SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Baldan Giacomo) "

Sökning: WFRF:(Baldan Giacomo)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • De Vanna, Francesco, et al. (författare)
  • URANOS-2.0: Improved performance, enhanced portability, and model extension towards exascale computing of high-speed engineering flows
  • 2024
  • Ingår i: Computer Physics Communications. - : Elsevier B.V.. - 0010-4655 .- 1879-2944. ; 303
  • Tidskriftsartikel (refereegranskat)abstract
    • We present URANOS-2.0, the second major release of our massively parallel, GPU-accelerated solver for compressible wall flow applications. This latest version represents a significant leap forward in our initial tool, which was launched in 2023 (De Vanna et al. [1]), and has been specifically optimized to take full advantage of the opportunities offered by the cutting-edge pre-exascale architectures available within the EuroHPC JU. In particular, URANOS-2.0 emphasizes portability and compatibility improvements with the two top-ranked supercomputing architectures in Europe: LUMI and Leonardo. These systems utilize different GPU architectures, AMD and NVIDIA, respectively, which necessitates extensive efforts to ensure seamless usability across their distinct structures. In pursuit of this objective, the current release adheres to the OpenACC standard. This choice not only facilitates efficient utilization of the full potential inherent in these extensive GPU-based architectures but also upholds the principles of vendor neutrality, a distinctive characteristic of URANOS solvers in the CFD solvers' panorama. However, the URANOS-2.0 version goes beyond the goals of improving usability and portability; it introduces performance enhancements and restructures the most demanding computational kernels. This translates into a 2× speedup over the same architecture. In addition to its enhanced single-GPU performance, the present solver release demonstrates very good scalability in multi-GPU environments. URANOS-2.0, in fact, achieves strong scaling efficiencies of over 80% across 64 compute nodes (256 GPUs) for both LUMI and Leonardo. Furthermore, its weak scaling efficiencies reach approximately 95% and 90% on LUMI and Leonardo, respectively, when up to 256 nodes (1024 GPUs) are considered. These significant performance advancements position URANOS-2.0 as a state-of-the-art supercomputing platform tailored for compressible wall turbulence applications, establishing the solver as an integrated tool for various aerospace and energy engineering applications, which can span from direct numerical simulations, wall-resolved large eddy simulations, up to most recent wall-modeled large eddy simulations. Program summary: Program title: Unsteady Robust All-around Navier-StOkes Solver (URANOS) CPC Library link to program files: https://doi.org/10.17632/pw5hshn9k6.2 Developer's repository link: https://github.com/uranos-gpu/uranos-gpu, https://github.com/uranos-gpu/uranos-gpu/tree/v2.0 Licensing provisions: BSD License 2.0 Programming language: Modern Fortran, OpenACC, MPI Nature of problem: Solving the compressible Navier-Stokes equations in a three-dimensional Cartesian framework. Solution method: Convective terms are treated with high-resolution shock-capturing schemes. The system dynamics is advanced in time with a three-stage Runge-Kutta method. Parallelization adopts MPI+OpenACC.
  •  
2.
  • Vanna, Francesco De, et al. (författare)
  • Effect of convective schemes in wall-resolved and wall-modeled LES of compressible wall turbulence
  • 2023
  • Ingår i: Computers & Fluids. - : Elsevier BV. - 0045-7930 .- 1879-0747. ; 250, s. 105710-
  • Tidskriftsartikel (refereegranskat)abstract
    • The current study discusses how numerical schemes and discretization approaches affect wall-resolved and wall-modeled LES outcomes. A turbulent boundary layer setup over a flat plate in both super-and hypersonic conditions is used to illustrate the effect of different numerical discretization strategies. In particular, six convective methods are examined, as well as various degrees of hybridization between shock-capturing and centered approaches: The former introducing non-negligible numerical viscosity, the latter being virtually dissipation-free. The analysis reveals that injected numerical viscosity due to upwinding procedures consid-erably alters wall dynamics for both wall-resolved and especially wall-modeled arrangements. In particular, if low-order or pure shock-capturing schemes are used, wall modeling fails in heading the system dynamics due to a strong modulation of main turbulent features. Conversely, realistic turbulence patterns are recovered if hybrid and/or high-order shock-capturing methods are employed. Thus, the paper establishes criteria for selecting a suitable numerical setup in wall-modeled LES, providing suggestions for grid resolution levels and convective scheme selection/hybridization. An overview perspective concerning numerical diffusion coupling with turbulent stresses in wall-resolved and wall-modeled LES is also provided.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2
Typ av publikation
tidskriftsartikel (2)
Typ av innehåll
refereegranskat (2)
Författare/redaktör
Baldan, Giacomo (2)
Picano, Francesco (1)
Benini, Ernesto (1)
De Vanna, Francesco (1)
Vanna, Francesco De (1)
Lärosäte
Kungliga Tekniska Högskolan (2)
Språk
Engelska (2)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (2)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy