SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Barabash S.) "

Sökning: WFRF:(Barabash S.)

  • Resultat 1-44 av 44
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bruzzi, M, et al. (författare)
  • Radiation-hard semiconductor detectors for SuperLHC
  • 2005
  • Ingår i: Nuclear Instruments & Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment. - : Elsevier BV. - 0167-5087 .- 0168-9002. ; 541:1-2, s. 189-201
  • Tidskriftsartikel (refereegranskat)abstract
    • An option of increasing the luminosity of the Large Hadron Collider (LHC) at CERN to 1035 cm-2 s-1 has been envisaged to extend the physics reach of the machine. An efficient tracking down to a few centimetres from the interaction point will be required to exploit the physics potential of the upgraded LHC. As a consequence, the semiconductor detectors close to the interaction region will receive severe doses of fast hadron irradiation and the inner tracker detectors will need to survive fast hadron fluences of up to above 1016cm-2. The CERN-RD50 project "Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders" has been established in 2002 to explore detector materials and technologies that will allow to operate devices up to, or beyond, this limit. The strategies followed by RD50 to enhance the radiation tolerance include the development of new or defect engineered detector materials (SiC, GaN, Czochralski and epitaxial silicon, oxygen enriched Float Zone silicon), the improvement of present detector designs and the understanding of the microscopic defects causing the degradation of the irradiated detectors. The latest advancements within the RD50 collaboration on radiation hard semiconductor detectors will be reviewed and discussed in this work.
  •  
2.
  • Abgrall, N., et al. (författare)
  • The large enriched germanium experiment for neutrinoless double beta decay (LEGEND)
  • 2017
  • Ingår i: AIP Conference Proceedings. - : Author(s). - 1551-7616 .- 0094-243X. ; 1894
  • Konferensbidrag (refereegranskat)abstract
    • The observation of neutrinoless double-beta decay (0νββ) would show that lepton number is violated, reveal that neu-trinos are Majorana particles, and provide information on neutrino mass. A discovery-capable experiment covering the inverted ordering region, with effective Majorana neutrino masses of 15 - 50 meV, will require a tonne-scale experiment with excellent energy resolution and extremely low backgrounds, at the level of ∼0.1 count /(FWHM·t·yr) in the region of the signal. The current generation 76Ge experiments GERDA and the Majorana Demonstrator, utilizing high purity Germanium detectors with an intrinsic energy resolution of 0.12%, have achieved the lowest backgrounds by over an order of magnitude in the 0νββ signal region of all 0νββ experiments. Building on this success, the LEGEND collaboration has been formed to pursue a tonne-scale 76Ge experiment. The collaboration aims to develop a phased 0νββ experimental program with discovery potential at a half-life approaching or at 1028 years, using existing resources as appropriate to expedite physics results.
  •  
3.
  • Milillo, A., et al. (författare)
  • Investigating Mercury's Environment with the Two-Spacecraft BepiColombo Mission
  • 2020
  • Ingår i: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 216:5
  • Forskningsöversikt (refereegranskat)abstract
    • The ESA-JAXA BepiColombo mission will provide simultaneous measurements from two spacecraft, offering an unprecedented opportunity to investigate magnetospheric and exospheric dynamics at Mercury as well as their interactions with the solar wind, radiation, and interplanetary dust. Many scientific instruments onboard the two spacecraft will be completely, or partially devoted to study the near-space environment of Mercury as well as the complex processes that govern it. Many issues remain unsolved even after the MESSENGER mission that ended in 2015. The specific orbits of the two spacecraft, MPO and Mio, and the comprehensive scientific payload allow a wider range of scientific questions to be addressed than those that could be achieved by the individual instruments acting alone, or by previous missions. These joint observations are of key importance because many phenomena in Mercury's environment are highly temporally and spatially variable. Examples of possible coordinated observations are described in this article, analysing the required geometrical conditions, pointing, resolutions and operation timing of different BepiColombo instruments sensors.
  •  
4.
  • Orsini, S., et al. (författare)
  • Inner southern magnetosphere observation of Mercury via SERENA ion sensors in BepiColombo mission
  • 2022
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Mercury’s southern inner magnetosphere is an unexplored region as it was not observed by earlier space missions. In October 2021, BepiColombo mission has passed through this region during its first Mercury flyby. Here, we describe the observations of SERENA ion sensors nearby and inside Mercury’s magnetosphere. An intermittent high-energy signal, possibly due to an interplanetary magnetic flux rope, has been observed downstream Mercury, together with low energy solar wind. Low energy ions, possibly due to satellite outgassing, were detected outside the magnetosphere. The dayside magnetopause and bow-shock crossing were much closer to the planet than expected, signature of a highly eroded magnetosphere. Different ion populations have been observed inside the magnetosphere, like low latitude boundary layer at magnetopause inbound and partial ring current at dawn close to the planet. These observations are important for understanding the weak magnetosphere behavior so close to the Sun, revealing details never reached before.
  •  
5.
  • Brain, D., et al. (författare)
  • A comparison of global models for the solar wind interaction with Mars
  • 2010
  • Ingår i: Icarus. - : Elsevier BV. - 0019-1035 .- 1090-2643. ; 206:1, s. 139-151
  • Tidskriftsartikel (refereegranskat)abstract
    • We present initial results from the first community-wide effort to compare global plasma interaction model results for Mars. Seven modeling groups participated in this activity, using MHD, multi-fluid, and hybrid assumptions in their simulations. Moderate solar wind and solar EUV conditions were chosen, and the conditions were implemented in the models and run to steady state. Model output was compared in three ways to determine how pressure was partitioned and conserved in each model, the location and asymmetry of plasma boundaries and pathways for planetary ion escape, and the total escape flux of planetary oxygen ions. The two participating MHD models provided similar results, while the five sets of multi-fluid and hybrid results were different in many ways. All hybrid results, however, showed two main channels for oxygen ion escape (a pickup ion 'plume' in the hemisphere toward which the solar wind convection electric field is directed, and a channel in the opposite hemisphere of the central magnetotail), while the MHD models showed one (a roughly symmetric channel in the central magnetotail). Most models showed a transition from an upstream region dominated by plasma dynamic pressure to a magnetosheath region dominated by thermal pressure to a low altitude region dominated by magnetic pressure. However, calculated escape rates for a single ion species varied by roughly an order of magnitude for similar input conditions, suggesting that the uncertainties in both the current and integrated escape over martian history as determined by models are large. These uncertainties are in addition to those associated with the evolution of the Sun, the martian dynamo, and the early atmosphere, highlighting the challenges we face in constructing Mars' past using models.
  •  
6.
  • Carlsson, Ella, et al. (författare)
  • Mass composition of the escaping plasma at Mars
  • 2006
  • Ingår i: Icarus. - : Elsevier BV. - 0019-1035 .- 1090-2643. ; 182:2, s. 320-328
  • Tidskriftsartikel (refereegranskat)abstract
    • Data from the Ion Mass Analyzer (IMA) sensor of the ASPERA-3 instrument suite on Mars Express have been analyzed to determine the mass composition of the escaping ion species at Mars. We have examined 77 different ion-beam events and we present the results in terms of flux ratios between the following ion species: CO2+/O+ and O-2(+)/O+. The following ratios averaged over all events and energies were identified: CO2+/O+ = 0.2 and O-2(+)/O+ = 0.9. The values measured are significantly higher, by a factor of 10 for O-2(+)/O+, than a contemporary modeled ratio for the maximum fluxes which the martian ionosphere can supply. The most abundant ion species was found to be O+, followed by O-2(+) and CO2+. We estimate the loss of CO2+ to be 4.0 x 10(24) s(-1) (0.29 kg s(-1)) by using the previous measurements of Phobos-2 in our calculations. The dependence of the ion ratios in relation to their energy ranges we studied, 0.3-3.0 keV, indicated that no clear correlation was found.
  •  
7.
  • Witasse, O., et al. (författare)
  • Interplanetary coronal mass ejection observed at STEREO-A, Mars, comet 67P/Churyumov-Gerasimenko, Saturn, and New Horizons en route to Pluto : Comparison of its Forbush decreases at 1.4, 3.1, and 9.9 AU
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 122:8, s. 7865-7890
  • Tidskriftsartikel (refereegranskat)abstract
    • We discuss observations of the journey throughout the Solar System of a large interplanetary coronal mass ejection (ICME) that was ejected at the Sun on 14 October 2014. The ICME hit Mars on 17 October, as observed by the Mars Express, Mars Atmosphere and Volatile EvolutioN Mission (MAVEN), Mars Odyssey, and Mars Science Laboratory (MSL) missions, 44h before the encounter of the planet with the Siding-Spring comet, for which the space weather context is provided. It reached comet 67P/Churyumov-Gerasimenko, which was perfectly aligned with the Sun and Mars at 3.1 AU, as observed by Rosetta on 22 October. The ICME was also detected by STEREO-A on 16 October at 1 AU, and by Cassini in the solar wind around Saturn on the 12 November at 9.9AU. Fortuitously, the New Horizons spacecraft was also aligned with the direction of the ICME at 31.6 AU. We investigate whether this ICME has a nonambiguous signature at New Horizons. A potential detection of this ICME by Voyager 2 at 110-111 AU is also discussed. The multispacecraft observations allow the derivation of certain properties of the ICME, such as its large angular extension of at least 116 degrees, its speed as a function of distance, and its magnetic field structure at four locations from 1 to 10 AU. Observations of the speed data allow two different solar wind propagation models to be validated. Finally, we compare the Forbush decreases (transient decreases followed by gradual recoveries in the galactic cosmic ray intensity) due to the passage of this ICME at Mars, comet 67P, and Saturn.
  •  
8.
  • Edberg, Niklas, et al. (författare)
  • Pumping out the atmosphere of Mars through solar wind pressure pulses
  • 2010
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 37, s. L03107-
  • Tidskriftsartikel (refereegranskat)abstract
    • We study atmospheric escape from Mars during solar wind pressure pulses. During the solar minimum of 2007 08 we have observed 41 high pressure events, which are predominantly identified as corotating interaction regions (CIR) while a few are coronal mass ejections (CME), in data from the Advanced Composition Explorer (ACE) upstream of the Earth. 36 of these events are also identified using Mars Express (MEX) data at Mars. We use MEX measurements at Mars to compare the antisunward fluxes of heavy planetary ions during the passage of these pulses to the fluxes during quiet solar wind conditions. The ion fluxes are observed to increase by a factor of similar to 2.5, on average. Hence, a third of the total outflow from Mars takes place during similar to 15% of the time, when a solar wind pressure pulse impacts on the planet. This can have important consequences for the total time-integrated outflow of plasma from Mars.
  •  
9.
  • Andrews, David J., et al. (författare)
  • Plasma observations during the Mars atmospheric "plume" event of March-April 2012
  • 2016
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 121:4, s. 3139-3154
  • Tidskriftsartikel (refereegranskat)abstract
    • We present initial analyses and conclusions from plasma observations made during the reported "Mars plume event" of March-April 2012. During this period, multiple independent amateur observers detected a localized, high-altitude "plume" over the Martian dawn terminator, the cause of which remains to be explained. The estimated brightness of the plume exceeds that expected for auroral emissions, and its projected altitude greatly exceeds that at which clouds are expected to form. We report on in situ measurements of ionospheric plasma density and solar wind parameters throughout this interval made by Mars Express, obtained over the same surface region but at the opposing terminator. Measurements in the ionosphere at the corresponding location frequently show a disturbed structure, though this is not atypical for such regions with intense crustal magnetic fields. We tentatively conclude that the formation and/or transport of this plume to the altitudes where it was observed could be due in part to the result of a large interplanetary coronal mass ejection (ICME) encountering the Martian system. Interestingly, we note that the only similar plume detection in May 1997 may also have been associated with a large ICME impact at Mars.
  •  
10.
  • Arridge, Christopher S., et al. (författare)
  • Uranus Pathfinder : exploring the origins and evolution of Ice Giant planets
  • 2012
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 33:2-3, s. 753-791
  • Tidskriftsartikel (refereegranskat)abstract
    • The "Ice Giants" Uranus and Neptune are a different class of planet compared to Jupiter and Saturn. Studying these objects is important for furthering our understanding of the formation and evolution of the planets, and unravelling the fundamental physical and chemical processes in the Solar System. The importance of filling these gaps in our knowledge of the Solar System is particularly acute when trying to apply our understanding to the numerous planetary systems that have been discovered around other stars. The Uranus Pathfinder (UP) mission thus represents the quintessential aspects of the objectives of the European planetary community as expressed in ESA's Cosmic Vision 2015-2025. UP was proposed to the European Space Agency's M3 call for medium-class missions in 2010 and proposed to be the first orbiter of an Ice Giant planet. As the most accessible Ice Giant within the M-class mission envelope Uranus was identified as the mission target. Although not selected for this call the UP mission concept provides a baseline framework for the exploration of Uranus with existing low-cost platforms and underlines the need to develop power sources suitable for the outer Solar System. The UP science case is based around exploring the origins, evolution, and processes at work in Ice Giant planetary systems. Three broad themes were identified: (1) Uranus as an Ice Giant, (2) An Ice Giant planetary system, and (3) An asymmetric magnetosphere. Due to the long interplanetary transfer from Earth to Uranus a significant cruise-phase science theme was also developed. The UP mission concept calls for the use of a Mars Express/Rosetta-type platform to launch on a Soyuz-Fregat in 2021 and entering into an eccentric polar orbit around Uranus in the 2036-2037 timeframe. The science payload has a strong heritage in Europe and beyond and requires no significant technology developments.
  •  
11.
  • Edberg, Niklas J. T., et al. (författare)
  • Atmospheric erosion of Venus during stormy space weather
  • 2011
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 116, s. A09308-
  • Tidskriftsartikel (refereegranskat)abstract
    • We study atmospheric escape from Venus during solar minimum conditions when 147 corotating interaction regions (CIRs) and interplanetary coronal mass ejections (ICMEs) combined impact on the planet. This is the largest study to date of the effects of stormy space weather on Venus and we show for the first time statistically that the atmosphere of Venus is significantly affected by CIRs and ICMEs. When such events impact on Venus, as observed by the ACE and Venus Express satellites, the escape rate of Venus's ionosphere is measured to increase by a factor of 1.9, on average, compared to quiet solar wind times. However, the increase in escape flux during impacts can occasionally be significantly larger by orders of magnitude. Taking into account the occurrence rate of such events we find that roughly half (51%) of the outflow occurs during stormy space weather. Furthermore, we particularly discuss the importance of the increased solar wind dynamic pressure as well as the polarity change of the interplanetary magnetic field (IMF) in terms of causing the increase escape rate. The IMF polarity change across a CIR/ICME could cause dayside magnetic reconnection processes to occur in the induced magnetosphere of Venus, which would add to the erosion through associated particle acceleration.
  •  
12.
  • Edberg, Niklas J. T., et al. (författare)
  • Magnetosonic Mach number effect of the position of the bow shock at Mars in comparison to Venus
  • 2010
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 115, s. A07203-
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the effect of the magnetosonic Mach number on the position of the bow shock (BS) at Mars. The magnetosonic Mach number is calculated from solar wind data obtained by the ACE satellite upstream of Earth and extrapolated to Mars during two intervals, starting in 2005 and 2007, when Mars and Earth were close to opposition. An increased Mach number is observed to cause the Martian BS to move to lower altitudes and the variation in the terminator altitude is proportional to the Mach number change. When the Mach number is lowered, the BS flares more. We also compare our results to previous studies at Venus. The variation in BS altitude with magnetosonic Mach number is found to be very similar to the variation of the Venusian BS, which has previously been shown to decrease linearly in altitude with increasing Mach number.
  •  
13.
  • Edberg, Niklas J. T., et al. (författare)
  • Simultaneous measurements of Martian plasma boundaries by Rosetta and Mars Express
  • 2009
  • Ingår i: Planetary and Space Science. - : Elsevier BV. - 0032-0633 .- 1873-5088. ; 57:8-9, s. 1085-1096
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first two-spacecraft near-simultaneous observations of the Martian bow shock (BS), magnetic pileup boundary (MPB) and photo-electron boundary (PEB) obtained by the plasma instruments onboard Rosetta and Mars Express during the Rosetta Mars fly by on February 25, 2007. Our observations are compared with shape models for the BS and MPB derived from previous statistical studies. The MPB is found at its expected position but the BS for this event is found significantly closer to the planet than expected for the rather slow and moderately dense solar wind. Cross-calibration of the density measurements on the two spacecraft gives a density profile through the magnetosheath, indicating an increasing solar wind flux during the Rosetta passage which is consistent with the multiple BS crossings at the Rosetta exit.
  •  
14.
  • Edberg, Niklas, et al. (författare)
  • Rosetta and Mars Express observations of the influence of high solar wind pressure on the Martian plasma environment
  • 2009
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 27:12, s. 4533-4545
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on new simultaneous in-situ observations at Mars from Rosetta and Mars Express (MEX) on how the Martian plasma environment is affected by high pressure solar wind. A significant sharp increase in solar wind density, magnetic field strength and turbulence followed by a gradual increase in solar wind velocity is observed during similar to 24 h in the combined data set from both spacecraft after Rosetta's closest approach to Mars on 25 February 2007. The bow shock and magnetic pileup boundary are coincidently observed by MEX to become asymmetric in their shapes. The fortunate orbit of MEX at this time allows a study of the inbound boundary crossings on one side of the planet and the outbound crossings on almost the opposite side, both very close to the terminator plane. The solar wind and interplanetary magnetic field (IMF) downstream of Mars are monitored through simultaneous measurements provided by Rosetta. Possible explanations for the asymmetries are discussed, such as crustal magnetic fields and IMF direction. In the same interval, during the high solar wind pressure pulse, MEX observations show an increased amount of escaping planetary ions from the polar region of Mars. We link the high pressure solar wind with the observed simultaneous ion outflow and discuss how the pressure pulse could also be associated with the observed boundary shape asymmetry.
  •  
15.
  • Horbury, T., et al. (författare)
  • Cross-scale : A multi-spacecraft mission to study cross-scale coupling in space plasmas
  • 2006
  • Ingår i: European Space Agency, (Special Publication) ESA SP. ; , s. 561-568
  • Konferensbidrag (refereegranskat)abstract
    • Collisionless astrophysical plasmas exhibit complexity on many scales: if we are to understand their properties and effects, we must measure this complexity. We can identify a small number of processes and phenomena, one of which is dominant in almost every space plasma region of interest: shocks, reconnection and turbulence. These processes act to transfer energy between locations, scales and modes. However, this transfer is characterised by variability and 3D structure on at least three scales: electron kinetic, ion kinetic and fluid. It is the nonlinear interaction between physical processes at these scales that is the key to understanding these phenomena and predicting their effects. However, current and planned multi-spacecraft missions such as Cluster and MMS only study variations on one scale in 3D at any given time - we must measure the three scales simultaneously fully to understand the energy transfer processes. We propose a mission, called Cross-Scale, to study these processes. Cross-Scale would comprise three nested groups, each consisting of up to four spacecraft. Each group would have a different spacecraft separation, at approximately the electron and ion gyroradii, and a larger MHD scale. We would therefore be able to measure variations on all three important physical scales, simultaneously, for the first time. The spacecraft would fly in formation through key regions of near-Earth space: The solar wind, bowshock, magnetosheath, magnetopause and magnetotail.
  •  
16.
  • Langlais, B., et al. (författare)
  • Mars environment and magnetic orbiter model payload
  • 2009
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 23:3, s. 761-783
  • Tidskriftsartikel (refereegranskat)abstract
    • Mars Environment and Magnetic Orbiter was proposed as an answer to the Cosmic Vision Call of Opportunity as a M-class mission. The MEMO mission is designed to study the strong interconnections between the planetary interior, atmosphere and solar conditions essential to understand planetary evolution, the appearance of life and its sustainability. MEMO provides a high-resolution, complete, mapping of the magnetic field (below an altitude of about 250 km), with an yet unachieved full global coverage. This is combined with an in situ characterization of the high atmosphere and remote sensing of the middle and lower atmospheres, with an unmatched accuracy. These measurements are completed by an improved detection of the gravity field signatures associated with carbon dioxide cycle and to the tidal deformation. In addition the solar wind, solar EUV/UV and energetic particle fluxes are simultaneously and continuously monitored. The challenging scientific objectives of the MEMO mission proposal are fulfilled with the appropriate scientific instruments and orbit strategy. MEMO is composed of a main platform, placed on a elliptical (130 x 1,000 km), non polar (77A degrees inclination) orbit, and of an independent, higher apoapsis (10,000 km) and low periapsis (300 km) micro-satellite. These orbital parameters are designed so that the scientific return of MEMO is maximized, in terms of measurement altitude, local time, season and geographical coverage. MEMO carry several suites of instruments, made of an 'exospheric-upper atmosphere' package, a 'magnetic field' package, and a 'low-middle atmosphere' package. Nominal mission duration is one Martian year.
  •  
17.
  • Barabash, S., et al. (författare)
  • Observations of Sounder Accelerated Electrons by Mars Express
  • 2020
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 125:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The electron sensor of the Analyzer of Space Plasmas and Energetic Atoms experiment detects accelerated electrons during pulses of radio emissions from the powerful topside sounder: the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) on board the Mars Express spacecraft. Accelerated electrons are observed at energies up to 400 eV at the times when MARSIS transmits at a frequency between the local plasma frequency and its harmonics (up to 4 times the plasma frequency). When the electron density and magnetic field strength are low (similar to 10(3) cm(-3), similar to 10 nT), the accelerated electrons are almost monoenergetic electron beams. An increase in density and magnetic field (similar to 3 . 10(3) cm(-3), similar to 50 nT) leads to substantial broadening of the energy spectrum of the accelerated electrons. It is concluded that in the latter case, electrons are accelerated by the variable spacecraft potential resulting from the imbalance of the electron and ion currents to the MARSIS antenna during transmission.
  •  
18.
  •  
19.
  • Barabash, Victoria, et al. (författare)
  • Electron density profiles in the quiet lower ionosphere based on the results of modeling and experimental data
  • 2012
  • Ingår i: Annales Geophysicae. - : European Geosciences Union (EGU). - 0992-7689 .- 1432-0576. ; 30:9, s. 1345-1360
  • Tidskriftsartikel (refereegranskat)abstract
    • The theoretical PGI (Polar Geophysical Institute) model for the quiet lower ionosphere has been applied for computing the ionization rate and electron density profiles in the summer and winter D-region at solar zenith angles less than 80° and larger than 99° under steady state conditions. In order to minimize possible errors in estimation of ionization rates provided by solar electromagnetic radiation and to obtain the most exact values of electron density, each wavelength range of the solar spectrum has been divided into several intervals and the relations between the solar radiation intensity at these wavelengths and the solar activity index F10.7 have been incorporated into the model. Influence of minor neutral species (NO, H2O, O, O3) concentrations on the electron number density at different altitudes of the sunlit quiet D-region has been examined. The results demonstrate that at altitudes above 70 km, the modeled electron density is most sensitive to variations of nitric oxide concentration. Changes of water vapor concentration in the whole altitude range of the mesosphere influence the electron density only in the narrow height interval 73–85 km. The effect of the change of atomic oxygen and ozone concentration is the least significant and takes place only below 70 km. Model responses to changes of the solar zenith angle, solar activity (low–high) and season (summer–winter) have been considered. Modeled electron density profiles have been evaluated by comparison with experimental profiles available from the rocket measurements for the same conditions. It is demonstrated that the theoretical model for the quiet lower ionosphere is quite effective in describing variations in ionization rate, electron number density and effective recombination coefficient as functions of solar zenith angle, solar activity and season. The model may be used for solving inverse tasks, in particular, for estimations of nitric oxide concentration in the mesosphere.
  •  
20.
  •  
21.
  • Barabash, Victoria, et al. (författare)
  • Polar mesosphere summer echoes during the July 2000 solar proton event
  • 2004
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 22:3, s. 759-771
  • Tidskriftsartikel (refereegranskat)abstract
    • The influence of the solar proton event (SPE) 14-16 July 2000 on Polar Mesosphere Summer Echoes (PMSE) is examined. PMSE were observed by the Esrange VHF MST Radar (ESRAD) at 67°53'N, 21°06'E. The 30MHz Imaging Riometer for Ionospheric Studies IRIS in Kilpisjärvi (69°30'N, 20°47'E) registered cosmic radio noise absorption caused by ionisation changes in response to the energetic particle precipitation. An energy deposition/ion-chemical model was used to estimate the density of free electrons and ions in the upper atmosphere. Particle collision frequencies were calculated from the MSISE-90 model. Electric fields were calculated using conductivities from the model and measured magnetic disturbances. The electric field reached a maximum of 91mV/m during the most intensive period of the geomagnetic storm accompanying the SPE. The temperature increase due to Joule and particle heating was calculated, taking into account radiative cooling. The temperature increase at PMSE heights was found to be very small. The observed PMSE were rather intensive and extended over the 80-90km height interval. PMSE almost disappeared above 86km at the time of greatest Joule heating on 15 July 2000. Neither ionisation changes, nor Joule/particle heating can explain the PMSE reduction. Transport effects due to the strong electric field are a more likely explanation.
  •  
22.
  • Brinkfeldt, Klas, et al. (författare)
  • Microshutters for MEMS-based time-of-flight measurements in space
  • 2011
  • Ingår i: Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS). - 1084-6999. - 9781424496327 ; , s. 597-600
  • Konferensbidrag (refereegranskat)abstract
    • This paper reports on the fabrication, integration and first operation of a mechanical microshutter in a time-of-flight (TOF) based ion detector in space. The microshutter is fabricated from a silicon on insulator (SOI) wafer and operated in a resonance mode, 306 kHz. Open time of the shutter is 100 ns. The microshutters are integrated in the PRIMA instrument, which is part of the payload on the Swedish PRISMA mission. PRISMA was successfully launched into low Earth orbit on June 15, 2010.
  •  
23.
  • Dhanaya, M. B., et al. (författare)
  • Proton entry into the near-lunar plasma wake for magnetic field aligned flow
  • 2013
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 40:2, s. 2913-2917
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the first observation of protons in the near-lunar (100–200 km from the surface) and deeper (near anti-subsolar point) plasma wake when the interplanetary magnetic field (IMF) and solar wind velocity (vsw) are parallel (aligned flow; angle between IMF and vsw≤10°). More than 98% of the observations during aligned flow condition showed the presence of protons in the wake. These observations are obtained by the Solar Wind Monitor sensor of the Sub-keV Atom Reflecting Analyser experiment on Chandrayaan-1. The observation cannot be explained by the conventional fluid models for aligned flow. Back tracing of the observed protons suggests that their source is the solar wind. The larger gyroradii of the wake protons compared to that of solar wind suggest that they were part of the tail of the solar wind velocity distribution function. Such protons could enter the wake due to their large gyroradii even when the flow is aligned to IMF. However, the wake boundary electric field may also play a role in the entry of the protons into the wake.
  •  
24.
  • Dubinin, E., et al. (författare)
  • Martian ionosphere observed by Mars Express. 2. Influence of solar irradiance on upper ionosphere and escape fluxes
  • 2017
  • Ingår i: Planetary and Space Science. - : PERGAMON-ELSEVIER SCIENCE LTD. - 0032-0633 .- 1873-5088. ; 145, s. 1-8
  • Tidskriftsartikel (refereegranskat)abstract
    • We present multi-instrument observations of the effects of solar irradiance on the upper Martian ionosphere and escape fluxes based on Mars Express measurements obtained over almost 12 years. It is shown that the variations in the upper ionosphere caused by solar irradiance lead to significant changes in the trans-terminator fluxes of low-energy ions and total ion losses through the tail. The observed dependence of the electron number density in the upper ionosphere at altitudes above 300 km on solar irradiance implies that the ionosphere at such altitudes was denser by a factor of ten during the periods of solar maxima in solar cycles 22-23. Correspondingly, the trans terminator fluxes of cold ions and escape fluxes through the tail were also significantly higher. We estimate an increase of total ion losses through the tail during these solar maxima by a factor of 5-6.
  •  
25.
  • Fatemi, Shahab, et al. (författare)
  • Hybrid Simulations of Solar Wind Proton Precipitation to the Surface of Mercury
  • 2020
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 125:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We examine the effects of the interplanetary magnetic field (IMF) orientation and solar wind dynamic pressure on the solar wind proton precipitation to the surface of Mercury using a hybrid-kinetic model. We use our model to explain observations of Mercury's neutral sodium exosphere and compare our results with MESSENGER observations. For the typical solar wind dynamic pressure at Mercury our model shows a high proton flux precipitates through the magnetospheric cusps to the high latitudes on both hemispheres on the dayside, centered near the noon meridian with  ∼11° latitudinal extent in the north and ∼21° latitudinal extent in the south, which is consistent with MESSENGER observations. We show that this two-peak pattern is controlled by the radial component (Bx) of the IMF and not the Bz. Our model suggests that the southward IMF and its associated magnetic reconnection do not play a major role in controlling plasma precipitation to the surface of Mercury through the cusps. We found that the total precipitation rate through both of the cusps remain constant and independent of the IMF orientation. We also show that the solar wind proton incidence rate to the entire surface of Mercury is higher when the IMF has a northward component and nearly half of the incidence flux impacts the low latitudes on the nightside. During extreme solar events (e.g., coronal mass ejections), our model suggests that over 70 nPa solar wind dynamic pressure is required for the entire surface of Mercury to be exposed to the solar wind plasma.
  •  
26.
  • Fletcher, Leigh N., et al. (författare)
  • Jupiter Science Enabled by ESA's Jupiter Icy Moons Explorer
  • 2023
  • Ingår i: Space Science Reviews. - : Springer Nature. - 0038-6308 .- 1572-9672. ; 219:7
  • Forskningsöversikt (refereegranskat)abstract
    • ESA's Jupiter Icy Moons Explorer (JUICE) will provide a detailed investigation of the Jovian system in the 2030s, combining a suite of state-of-the-art instruments with an orbital tour tailored to maximise observing opportunities. We review the Jupiter science enabled by the JUICE mission, building on the legacy of discoveries from the Galileo, Cassini, and Juno missions, alongside ground- and space-based observatories. We focus on remote sensing of the climate, meteorology, and chemistry of the atmosphere and auroras from the cloud-forming weather layer, through the upper troposphere, into the stratosphere and ionosphere. The Jupiter orbital tour provides a wealth of opportunities for atmospheric and auroral science: global perspectives with its near-equatorial and inclined phases, sampling all phase angles from dayside to nightside, and investigating phenomena evolving on timescales from minutes to months. The remote sensing payload spans far-UV spectroscopy (50-210 nm), visible imaging (340-1080 nm), visible/near-infrared spectroscopy (0.49-5.56 & mu;m), and sub-millimetre sounding (near 530-625 GHz and 1067-1275 GHz). This is coupled to radio, stellar, and solar occultation opportunities to explore the atmosphere at high vertical resolution; and radio and plasma wave measurements of electric discharges in the Jovian atmosphere and auroras. Cross-disciplinary scientific investigations enable JUICE to explore coupling processes in giant planet atmospheres, to show how the atmosphere is connected to (i) the deep circulation and composition of the hydrogen-dominated interior; and (ii) to the currents and charged particle environments of the external magnetosphere. JUICE will provide a comprehensive characterisation of the atmosphere and auroras of this archetypal giant planet.
  •  
27.
  • Fränz, M., et al. (författare)
  • Cold ion escape from the Martian ionosphere
  • 2015
  • Ingår i: Planetary and Space Science. - : Elsevier BV. - 0032-0633 .- 1873-5088. ; 119, s. 92-102
  • Tidskriftsartikel (refereegranskat)abstract
    • We here report on new measurements of the escape flux of oxygen ions from Mars by combining the observations of the ASPERA-3 and MARSIS experiments on board the European Mars Express spacecraft. We show that in previous estimates of the total heavy ion escape flow the contribution of the cold ionospheric outflow with energies below 10 eV has been underestimated. Both case studies and the derived flow pattern indicate that the cold plasma observed by MARSIS and the superthermal plasma observed by ASPERA-3 move with the same bulk speed in most regions of the Martian tail. We determine maps of the tailside heavy ion flux distribution derived from mean ion velocity distributions sampled over 7 years. If we assume that the superthermal bulk speed derived from these long time averages of the ion distribution function represent the total plasma bulk speed we derive the total tailside plasma flux. Assuming cylindrical symmetry we determine the mean total escape rate for the years 2007-2014 at 2.8 +/- 0.4 x 10(25) atoms/s which is in good agreement with model estimates. A possible mechanism to generate this flux can be the ionospheric pressure gradient between dayside and nightside.
  •  
28.
  • Futaana, Y, et al. (författare)
  • Remote energetic neutral atom imaging of electric potential over a lunar magnetic anomaly
  • 2013
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 40:2, s. 262-266
  • Tidskriftsartikel (refereegranskat)abstract
    • The formation of electric potential over lunar magnetized regions is essential for understanding fundamental lunar science, for understanding the lunar environment, and for planning human exploration on the Moon. A large positive electric potential was predicted and detected from single point measurements. Here, we demonstrate a remote imaging technique of electric potential mapping at the lunar surface, making use of a new concept involving hydrogen neutral atoms derived from solar wind. We apply the technique to a lunar magnetized region using an existing dataset of the neutral atom energy spectrometer SARA/CENA on Chandrayaan-1. Electrostatic potential larger than +135 V inside the Gerasimovic anomaly is confirmed. This structure is found spreading all over the magnetized region. The widely spread electric potential can influence the local plasma and dust environment near the magnetic anomaly. Citation: Futaana, Y., S. Barabash, M. Wieser, C. Lue, P. Wurz, A. Vorburger, A. Bhardwaj, and K. Asamura (2013), Remote energetic neutral atom imaging of electric potential over a lunar magnetic anomaly, Geophys. Res. Lett., 40, 262-266, doi:10.1002/grl.50135.
  •  
29.
  • Han, X., et al. (författare)
  • Discrepancy between ionopause and photoelectron boundary determined from Mars Express measurements
  • 2014
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 41:23, s. 8221-8227
  • Tidskriftsartikel (refereegranskat)abstract
    • The Martian ionosphere directly interacts with the solar wind due to lack of a significant intrinsic magnetic field, and an interface is formed in between. The interface is usually recognized by two kinds of indicators: the ionopause identified from ionospheric density profiles and the photoelectron boundary (PEB) determined from the electron energy spectrum at higher energies. However, the difference between them remains unclear. We have determined the locations of crossings of the ionopause and PEB from Mars Express observations during 2005-2013 and found that the average position of the PEB appears to be similar to 200km higher than that of the ionopause, which corresponds to 10(3)cm(-3) in the electron density profile. The discrepancy can be explained by cross-field transport of photoelectrons.
  •  
30.
  • Huybrighs, H. L. F., et al. (författare)
  • An Active Plume Eruption on Europa During Galileo Flyby E26 as Indicated by Energetic Proton Depletions
  • 2020
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 47:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Strong depletions of energetic protons (115-244 keV) were observed during Galileo flyby E26 of Europa. We simulate the flux of energetic protons using a Monte Carlo particle backtracing code and show that energetic proton depletions during E26 are reproduced by taking into account the perturbations of the electromagnetic fields calculated by magnetohydrodynamic (MHD) simulations and charge exchange with a global atmosphere and plume. A depletion feature occurring shortly after closest approach is driven by plume associated charge exchange, or a combination with plume associated field perturbations. We therefore conclude, with a new method and independent data set, that Galileo could have encountered a plume during E26.
  •  
31.
  • Huybrighs, H. L. F., et al. (författare)
  • Reply to Comment on "An Active Plume Eruption on Europa During Galileo Flyby E26 as Indicated by Energetic Proton Depletions"
  • 2021
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 48:18
  • Tidskriftsartikel (refereegranskat)abstract
    • In Huybrighs et al. (2020, https://doi.org/10.1029/2020gl087806) we investigated energetic proton depletions along Galileo's Europa flyby E26. Based on a particle tracing analysis, we proposed that depletions are caused by perturbed electromagnetic fields combined with atmospheric charge exchange and possible plumes. One depletion feature identified as a plume signature was shown to be an artifact (Jia et al., 2021, https://doi.org/10.1029/2020gl091550). Despite that, here we emphasize that Huybrighs et al. (2020, https://doi.org/10.1029/2020gl087806) demonstrates that plumes can cause proton depletions and that these features should be sought after. Furthermore, the conclusions on the importance of perturbed electromagnetic fields and atmospheric charge exchange on the depletions are unaffected. We suggest that the artifact's cause is a mistagging of protons as heavier ions by EPD. The artifact prevents us from confirming or excluding that there is a plume-associated depletion. We also address comments on the MHD simulations and demonstrate that 540-1,040 keV losses are not necessarily inconsistent with 115-244 keV losses by plume-associated charge exchange. Plain Language Summary In Huybrighs et al. (2020, https://doi.org/10.1029/2020gl087806) we identified why fast protons were disappearing during Europa flyby E26 by Galileo. Beyond impacting on the surface, we identified several contributing factors: First, perturbed electromagnetic fields resulting from the interaction of Europa's atmosphere with the magnetospheric plasma, which deflect the protons. Second, atmospheric charge exchange. We also showed that a water plume eruption could cause a region in which disappearances occur due to a combination of charge exchange and magnetic deflections. We identified a 20s decrease of protons as evidence of such a plume. However, an artifact in the data reported by Jia et al. (2021, https://doi.org/10.1029/2020gl091550) coincides with this 20s moment and prevents us from reaching a conclusion on the occurrence of a plume-associated depletion. We emphasize that our conclusions on the importance of perturbed fields and charge exchange are unaffected, as the artifact only affects a short segment of the data we analyzed. Furthermore, our results demonstrate that plumes can cause proton depletions and that these features should be sought after in the data.
  •  
32.
  •  
33.
  • Kirkwood, S., et al. (författare)
  • Polar mesosphere winter echoes by ESRAD, EISCAT and lidar
  • 2002
  • Bok (övrigt vetenskapligt/konstnärligt)abstract
    • The ESRAD 52 MHz MST radar (67° 53 ‘ N, 21 ° 06 ‘ E) has observed thin layers of enhanced radar echoes in the winter mesosphere during several recent solar proton events. The detection of these polar mesosphere winter echoes (PMWE) is generally found to correlates well with low values of λ (the ratio of negative ion density to electron density). However PMWE are found to persist for values of λ up to ~100. Present knowledge of the nature of neutral turbulence in the winter mesosphere suggests that such turbulence cannot generate electron density fluctuations with scale-sizes as short as the 3 m needed to produce radar echoes at 52 MHz. This is particularly true as λ increases to ~100. Joint observations from ESRAD and the EISCAT 224 MHz radar suggest that PMWE is also detectable at 67 cm scale-sizes, further increasing the difficulty in explaining the echoes by neutral turbulence. Joint observations from ESRAD and lidar are also inconsistent with the expected behaviour of turbulence. Together with results concerning the thickness, echo aspect-sensitivity and echo spectral-width of the PMWE, these observation leads to the conclusion that the layers cannot be explained by turbulence alone. A role for charged aerosols in creating PMWE is proposed. The presence of aerosols is supported by the lidar observations.
  •  
34.
  •  
35.
  •  
36.
  • Nilsson, Hans, et al. (författare)
  • Evolution of the ion environment of comet 67P/Churyumov-Gerasimenko
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 583
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Rosetta spacecraft is escorting comet 67P/Churyumov-Gerasimenko from a heliocentric distance of >3.6 AU, where the comet activity was low, until perihelion at 1.24 AU. Initially, the solar wind permeates the thin comet atmosphere formed from sublimation. Aims. Using the Rosetta Plasma Consortium Ion Composition Analyzer (RPC-ICA), we study the gradual evolution of the comet ion environment, from the first detectable traces of water ions to the stage where cometary water ions accelerated to about 1 keV energy are abundant. We compare ion fluxes of solar wind and cometary origin. Methods. RPC-ICA is an ion mass spectrometer measuring ions of solar wind and cometary origins in the 10 eV-40 keV energy range. Results. We show how the flux of accelerated water ions with energies above 120 eV increases between 3.6 and 2.0 AU. The 24 h average increases by 4 orders of magnitude, mainly because high-flux periods become more common. The water ion energy spectra also become broader with time. This may indicate a larger and more uniform source region. At 2.0 AU the accelerated water ion flux is frequently of the same order as the solar wind proton flux. Water ions of 120 eV-few keV energy may thus constitute a significant part of the ions sputtering the nucleus surface. The ion density and mass in the comet vicinity is dominated by ions of cometary origin. The solar wind is deflected and the energy spectra broadened compared to an undisturbed solar wind. Conclusions. The flux of accelerated water ions moving from the upstream direction back toward the nucleus is a strongly nonlinear function of the heliocentric distance.
  •  
37.
  • Nilsson, H., et al. (författare)
  • Ion distributions in the vicinity of Mars : Signatures of heating and acceleration processes
  • 2012
  • Ingår i: Earth Planets and Space. - : Springer Science and Business Media LLC. - 1343-8832 .- 1880-5981. ; 64:2, s. 135-148
  • Tidskriftsartikel (refereegranskat)abstract
    • More than three years of data from the ASPERA-3 instrument on-board Mars Express has been used to compile average distribution functions of ions in and around the Mars induced magnetosphere. We present samples of average distribution functions, as well as average flux patterns based on the average distribution functions, all suitable for detailed comparison with models of the near-Mars space environment. The average heavy ion distributions close to the planet form thermal populations with a temperature of 3 to 10 eV. The distribution functions in the tail consist of two populations, one cold which is an extension of the low altitude population, and one accelerated population of ionospheric origin ions. All significant fluxes of heavy ions in the tail are tailward. The heavy ions in the magnetosheath form a plume with the flow aligned with the bow shock, and a more radial flow direction than the solar wind origin flow. Summarizing the escape processes, ionospheric ions are heated close to the planet, presumably through wave-particle interaction. These heated populations are accelerated in the tailward direction in a restricted region. Another significant escape path is through the magnetosheath. A part of the ionospheric population is likely accelerated in the radial direction, out into the magnetosheath, although pick up of an oxygen exosphere may also be a viable source for this escape. Increased energy input from the solar wind during CIR events appear to mainly increase the number flux of escaping particles, the average energy of the escaping particles is not strongly affected. Heavy ions on the dayside may precipitate and cause sputtering of the atmosphere, though fluxes are likely lower than 0.4 x 10(23) s(-1).
  •  
38.
  • Persson, Moa, et al. (författare)
  • H+/O+ Escape Rate Ratio in the Venus Magnetotail and its Dependence on the Solar Cycle
  • 2018
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 45:20, s. 10805-10811
  • Tidskriftsartikel (refereegranskat)abstract
    • A fundamental question for the atmospheric evolution of Venus is how much water-related material escapes from Venus to space. In this study, we calculate the nonthermal escape of H+ and O+ ions through the Venusian magnetotail and its dependence on the solar cycle. We separate 8 years of data obtained from the ion mass analyzer on Venus Express into solar minimum and maximum. The average escape of H+ decreased from 7.6.10(24) (solar minimum) to 2.1.10(24) s(-1) (solar maximum), while a smaller decrease was found for O+: 2.9.10(24) to 2.0.10(24) s(-1). As a result, the H+/O+ flux ratio decreases from 2.6 to 1.1. This implies that the escape of hydrogen and oxygen could have been below the stoichiometric ratio of water for Venus in its early history under the more active Sun.
  •  
39.
  • Persson, Moa, et al. (författare)
  • The Venusian Atmospheric Oxygen Ion Escape : Extrapolation to the Early Solar System
  • 2020
  • Ingår i: Journal of Geophysical Research - Planets. - : American Geophysical Union (AGU). - 2169-9097 .- 2169-9100. ; 125:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The present atmosphere of Venus contains almost no water, but recent measurements indicate that in its early history, Venus had an Earth-like ocean. Understanding how the Venusian atmosphere evolved is important not only for Venus itself but also for understanding the evolution of other planetary atmospheres. In this study, we quantify the escape rates of oxygen ions from the present Venus to infer the past of the Venusian atmosphere. We show that an extrapolation of the current escape rates back in time leads to the total escape of 0.02-0.6 m of a global equivalent layer of water. This implies that the loss of ions to space, inferred from the present state, cannot account for the loss of an historical Earth-like ocean. We find that the O+ escape rate increases with solar wind energy flux, where more energy available leads to a higher escape rate. Oppositely, the escape rate decreases slightly with increased extreme ultraviolet radiation (EUV) flux, though the small variation of EUV flux over the measured solar cycle may explain the weak dependency. These results indicate that there is not enough energy transferred from the solar wind to Venus' upper atmosphere that can lead to the escape of the atmosphere over the past 3.9 billion years. This means that the Venusian atmosphere did not have as much water in its atmosphere as previously assumed or the present-day escape rates do not represent the historical escape rates at Venus. Otherwise, some other mechanisms have acted to more effectively remove the water from the Venusian atmosphere. Plain Language Summary Today, Venus only has small amounts of water in its atmosphere. In its early history, Venus presumably contained an Earth-like ocean of several meters. The evolution of the atmosphere may have been caused by escape of atmospheric content to space. In this study, we investigate how much the escape of oxygen ions to space could have affected the atmospheric evolution for Venus from measurements of the present-day escape rates. Using measurements of oxygen ions in the vicinity of Venus, we show that the amount of energy available in the solar wind to be transferred to the upper atmosphere of Venus determines how much of the atmosphere escapes. From the evolution of the energy in the solar wind over the past 3.9 billion years, together with the relation between the solar wind energy and oxygen ion escape, we show that in total, about 0.02-0.6 m of water depth, if spread equally over the entire Venusian surface, was lost. This indicates that either Venus did not have as much water as previously assumed or the current escape rates are not representative of the historical escape rates. Otherwise, some other mechanisms must have acted to more effectively remove the water from Venus.
  •  
40.
  • Shi, Z., et al. (författare)
  • An Eastward Current Encircling Mercury
  • 2022
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 49:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Mercury has a terrestrial-like magnetosphere which is usually taken as a scaled-down-version of Earth's magnetosphere with a similar current system. We examine Mercury's magnetospheric current system based on a survey of Mercury's magnetic field measured by the Mercury Surface, Space Environment, Geochemistry, and Ranging spacecraft as well as computer simulations. We show that there is no significant Earth-like ring current flowing westward around Mercury, instead, we find, for the first time, an eastward current (EC) encircling the planet near the night-side magnetic equator with an altitude of ∼500–1,000 km. The EC is closed with the dayside magnetopause current and could be driven by the gradient of plasma pressure as a diamagnetic current. Thus, Mercury's magnetosphere is not a scaled-down Earth magnetosphere, but a unique natural space plasma laboratory. Our findings offer fresh insights to analyze data from the BepiColombo mission, which is expected to orbit Mercury in 2025.
  •  
41.
  •  
42.
  • Stephan, K., et al. (författare)
  • Regions of interest on Ganymede's and Callisto's surfaces as potential targets for ESA's JUICE mission
  • 2021
  • Ingår i: Planetary and Space Science. - : Elsevier. - 0032-0633 .- 1873-5088. ; 208
  • Tidskriftsartikel (refereegranskat)abstract
    • The JUpiter Icy moons Explorer (JUICE) will investigate Ganymede's and Callisto's surfaces and subsurfaces from orbit to explore the geologic processes that have shaped and altered their surfaces by impact, tectonics, possible cryovolcanism, space weathering due to micrometeorites, radiation and charged particles as well as explore the structure and properties of the icy crust and liquid shell (Grasset et al., 2013). The best possible synergy of the JUICE instruments is required to answer the major science objective of this mission and to fully exploit the po-tential of the JUICE mission. Therefore, the JUICE team is aiming to define high priority targets on both Gany-mede's and Callisto's surfaces to support the coordination of the planning activities by the individual instrument teams. Based on the science objectives of the JUICE mission and the most recent knowledge of Ganymede's and Callisto's geologic evolution we propose a collection of Regions of Interest (RoIs), which characterize surface features and terrain types representing important traces of geologic processes, from past and/or present cryovolcanic and tectonic activity to space weathering processes, which are crucial to understand the geologic evolution of Ganymede and Callisto. The proposed evaluation of RoIs is based on their scientific importance as well as on the opportunities and conditions to observe them during the currently discussed mission profile.
  •  
43.
  • Voshchepynets, A., et al. (författare)
  • Ions Accelerated by Sounder-Plasma Interaction as Observed by Mars Express
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 123:11, s. 9802-9814
  • Tidskriftsartikel (refereegranskat)abstract
    • The ion sensor of the Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) experiment detects accelerated ions during pulses of radio emissions from the powerful topside sounder: the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) onboard Mars Express. Accelerated ions (O-2(+), O+, and lighter ions) are observed in an energy range up to 800 eV when MARSIS transmits at a frequency close to the plasma frequency. Individual observations consist of almost monoenergetic ion beams aligned with the MARSIS antenna or lying in the plane perpendicular to the antenna. The observed ion beams are often accompanied by a small decrease in the electron flux observed by the electron sensor of Analyzer of Space Plasmas and Energetic Atoms 3. Observations indicate that the voltage applied to the antenna causes charging of the spacecraft to several hundreds of volts by the electrons of the ambient plasma. Positively charged ions are accelerated when the spacecraft discharges.
  •  
44.
  • Wieser, M, et al. (författare)
  • Micromechanical shutter based mass spectrometers
  • 2009
  • Ingår i: AIP Conference Proceedings. - : AIP. - 1551-7616 .- 0094-243X. - 9780735406810 ; 1144, s. 114-118
  • Konferensbidrag (refereegranskat)abstract
    • New shutter systems based on MEMS technology (Micro-Electro-Mechanical System) allow to build new types of ultra-low weight mass spectrometers for applications in space. Applications include compact particle velocity filters and the replacement of the conventional carbon foil or secondary electrons emitting start surface used in time-of-flight mass spectrometers. The PRIMA instrument (PRIsma Mass Analyzer), a MEMS shutter based timeof-flight mass spectrometer based on the Solar WInd Monitor (SWIM) sensor developed for the Indian Chandrayaan-1 mission, will be used for flight-verification of the MEMS shutter technique. We review the expected performance of this instrument. The PRIMA instrument will be launched on the Swedish Space Corporation's PRISMA satellite in 2008/2009.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-44 av 44

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy