SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Banerjee Sayan) "

Sökning: WFRF:(Banerjee Sayan)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Banerjee, Avik, 1992, et al. (författare)
  • Probing composite Higgs boson substructure at the HL-LHC
  • 2021
  • Ingår i: Physical Review D. - 2470-0010 .- 2470-0029. ; 104:9
  • Tidskriftsartikel (refereegranskat)abstract
    • The Higgs boson may well be a composite scalar with a finite extension in space. Owing to the momentum dependence of its couplings, the imprints of such a composite pseudo Goldstone Higgs may show up in the tails of various kinematic distributions at the LHC, distinguishing it from an elementary state. From the bottom up, we construct the momentum-dependent form factors to capture the interactions of the composite Higgs with the weak gauge bosons. We demonstrate their impact in the differential distributions of various kinematic parameters for the pp -> Z*H -> l+l-bb over bar channel. We show that this channel can provide an important handle to probe the Higgs' substructure at the HL-LHC.
  •  
2.
  • Chakraborty, Debasish, et al. (författare)
  • Reversible Atomization and Nano-Clustering of Pt as a Strategy for Designing Ultra-Low-Metal-Loading Catalysts
  • 2022
  • Ingår i: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 126:38, s. 16194-16203
  • Tidskriftsartikel (refereegranskat)abstract
    • Noble metal-based catalysts have numerous industrial uses, and maximum utilization of the precious metals by lowering the metal loading is of significant interest in heterogeneous catalysis research. However, lowering the metal loading could lead to single-atom metal species formation, which may not be active for important reactions like propylene oxidation. We report a way to drastically reduce precious metal loading of catalysts by judiciously choosing an active metal/support pair and using the reversible atomization-nanoparticulate formation of transition metal on a high-surface area support. Here, Pt and MgAl2O4 are used as the transition metal and high-surface area support, respectively. Through catalytic testing and characterization using scanning transmission electron microscopy and synchrotron X-ray absorption spectroscopy, a reversible change between atomization and nano-cluster formation under oxidizing and reducing conditions has been found. Via density functional theory, favorable sites for reversible Pt adsorption are identified, including ionic Pt4+ sites that can serve to nucleate nanoclusters. Catalytic reaction modeling also rationalizes the catalytic inertness of atomic Pt sites. Finally, a re-activation mechanism for the atomized Pt based on gases present during reaction has been formulated and demonstrated.
  •  
3.
  • Landeck, Natalie, et al. (författare)
  • Two C-terminal sequence variations determine differential neurotoxicity between human and mouse α-synuclein
  • 2020
  • Ingår i: Molecular Neurodegeneration. - : Springer Science and Business Media LLC. - 1750-1326. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: α-Synuclein (aSyn) aggregation is thought to play a central role in neurodegenerative disorders termed synucleinopathies, including Parkinson's disease (PD). Mouse aSyn contains a threonine residue at position 53 that mimics the human familial PD substitution A53T, yet in contrast to A53T patients, mice show no evidence of aSyn neuropathology even after aging. Here, we studied the neurotoxicity of human A53T, mouse aSyn, and various human-mouse chimeras in cellular and in vivo models, as well as their biochemical properties relevant to aSyn pathobiology. Methods: Primary midbrain cultures transduced with aSyn-encoding adenoviruses were analyzed immunocytochemically to determine relative dopaminergic neuron viability. Brain sections prepared from rats injected intranigrally with aSyn-encoding adeno-associated viruses were analyzed immunohistochemically to determine nigral dopaminergic neuron viability and striatal dopaminergic terminal density. Recombinant aSyn variants were characterized in terms of fibrillization rates by measuring thioflavin T fluorescence, fibril morphologies via electron microscopy and atomic force microscopy, and protein-lipid interactions by monitoring membrane-induced aSyn aggregation and aSyn-mediated vesicle disruption. Statistical tests consisted of ANOVA followed by Tukey's multiple comparisons post hoc test and the Kruskal-Wallis test followed by a Dunn's multiple comparisons test or a two-tailed Mann-Whitney test. Results: Mouse aSyn was less neurotoxic than human aSyn A53T in cell culture and in rat midbrain, and data obtained for the chimeric variants indicated that the human-to-mouse substitutions D121G and N122S were at least partially responsible for this decrease in neurotoxicity. Human aSyn A53T and a chimeric variant with the human residues D and N at positions 121 and 122 (respectively) showed a greater propensity to undergo membrane-induced aggregation and to elicit vesicle disruption. Differences in neurotoxicity among the human, mouse, and chimeric aSyn variants correlated weakly with differences in fibrillization rate or fibril morphology. Conclusions: Mouse aSyn is less neurotoxic than the human A53T variant as a result of inhibitory effects of two C-terminal amino acid substitutions on membrane-induced aSyn aggregation and aSyn-mediated vesicle permeabilization. Our findings highlight the importance of membrane-induced self-assembly in aSyn neurotoxicity and suggest that inhibiting this process by targeting the C-terminal domain could slow neurodegeneration in PD and other synucleinopathy disorders.
  •  
4.
  • Saha, Sayan, et al. (författare)
  • Exploring the water oxidation catalytic activity of a Mn-Based magnetic metal-organic framework : the role of proton conductivity and oxygen evolution reaction overpotential
  • 2024
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 63:23, s. 10619-10633
  • Tidskriftsartikel (refereegranskat)abstract
    • The present work evaluates the water oxidation catalytic activity of a Mn-based metal-organic framework (MOF), which we envisioned to reduce the oxygen evolution reaction (OER) overpotential because of its high electrical conductivity, facilitated by solvent-encapsulated structural features. The presence of Mn centers induces interesting magnetic features in the MOF, which exhibits impressive cryogenic magnetic refrigeration with a ΔSM value of 29.94 J kg-1 K-1 for a field change of ΔH = 5T at 2.3 K. To the best of our knowledge, the ΔSM value of the current system ranked the highest position among the published examples. The crystal structure aligns perfectly with the thematic expectations and features as many as ten metal-coordinated water molecules, forming an extensive web of a hydrogen-bonded network while facing toward the porous channel filled with another set of much-anticipated entrapped lattice water molecules. Such structural features are expected to manifest high proton conductivity, and detailed investigation indeed yields the best value for the system at 1.57 × 10-4 S/cm at 95% humidity and 85 °C. In order to evaluate the thematic notion of a one-to-one relationship between OER and improved electrical conductivity, extensive electrocatalytic water splitting (WS) investigations were carried out. The final results show highly encouraging WS ability of the Mn-MOF, showing the electrocatalytic surface area value of the active species as 0.0686 F/g with a turnover frequency value of 0.043 [(mol. O2) (mol. Mn-MOF)-1 s-1]. Another fascinating aspect of the current communication is the excellent synergy observed between the experimental WS outcomes and the corresponding theoretical data calculated using density functional theory (DFT). Consequently, a plausible mechanism of the overall OER and the role of the Mn-MOF as a water oxidation catalyst, along with the importance of water molecules, have also been derived from the theoretical calculations using DFT.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy