SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Balasubramanian Meena) "

Sökning: WFRF:(Balasubramanian Meena)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adamo, Christin S., et al. (författare)
  • EMILIN1 deficiency causes arterial tortuosity with osteopenia and connects impaired elastogenesis with defective collagen fibrillogenesis
  • 2022
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297. ; 109:12, s. 2230-2252
  • Tidskriftsartikel (refereegranskat)abstract
    • EMILIN1 (elastin-microfibril-interface-located-protein-1) is a structural component of the elastic fiber network and localizes to the interface between the fibrillin microfibril scaffold and the elastin core. How EMILIN1 contributes to connective tissue integrity is not fully understood. Here, we report bi-allelic EMILIN1 loss-of-function variants causative for an entity combining cutis laxa, arterial tortuosity, aneurysm formation, and bone fragility, resembling autosomal-recessive cutis laxa type 1B, due to EFEMP2 (FBLN4) deficiency. In both humans and mice, absence of EMILIN1 impairs EFEMP2 extracellular matrix deposition and LOX activity resulting in impaired elastogenesis, reduced collagen crosslinking, and aberrant growth factor signaling. Collagen fiber ultrastructure and histopathology in EMILIN1- or EFEMP2-deficient skin and aorta corroborate these findings and murine Emilin1-/- femora show abnormal trabecular bone formation and strength. Altogether, EMILIN1 connects elastic fiber network with collagen fibril formation, relevant for both bone and vascular tissue homeostasis.
  •  
2.
  • Krab, Lianne C., et al. (författare)
  • Delineation of phenotypes and genotypes related to cohesin structural protein RAD21
  • 2020
  • Ingår i: Human Genetics. - : Springer Science and Business Media LLC. - 0340-6717 .- 1432-1203. ; 139:5, s. 575-592
  • Tidskriftsartikel (refereegranskat)abstract
    • RAD21 encodes a key component of the cohesin complex, and variants in RAD21 have been associated with Cornelia de Lange Syndrome (CdLS). Limited information on phenotypes attributable to RAD21 variants and genotype–phenotype relationships is currently published. We gathered a series of 49 individuals from 33 families with RAD21 alterations [24 different intragenic sequence variants (2 recurrent), 7 unique microdeletions], including 24 hitherto unpublished cases. We evaluated consequences of 12 intragenic variants by protein modelling and molecular dynamic studies. Full clinical information was available for 29 individuals. Their phenotype is an attenuated CdLS phenotype compared to that caused by variants in NIPBL or SMC1A for facial morphology, limb anomalies, and especially for cognition and behavior. In the 20 individuals with limited clinical information, additional phenotypes include Mungan syndrome (in patients with biallelic variants) and holoprosencephaly, with or without CdLS characteristics. We describe several additional cases with phenotypes including sclerocornea, in which involvement of the RAD21 variant is uncertain. Variants were frequently familial, and genotype–phenotype analyses demonstrated striking interfamilial and intrafamilial variability. Careful phenotyping is essential in interpreting consequences of RAD21 variants, and protein modeling and dynamics can be helpful in determining pathogenicity. The current study should be helpful when counseling families with a RAD21 variation.
  •  
3.
  • Yates, T. Michael, et al. (författare)
  • SLC35A2-related congenital disorder of glycosylation : Defining the phenotype
  • 2018
  • Ingår i: European journal of paediatric neurology. - : ELSEVIER SCI LTD. - 1090-3798 .- 1532-2130. ; 22:6, s. 1095-1102
  • Tidskriftsartikel (refereegranskat)abstract
    • We aim to further delineate the phenotype associated with pathogenic variants in the SLC35A2 gene, and review all published literature to-date. This gene is located on the X chromosome and encodes a UDP-galactose transporter. Pathogenic variants in SLC35A2 cause a congenital disorder of glycosylation. The condition is rare, and less than twenty patients have been reported to-date. The phenotype is complex and has not been fully defined. Here, we present a series of five patients with de novo pathogenic variants in SLC35A2. The patients' phenotype includes developmental and epileptic encephalopathy with hypsarrhythmia, facial dysmorphism, severe intellectual disability, skeletal abnormalities, congenital cardiac disease and cortical visual impairment. Developmental and epileptic encephalopathy with hypsarrhythmia is present in most patients with SLC35A2 variants, and is drug-resistant in the majority of cases. Adrenocorticotropic hormone therapy may achieve partial or complete remission of seizures, but the effect is usually temporary. Isoelectric focusing of transferrins may be normal after infancy, therefore a congenital disorder of glycosylation should still be considered as a diagnosis in the presence of a suggestive phenotype. We also provide evidence that cortical visual impairment is part of the phenotypic spectrum.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy