a stochastic way. A new method, based on Bayesian statistics and the correlation between harmonic magnitude and fundamental magnitude, is proposed for the generation of stochastic samples. It is shown that the proposed method, to a high extent, can model the stochastic behavior of harmonic emission from a fast charger. Furthermore, the results show that neglecting the correlation between harmonic magnitude and fundamental magnitude can underestimate the harmonic hosting capacity.
  •  
11.
  • Sbarra, AN, et al. (författare)
  • Mapping routine measles vaccination in low- and middle-income countries
  • 2021
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 589:7842, s. 415-
  • Tidskriftsartikel (refereegranskat)abstract
    • The safe, highly effective measles vaccine has been recommended globally since 1974, yet in 2017 there were more than 17 million cases of measles and 83,400 deaths in children under 5 years old, and more than 99% of both occurred in low- and middle-income countries (LMICs)1–4. Globally comparable, annual, local estimates of routine first-dose measles-containing vaccine (MCV1) coverage are critical for understanding geographically precise immunity patterns, progress towards the targets of the Global Vaccine Action Plan (GVAP), and high-risk areas amid disruptions to vaccination programmes caused by coronavirus disease 2019 (COVID-19)5–8. Here we generated annual estimates of routine childhood MCV1 coverage at 5 × 5-km2pixel and second administrative levels from 2000 to 2019 in 101 LMICs, quantified geographical inequality and assessed vaccination status by geographical remoteness. After widespread MCV1 gains from 2000 to 2010, coverage regressed in more than half of the districts between 2010 and 2019, leaving many LMICs far from the GVAP goal of 80% coverage in all districts by 2019. MCV1 coverage was lower in rural than in urban locations, although a larger proportion of unvaccinated children overall lived in urban locations; strategies to provide essential vaccination services should address both geographical contexts. These results provide a tool for decision-makers to strengthen routine MCV1 immunization programmes and provide equitable disease protection for all children.
  •  
12.
  • Sudha Letha, Shimi, et al. (författare)
  • Power Quality Issues of Electro-Mobility on Distribution Network—An Overview
  • 2023
  • Ingår i: Energies. - : MDPI. - 1996-1073. ; 16:13
  • Forskningsöversikt (refereegranskat)abstract
    • The journey towards sustainable transportation has significantly increased the grid penetration of electric vehicles (EV) around the world. The connection of EVs to the power grid poses a series of new challenges for network operators, such as network loading, voltage profile perturbation, voltage unbalance, and other power quality issues. This paper presents a coalescence of knowledge on the impact that electro-mobility can impose on the grid, and identifies gaps for further research. Further, the study investigates the impact of electric vehicle charging on the medium-voltage network and low-voltage distribution network, keeping in mind the role of network operators, utilities, and customers. From this, the impacts, challenges, and recommendations are summarized. This paper will be a valuable resource to research entities, industry professionals, and network operators, as a ready reference of all possible power quality challenges posed by electro-mobility on the distribution network.
  •  
13.
  • Wiessner, M., et al. (författare)
  • Biallelic variants in HPDL cause pure and complicated hereditary spastic paraplegia
  • 2021
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 144:5, s. 1422-1434
  • Tidskriftsartikel (refereegranskat)abstract
    • Human 4-hydroxyphenylpyruvate dioxygenase-like (HPDL) is a putative iron-containing non-heme oxygenase of unknown specificity and biological significance. We report 25 families containing 34 individuals with neurological disease associated with biallelic HPDL variants. Phenotypes ranged from juvenile-onset pure hereditary spastic paraplegia to infantile-onset spasticity and global developmental delays, sometimes complicated by episodes of neurological and respiratory decompensation. Variants included bona fide pathogenic truncating changes, although most were missense substitutions. Functionality of variants could not be determined directly as the enzymatic specificity of HPDL is unknown; however, when HPDL missense substitutions were introduced into 4-hydroxyphenylpyruvate dioxygenase (HPPD, an HPDL orthologue), they impaired the ability of HPPD to convert 4-hydroxyphenylpyruvate into homogentisate. Moreover, three additional sets of experiments provided evidence for a role of HPDL in the nervous system and further supported its link to neurological disease: (i) HPDL was expressed in the nervous system and expression increased during neural differentiation; (ii) knockdown of zebrafish hpdl led to abnormal motor behaviour, replicating aspects of the human disease; and (iii) HPDL localized to mitochondria, consistent with mitochondrial disease that is often associated with neurological manifestations. Our findings suggest that biallelic HPDL variants cause a syndrome varying from juvenile-onset pure hereditary spastic paraplegia to infantile-onset spastic tetraplegia associated with global developmental delays. © 2021 The Author(s).
  •  
14.
  • Abbafati, Cristiana, et al. (författare)
  • 2020
  • Tidskriftsartikel (refereegranskat)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-14 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy