SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Barbieri L.) "

Sökning: WFRF:(Barbieri L.)

  • Resultat 1-50 av 154
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Niemi, MEK, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
2.
  • Aad, G, et al. (författare)
  • 2015
  • swepub:Mat__t
  •  
3.
  • 2017
  • swepub:Mat__t
  •  
4.
  •  
5.
  •  
6.
  • Ballan, M., et al. (författare)
  • Nuclear physics midterm plan at Legnaro National Laboratories (LNL)
  • 2023
  • Ingår i: European Physical Journal Plus. - 2190-5444. ; 138:8, s. 3-26
  • Tidskriftsartikel (refereegranskat)abstract
    • The next years will see the completion of the radioactive ion beam facility SPES (Selective Production of Exotic Species) and the upgrade of the accelerators complex at Istituto Nazionale di Fisica Nucleare – Legnaro National Laboratories (LNL) opening up new possibilities in the fields of nuclear structure, nuclear dynamics, nuclear astrophysics, and applications. The nuclear physics community has organised a workshop to discuss the new physics opportunities that will be possible in the near future by employing state-of-the-art detection systems. A detailed discussion of the outcome from the workshop is presented in this report.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Ackley, K., et al. (författare)
  • Observational constraints on the optical and near-infrared emission from the neutron star-black hole binary merger candidate S190814bv
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 643
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Gravitational wave (GW) astronomy has rapidly reached maturity, becoming a fundamental observing window for modern astrophysics. The coalescences of a few tens of black hole (BH) binaries have been detected, while the number of events possibly including a neutron star (NS) is still limited to a few. On 2019 August 14, the LIGO and Virgo interferometers detected a high-significance event labelled S190814bv. A preliminary analysis of the GW data suggests that the event was likely due to the merger of a compact binary system formed by a BH and a NS.Aims. In this paper, we present our extensive search campaign aimed at uncovering the potential optical and near infrared electromagnetic counterpart of S190814bv. We found no convincing electromagnetic counterpart in our data. We therefore use our non-detection to place limits on the properties of the putative outflows that could have been produced by the binary during and after the merger.Methods. Thanks to the three-detector observation of S190814bv, and given the characteristics of the signal, the LIGO and Virgo Collaborations delivered a relatively narrow localisation in low latency - a 50% (90%) credible area of 5 deg(2) (23 deg(2)) - despite the relatively large distance of 26752 Mpc. ElectromagNetic counterparts of GRAvitational wave sources at the VEry Large Telescope collaboration members carried out an intensive multi-epoch, multi-instrument observational campaign to identify the possible optical and near infrared counterpart of the event. In addition, the ATLAS, GOTO, GRAWITA-VST, Pan-STARRS, and VINROUGE projects also carried out a search on this event. In this paper, we describe the combined observational campaign of these groups.Results. Our observations allow us to place limits on the presence of any counterpart and discuss the implications for the kilonova (KN), which was possibly generated by this NS-BH merger, and for the strategy of future searches. The typical depth of our wide-field observations, which cover most of the projected sky localisation probability (up to 99.8%, depending on the night and filter considered), is r similar to 22 (resp. K similar to 21) in the optical (resp. near infrared). We reach deeper limits in a subset of our galaxy-targeted observations, which cover a total similar to 50% of the galaxy-mass-weighted localisation probability. Altogether, our observations allow us to exclude a KN with large ejecta mass M greater than or similar to 0.1 M-circle dot to a high (> 90%) confidence, and we can exclude much smaller masses in a sub-sample of our observations. This disfavours the tidal disruption of the neutron star during the merger.Conclusions. Despite the sensitive instruments involved in the campaign, given the distance of S190814bv, we could not reach sufficiently deep limits to constrain a KN comparable in luminosity to AT 2017gfo on a large fraction of the localisation probability. This suggests that future (likely common) events at a few hundred megaparsecs will be detected only by large facilities with both a high sensitivity and large field of view. Galaxy-targeted observations can reach the needed depth over a relevant portion of the localisation probability with a smaller investment of resources, but the number of galaxies to be targeted in order to get a fairly complete coverage is large, even in the case of a localisation as good as that of this event.
  •  
11.
  • Feroci, M., et al. (författare)
  • The Large Observatory for X-ray Timing (LOFT)
  • 2012
  • Ingår i: Experimental Astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 34:2, s. 415-444
  • Tidskriftsartikel (refereegranskat)abstract
    • High-time-resolution X-ray observations of compact objects provide direct access to strong-field gravity, to the equation of state of ultradense matter and to black hole masses and spins. A 10 m(2)-class instrument in combination with good spectral resolution is required to exploit the relevant diagnostics and answer two of the fundamental questions of the European Space Agency (ESA) Cosmic Vision Theme "Matter under extreme conditions", namely: does matter orbiting close to the event horizon follow the predictions of general relativity? What is the equation of state of matter in neutron stars? The Large Observatory For X-ray Timing (LOFT), selected by ESA as one of the four Cosmic Vision M3 candidate missions to undergo an assessment phase, will revolutionise the study of collapsed objects in our galaxy and of the brightest supermassive black holes in active galactic nuclei. Thanks to an innovative design and the development of large-area monolithic silicon drift detectors, the Large Area Detector (LAD) on board LOFT will achieve an effective area of similar to 12 m(2) (more than an order of magnitude larger than any spaceborne predecessor) in the 2-30 keV range (up to 50 keV in expanded mode), yet still fits a conventional platform and small/medium-class launcher. With this large area and a spectral resolution of < 260 eV, LOFT will yield unprecedented information on strongly curved spacetimes and matter under extreme conditions of pressure and magnetic field strength.
  •  
12.
  •  
13.
  • Reifarth, R., et al. (författare)
  • Nuclear astrophysics with radioactive ions at FAIR
  • 2016
  • Ingår i: Journal of Physics: Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 665:1
  • Konferensbidrag (refereegranskat)abstract
    • The nucleosynthesis of elements beyond iron is dominated by neutron captures in the s and r processes. However, 32 stable, proton-rich isotopes cannot be formed during those processes, because they are shielded from the s-process flow and r-process beta-decay chains. These nuclei are attributed to the p and rp process. For all those processes, current research in nuclear astrophysics addresses the need for more precise reaction data involving radioactive isotopes. Depending on the particular reaction, direct or inverse kinematics, forward or time-reversed direction are investigated to determine or at least to constrain the desired reaction cross sections. The Facility for Antiproton and Ion Research (FAIR) will offer unique, unprecedented opportunities to investigate many of the important reactions. The high yield of radioactive isotopes, even far away from the valley of stability, allows the investigation of isotopes involved in processes as exotic as the r or rp processes.
  •  
14.
  •  
15.
  • Fulle, M., et al. (författare)
  • Evolution Of The Dust Size Distribution Of Comet 67P/Churyumov-Gerasimenko From 2.2 Au To Perihelion
  • 2016
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 821:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Rosetta probe, orbiting Jupiter-family comet 67P/Churyumov-Gerasimenko, has been detecting individual dust particles of mass larger than 10(-10) kg by means of the GIADA dust collector and the OSIRIS Wide Angle Camera and Narrow Angle Camera since 2014 August and will continue until 2016 September. Detections of single dust particles allow us to estimate the anisotropic dust flux from 67P, infer the dust loss rate and size distribution at the surface of the sunlit nucleus, and see whether the dust size distribution of 67P evolves in time. The velocity of the Rosetta orbiter, relative to 67P, is much lower than the dust velocity measured by GIADA, thus dust counts when GIADA is nadir-pointing will directly provide the dust flux. In OSIRIS observations, the dust flux is derived from the measurement of the dust space density close to the spacecraft. Under the assumption of radial expansion of the dust, observations in the nadir direction provide the distance of the particles by measuring their trail length, with a parallax baseline determined by the motion of the spacecraft. The dust size distribution at sizes > 1 mm observed by OSIRIS is consistent with a differential power index of -4, which was derived from models of 67P's trail. At sizes <1 mm, the size distribution observed by GIADA shows a strong time evolution, with a differential power index drifting from -2 beyond 2 au to -3.7 at perihelion, in agreement with the evolution derived from coma and tail models based on ground-based data. The refractory-to-water mass ratio of the nucleus is close to six during the entire inbound orbit and at perihelion.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  • Fulle, M., et al. (författare)
  • Rotating dust particles in the coma of comet 67P/Churyumov-Gerasimenko
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 583
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. During September and October 2014, the OSIRIS cameras onboard the ESA Rosetta mission detected millions of single particles. Many of these dust particles appear as long tracks (due to both the dust proper motion and the spacecraft motion during the exposure time) with a clear brightness periodicity. Aims. We interpret the observed periodic features as a rotational and translational motion of aspherical dust grains. Methods. By counting the peaks of each track, we obtained statistics of a rotation frequency. We compared these results with the rotational frequency predicted by a model of aspherical dust grain dynamics in a model gas flow. By testing many possible sets of physical conditions and grain characteristics, we constrained the rotational properties of dust grains. Results. We analyzed on the motion of rotating aspherical dust grains with different cross sections in flow conditions corresponding to the coma of 67P/Churyumov-Gerasimenko qualitatively and quantitatively. Based on the OSIRIS observations, we constrain the possible physical parameters of the grains.
  •  
20.
  • Giacomini, L., et al. (författare)
  • Geologic mapping of the Comet 67P/Churyumov-Gerasimenko's Northern hemisphere
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 462, s. S352-S369
  • Tidskriftsartikel (refereegranskat)abstract
    • The Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS), the scientific imaging system onboard the Rosetta mission, has been acquiring images of the nucleus of the comet 67P/Churyumov-Gerasimenko since 2014 August with a resolution which allows a detailed analysis of its surface. Indeed, data reveal a complex surface morphology which is likely the expression of different processes which occurred at different times on the cometary nucleus. In order to characterize these different morphologies and better understand their distribution, we performed a geologic mapping of comet's 67P Northern hemisphere in which features have been distinguished based on their morphological, textural and stratigraphic characteristics. For this purpose, we used narrow-angle camera images acquired in 2014 August and September with a spatial scale ranging from 1.2 to 2.4 m pixel(-1). Several different geologic units have been identified on the basis of their different surface textures, granulometry and morphology. Some of these units are distinctive and localized, whereas others are more common and distributed all over the Northern hemisphere. Moreover, different types of linear features have been distinguished on the basis of their morphology. Some of these lineaments have never been observed before on a comet and can offer important clues on the internal structures of the nucleus itself. The geologic mapping results presented here will allow us to better understand the processes which affected the nucleus' surface and thus the origin and evolutionary history of comet 67P/Churyumov-Gerasimenko.
  •  
21.
  • Grun, E., et al. (författare)
  • The 2016 Feb 19 outburst of comet 67P/CG : an ESA Rosetta multi-instrument study
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 462, s. S220-S234
  • Tidskriftsartikel (refereegranskat)abstract
    • On 2016 Feb 19, nine Rosetta instruments serendipitously observed an outburst of gas and dust from the nucleus of comet 67P/Churyumov-Gerasimenko. Among these instruments were cameras and spectrometers ranging from UV over visible to microwave wavelengths, in situ gas, dust and plasma instruments, and one dust collector. At 09: 40 a dust cloud developed at the edge of an image in the shadowed region of the nucleus. Over the next two hours the instruments recorded a signature of the outburst that significantly exceeded the background. The enhancement ranged from 50 per cent of the neutral gas density at Rosetta to factors > 100 of the brightness of the coma near the nucleus. Dust related phenomena (dust counts or brightness due to illuminated dust) showed the strongest enhancements (factors > 10). However, even the electron density at Rosetta increased by a factor 3 and consequently the spacecraft potential changed from similar to-16 V to -20 V during the outburst. A clear sequence of events was observed at the distance of Rosetta ( 34 km from the nucleus): within 15 min the Star Tracker camera detected fast particles (similar to 25 m s(-1)) while 100 mu m radius particles were detected by the GIADA dust instrument similar to 1 h later at a speed of 6 m s(-1). The slowest were individual mm to cm sized grains observed by the OSIRIS cameras. Although the outburst originated just outside the FOV of the instruments, the source region and the magnitude of the outburst could be determined.
  •  
22.
  • Lucchetti, A., et al. (författare)
  • Geomorphological and spectrophotometric analysis of Seth's circular niches on comet 67P/Churyumov-Gerasimenko using OSIRIS images
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 469, s. S238-S251
  • Tidskriftsartikel (refereegranskat)abstract
    • We provide a detailed geomorphological and spectrophotometric analysis of the circular niches located on the Seth region of 67P using OSIRIS images. The features can be related to landslide events that occurred on 67P and shaped its surface, as the recent Aswan cliff collapse detected in the same region. We therefore provide an analysis of the area pre -and post-perihelion suggesting that no specific changes have been observed. To assess this, after performing a geomorphological map of the area that allows us to identify different terrain units, we computed the boulders cumulative size frequency distribution (SFD) of the niches, before and after the perihelion passage. The niches SFDs are characterized by a similar trend with two different power-law indices within the same deposit: lower power-law value (between -2.3 and -2.7) for boulders smaller than 5 m and steeper power-law value (between -4.7 and -5.0) for boulders larger than 5 m. These trends suggest that smaller boulders have evolved and progressively have been depleted (lower power-law index), while bigger boulders are more representative of the event that generated the deposit and are less degraded. Then, we perform the spectrophotometric analysis of this region comparing pre-and post-perihelion results. We found colour changes within the area, in particular brighter patches related to the presence of exposed water ice mixed to the refractory materials have been detected in the post-perihelion images.
  •  
23.
  • Osborn, H. P., et al. (författare)
  • The PDS 110 observing campaign - photometric and spectroscopic observations reveal eclipses are aperiodic
  • 2019
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 485:2, s. 1614-1625
  • Tidskriftsartikel (refereegranskat)abstract
    • PDS 110 is a young disc-hosting star in the Orion OB1A association. Two dimming events of similar depth and duration were seen in 2008 (WASP) and 2011 (KELT), consistent with an object in a closed periodic orbit. In this paper, we present data from a ground-based observing campaign designed to measure the star both photometrically and spectroscopically during the time of predicted eclipse in 2017 September. Despite high-quality photometry, the predicted eclipse did not occur, although coherent structure is present suggesting variable amounts of stellar flux or dust obscuration. We also searched for radial velocity (RV) oscillations caused by any hypothetical companion and can rule out close binaries to 0.1Ms. Asearch of Sonneberg plate archive data also enabled us to extend the photometric baseline of this star back more than 50 yr, and similarly does not re-detect any deep eclipses. Taken together, they suggest that the eclipses seen in WASP and KELT photometry were due to aperiodic events. It would seem that PDS 110 undergoes stochastic dimmings that are shallower and of shorter duration than those of UX Ori variables, but may have a similar mechanism.
  •  
24.
  • Thomas, N., et al. (författare)
  • Redistribution of particles across the nucleus of comet 67P/Churyumov-Gerasimenko
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 583
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. We present an investigation of the surface properties of areas on the nucleus of comet 67P/Churyumov-Gerasimenko. Aims. We aim to show that transport of material from one part of the cometary nucleus to another is a significant mechanism that influences the appearance of the nucleus and the surface thermal properties. Methods. We used data from the OSIRIS imaging system onboard the Rosetta spacecraft to identify surface features on the nucleus that can be produced by various transport mechanisms. We used simple calculations based on previous works to establish the plausibility of dust transport from one part of the nucleus to another. Results. We show by observation and modeling that "airfall" as a consequence of non-escaping large particles emitted from the neck region of the nucleus is a plausible explanation for the smooth thin deposits in the northern hemisphere of the nucleus. The consequences are also discussed. We also present observations of aeolian ripples and ventifacts. We show by numerical modeling that a type of saltation is plausible even under the rarified gas densities seen at the surface of the nucleus. However, interparticle cohesive forces present difficulties for this model, and an alternative mechanism for the initiation of reptation and creep may result from the airfall mechanism. The requirements on gas density and other parameters of this alternative make it a more attractive explanation for the observations. The uncertainties and implications are discussed.
  •  
25.
  • Auger, A. -T, et al. (författare)
  • Geomorphology of the Imhotep region on comet 67P/Churyumov-Gerasimenko from OSIRIS observations
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 583
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Since August 2014, the OSIRIS Narrow Angle Camera (NAC) onboard the Rosetta spacecraft has acquired high spatial resolution images of the nucleus of comet 67P/Churyumov-Gerasimenko, down to the decimeter scale. This paper focuses on the Imhotep region, located on the largest lobe of the nucleus, near the equator. Aims. We map, inventory, and describe the geomorphology of the Imhotep region. We propose and discuss some processes to explain the formation and ongoing evolution of this region. Methods. We used OSIRIS NAC images, gravitational heights and slopes, and digital terrain models to map and measure the morphologies of Imhotep. Results. The Imhotep region presents a wide variety of terrains and morphologies: smooth and rocky terrains, bright areas, linear features, roundish features, and boulders. Gravity processes such as mass wasting and collapse play a significant role in the geomorphological evolution of this region. Cometary processes initiate erosion and are responsible for the formation of degassing conduits that are revealed by elevated roundish features on the surface. We also propose a scenario for the formation and evolution of the Imhotep region; this implies the presence of large primordial voids inside the nucleus, resulting from its formation process.
  •  
26.
  • El-Maarry, M. R., et al. (författare)
  • Regional surface morphology of comet 67P/Churyumov-Gerasimenko from Rosetta/OSIRIS images
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 583
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. The OSIRIS camera onboard the Rosetta spacecraft has been acquiring images of the comet 67P/Churyumov-Gerasimenko (67P)'s nucleus at spatial resolutions down to similar to 0.17 m/px ever since Aug. 2014. These images have yielded unprecedented insight into the morphological diversity of the comet's surface. This paper presents an overview of the regional morphology of comet 67P. Methods. We used the images that were acquired at orbits similar to 20-30 km from the center of the comet to distinguish different regions on the surface and introduce the basic regional nomenclature adopted by all papers in this Rosetta special feature that address the comet's morphology and surface processes. We used anaglyphs to detect subtle regional and topographical boundaries and images from close orbit (similar to 10 km from the comet's center) to investigate the fine texture of the surface. Results. Nineteen regions have currently been defined on the nucleus based on morphological and/or structural boundaries, and they can be grouped into distinctive region types. Consolidated, fractured regions are the most common region type. Some of these regions enclose smooth units that appear to settle in gravitational sinks or topographically low areas. Both comet lobes have a significant portion of their surface covered by a dusty coating that appears to be recently placed and shows signs of mobilization by aeolian-like processes. The dusty coatings cover most of the regions on the surface but are notably absent from a couple of irregular large depressions that show sharp contacts with their surroundings and talus-like deposits in their interiors, which suggests that short-term explosive activity may play a significant role in shaping the comet's surface in addition to long-term sublimation loss. Finally, the presence of layered brittle units showing signs of mechanical failure predominantly in one of the comet's lobes can indicate a compositional heterogeneity between the two lobes.
  •  
27.
  • El-Marry, M. R., et al. (författare)
  • Regional surface morphology of comet 67P/Churyumov-Gerasimenko from Rosetta/OSIRIS images : The southern hemisphere
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 593
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. The OSIRIS camera on board the Rosetta spacecraft has been acquiring images of the comet 67P/Churyumov-Gerasimenko (67P)'s nucleus since August 2014. Starting in May 2015, the southern hemisphere gradually became illuminated and was imaged for the first time. Here we present the regional morphology of the southern hemisphere, which serves as a companion to an earlier paper that presented the regional morphology of the northern hemisphere. Methods. We used OSIRIS images that were acquired at orbits similar to 45-125 km from the center of the comet (corresponding to spatial resolutions of similar to 0.8 to 2.3 m/pixel) coupled with the use of digital terrain models to define the different regions on the surface, and identify structural boundaries accurately. Results. Seven regions have been defined in the southern hemisphere bringing the total number of defined regions on the surface of the nucleus to 26. These classifications are mainly based on morphological and/or topographic boundaries. The southern hemisphere shows a remarkable dichotomy with its northern counterpart mainly because of the absence of wide-scale smooth terrains, dust coatings and large unambiguous depressions. As a result, the southern hemisphere closely resembles previously identified consolidated regions. An assessment of the overall morphology of comet 67P suggests that the comet's two lobes show surface heterogeneities manifested in different physical/mechanical characteristics, possibly extending to local (i.e., within a single region) scales.
  •  
28.
  • Fornasier, S., et al. (författare)
  • The highly active Anhur-Bes regions in the 67P/Churyumov-Gerasimenko comet : results from OSIRIS/ROSETTA observations
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 469, s. S93-S107
  • Tidskriftsartikel (refereegranskat)abstract
    • The Southern hemisphere of the 67P/Churyumov-Gerasimenko comet has become visible from Rosetta only since 2015 March. It was illuminated during the perihelion passage and therefore it contains the regions that experienced the strongest heating and erosion rates, thus exposing the sub-surface most pristine material. In this work we investigate, thanks to the OSIRIS images, the geomorphology, the spectrophotometry and some transient events of two Southern hemisphere regions: Anhur and part of Bes. Bes is dominated by outcropping consolidated terrain covered with fine particle deposits, while Anhur appears strongly eroded with elongated canyon-like structures, scarp retreats, different kinds of deposits and degraded sequences of strata indicating a pervasive layering. We discovered a new 140 m long and 10 m high scarp formed in the Anhur-Bes boundary during/after the perihelion passage, close to the area where exposed CO2 and H2O ices were previously detected. Several jets have been observed originating from these regions, including the strong perihelion outburst, an active pit and a faint optically thick dust plume. We identify several areas with a relatively bluer slope (i.e. a lower spectral slope value) than their surroundings, indicating a surface composition enriched with some water ice. These spectrally bluer areas are observed especially in talus and gravitational accumulation deposits where freshly exposed material had fallen from nearby scarps and cliffs. The investigated regions become spectrally redder beyond 2 au outbound when the dust mantle became thicker, masking the underlying ice-rich layers.
  •  
29.
  • Hu, X., et al. (författare)
  • Thermal modelling of water activity on comet 67P/Churyumov-Gerasimenko with global dust mantle and plural dust-to-ice ratio
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 469, s. S295-S311
  • Tidskriftsartikel (refereegranskat)abstract
    • We perform a thermo-physical analysis on water activity of comet 67P/Churyumov-Gerasimenko (67P). The sublimation of water is assumed to occur from beneath a global, desiccated dust mantle over the irregular-shaped nucleus. The concept of two thermal models, the recipe of model formulation and the strategy of application to comet 67P are described. For an accurate and efficient evaluation of energy input by insolation and self-heating over the nucleus, a Landscape data base is devised based on polyhedral shape models of the nucleus. We apply the thermal models to investigate the impact of certain parameters of nucleus properties on water production. It is found that the measured water production of 67P can be overall attributed to sublimation of water ice with a mass abundance of a few to 10 per cent beneath a uniform dust mantle of several millimetres to one centimetre in thickness. Insofar as 67P is concerned, we argue against the necessity to invoke assumptions on localized water activity, or on the distinction of active/dormant surface areas.
  •  
30.
  • Ip, W. -H, et al. (författare)
  • Physical properties and dynamical relation of the circular depressions on comet 67P/Churyumov-Gerasimenko
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 591
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We aim to characterize the circular depressions of comet 67P/Churyumov-Gerasimenko and investigate whether such surface morphology of a comet nucleus is related to the cumulative sublimation effect since becoming a Jupiter family comet (JFC). Methods. The images from the Rosetta/OSIRIS science camera experiment are used to construct size frequency distributions of the circular depression structures on comet 67P and they are compared with those of the JFCs 81P/Wild 2, 9P/Tempel 1, and 103P/Hartley 2. The orbital evolutionary histories of these comets over the past 100 000 yr are analyzed statistically and compared with each other. Results. The global distribution of the circular depressions over the surface of 67P is charted and classified. Descriptions are given to the characteristics and cumulative size frequency distribution of the identified features. Orbital statistics of the JFCs visited by spacecraft are derived. Conclusions. The size frequency distribution of the circular depressions is found to have a similar power law distribution to those of 9P/Tempel 1 and 81P/Wild 2. This might imply that they could have been generated by the same process. Orbital integration calculation shows that the surface erosion histories of 81P/Wild 2, and 9P/Tempel 1 could be shorter than those of 67P, 103 P/Hartley 2 and 19P/Borrelly. From this point of view, the circular depressions could be dated back to the pre-JFC phase or the transneptunian phase of these comets. The north-south asymmetry in the distribution of the circular depressions could be associated with the heterogeneous structure of the nucleus of comet 67P and/or the solar insolation history.
  •  
31.
  • Lin, Zhong-Yi, et al. (författare)
  • Investigating the physical properties of outbursts on comet 67P/Churyumov-Gerasimenko
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 469, s. S731-S740
  • Tidskriftsartikel (refereegranskat)abstract
    • Cometary outbursts on several comets have been observed both by ground-based telescopes and by in situ instruments on spacecraft. However, the mechanism behind these phenomena and their physical properties are still unclear. The optical, spectrocopic and infrared remote imaging system (OSIRIS) onboard the Rosetta spacecraft provided first-hand information on the outbursts from comet 67P/Churyumov-Gerasimenko during its perihelion passage in 2015. The physical properties of the outbursts can be investigated by examining the time series of these high-resolution images. An analysis is made of the wide- and narrow-angle images obtained during the monitoring of the outburst sequences, which occurred between July and September in 2015. A ring-masking technique is used to calculate the excess brightness of the outbursts. The ejected mass and expansion velocity of the outbursts is estimated from differences in images made with the same filter (orange filter). The calculated excess brightness from these outburst plumes ranges from a few per cent to 28 per cent. In some major outbursts, the brightness contribution from the outburst plume can be one or two times higher than that of the typical coma jet activities. The strongest event was the perihelion outburst detected just a few hours before perihelion. The mass ejection rate during a generic outburst could reach a few per cent of the steady-state value of the dust coma. Transient events are detected by studying the brightness slope of the outburst plume with continuous streams of outflowing gas and dust triggered by driving mechanisms, as yet not understood, which remain active for several minutes to less than a few hours.
  •  
32.
  • Lin, Z. -Y, et al. (författare)
  • Morphology and dynamics of the jets of comet 67P/Churyumov-Gerasimenko : Early-phase development
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 583
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. The OSIRIS camera onboard the Rosetta spacecraft obtained close-up views of the dust coma of comet 67P. The jet structures can be used to trace their source regions and to examine the possible effect of gas-surface interaction. Methods. We analyzed the wide-angle images obtained in the special dust observation sequences between August and September 2014. The jet features detected in different images were compared to study their time variability. The locations of the potential source regions of some of the jets are identified by ray tracing. We used a ring-masking technique to calculate the brightness distribution of dust jets along the projected distance. Results. The jets detected between August and September 2014 mostly originated in the Hapi region. Morphological changes appeared over a timescale of several days in September. The brightness slope of the dust jets is much steeper than the background coma. This might be related to the sublimation or fragmentation of the emitted dust grains. Interaction of the expanding gas flow with the cliff walls on both sides of Hapi could lead to erosion and material down-fall to the nucleus surface.
  •  
33.
  • Lin, Z. -Y, et al. (författare)
  • Observations and analysis of a curved jet in the coma of comet 67P/Churyumov-Gerasimenko
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 588
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We analyze the physical properties and dynamical origin of a curved jet of comet 67P/Churyumov-Gerasimenko that was observed repeatedly in several nucleus rotations starting on May 30 and persisting until early August, 2015. Methods. We simulated the motion of dust grains ejected from the nucleus surface under the influence of the gravity and viscous drag e ff ect of the expanding gas flow from the rotating nucleus. Results. The formation of the curved jet is a combination of the size of the dust particles (similar to 0.1-1 mm) and the location of the source region near the nucleus equator. This enhances the spiral feature of the collimated dust stream after the dust is accelerated to a terminal speed on the order of m s(-1).
  •  
34.
  • Masoumzadeh, N., et al. (författare)
  • Opposition effect on comet 67P/Churyumov-Gerasimenko using Rosetta-OSIRIS images
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 599
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We aim to explore the behavior of the opposition effect as an important tool in optical remote sensing on the nucleus of comet 67P/Churyumov-Gerasimenko (67P), using Rosetta-OSIRIS images acquired in different filters during the approach phase, July-August 2014 and the close flyby images on 14 of February 2015, which contain the spacecraft shadow. Methods. We based our investigation on the global and local brightness from the surface of 67P with respect to the phase angle, also known as phase curve. The local phase curve corresponds to a region that is located at the Imhotep-Ash boundary of 67P. Assuming that the region at the Imhotep-Ash boundary and the entire nucleus have similar albedo, we combined the global and local phase curves to study the opposition-surge morphology and constrain the structure and properties of 67P. The model parameters were furthermore compared with other bodies in the solar system and existing laboratory study. Results. We found that the morphological parameters of the opposition surge decrease monotonically with wavelength, whereas in the case of coherent backscattering this behavior should be the reverse. The results from comparative analysis place 67P in the same category as the two Mars satellites, Phobos and Deimos, which are notably different from all airless bodies in the solar system. The similarity between the surface phase function of 67P and a carbon soot sample at extremely small angles is identified, introducing regolith at the boundary of the Imhotep-Ash region of 67P as a very dark and fluffy layer.
  •  
35.
  • Mottola, S., et al. (författare)
  • The rotation state of 67P/Churyumov-Gerasimenko from approach observations with the OSIRIS cameras on Rosetta
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 569, s. L2-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. Approach observations with the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) experiment onboard Rosetta are used to determine the rotation period, the direction of the spin axis, and the state of rotation of comet 67P's nucleus. Methods. Photometric time series of 67P have been acquired by OSIRIS since the post wake-up commissioning of the payload in March 2014. Fourier analysis and convex shape inversion methods have been applied to the Rosetta data as well to the available ground-based observations. Results. Evidence is found that the rotation rate of 67P has significantly changed near the time of its 2009 perihelion passage, probably due to sublimation-induced torque. We find that the sidereal rotation periods P-1 = 12.76129 +/- 0.00005 h and P2 = 12.4043 +/- 0.0007 h for the apparitions before and after the 2009 perihelion, respectively, provide the best fit to the observations. No signs of multiple periodicity are found in the light curves down to the noise level, which implies that the comet is presently in a simple rotation state around its axis of largest moment of inertia. We derive a prograde rotation model with spin vector J2000 ecliptic coordinates lambda = 65 degrees +/- 15 degrees, beta = + 59 degrees +/- 15 degrees, corresponding to equatorial coordinates RA = 22 degrees, Dec = +76 degrees. However, we find that the mirror solution, also prograde, at lambda = 275 degrees +/- 15 degrees, beta = + 50 degrees +/- 15 degrees (or RA = 274 degrees, Dec = +27 degrees), is also possible at the same confidence level, due to the intrinsic ambiguity of the photometric problem for observations performed close to the ecliptic plane.
  •  
36.
  • Pajola, M., et al. (författare)
  • The pebbles/boulders size distributions on Sais : Rosetta's final landing site on comet 67P/Churyumov-Gerasimenko
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 469:Suppl. 2, s. S636-S645
  • Tidskriftsartikel (refereegranskat)abstract
    • By using the imagery acquired by the Optical, Spectroscopic, and Infrared Remote Imaging System Wide-Angle Camera (OSIRISWAC), we prepare a high-resolution morphological map of the Rosetta Sais final landing site, characterized by an outcropping consolidated terrain unit, a coarse boulder deposit and a fine particle deposit. Thanks to the 0.014 m resolution images, we derive the pebbles/boulders size-frequency distribution (SFD) of the area in the size range of 0.07-0.70 m. Sais' SFD is best fitted with a two-segment differential power law: the first segment is in the range 0.07-0.26 m, with an index of -1.7 ± 0.1, while the second is in the range 0.26-0.50 m, with an index of -4.2 +0.4/-0.8. The 'knee' of the SFD, located at 0.26 m, is evident both in the coarse and fine deposits. When compared to the Agilkia Rosetta Lander Imaging System images, Sais surface is almost entirely free of the ubiquitous, cm-sized debris blanket observed by Philae. None the less, a similar SFD behaviour of Agilkia, with a steeper distribution above ~0.3 m, and a flatter trend below that, is observed. The activity evolution of 67P along its orbit provides a coherent scenario of how these deposits were formed. Indeed, different lift pressure values occurring on the two locations and at different heliocentric distances explain the presence of the cm-sized debris blanket on Agilkia observed at 3.0 au inbound. Contrarily, Sais activity after 2.1 au outbound has almost completely eroded the fine deposits fallen during perihelion, resulting in an almost dust-free surface observed at 3.8 au.
  •  
37.
  • Penasa, L., et al. (författare)
  • A three-dimensional modelling of the layered structure of comet 67P/Churyumov-Gerasimenko
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 469, s. S741-S754
  • Tidskriftsartikel (refereegranskat)abstract
    • We provide a three-dimensional model of the inner layered structure of comet 67P based on the hypothesis of an extended layering independently wrapping each lobe. A large set of terrace orientations was collected on the latest shape model and then used as a proxy for the local orientation of the surfaces of discontinuity which defines the layers. We modelled the terraces as a family of concentric ellipsoidal shells with fixed axis ratios, producing a model that is completely defined by just eight free parameters. Each lobe of 67P has been modelled independently, and the two sets of parameters have been estimated by means of non-linear optimization of the measured terrace orientations. The proposed model is able to predict the orientation of terraces, the elongation of cliffs, the linear traces observed in the Wosret and Hathor regions and the peculiar alignment of boulder-like features which has been observed in the Hapi region, which appears to be related to the inner layering of the big lobe. Our analysis allowed us to identify a plane of junction between the two lobes, further confirming the independent nature of the lobes. Our layering models differ from the best-fitting topographic ellipsoids of the surface, demonstrating that the terraces are aligned to an internal structure of discontinuities, which is unevenly exposed on the surface, suggesting a complex history of localized material removal from the nucleus.
  •  
38.
  • Pommerol, A., et al. (författare)
  • OSIRIS observations of meter-sized exposures of H2O ice at the surface of 67P/Churyumov-Gerasimenko and interpretation using laboratory experiments
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 583
  • Tidskriftsartikel (refereegranskat)abstract
    • Since OSIRIS started acquiring high-resolution observations of the surface of the nucleus of comet 67P/Churyumov-Gerasimenko, over one hundred meter-sized bright spots have been identified in numerous types of geomorphologic regions, but mostly located in areas receiving low insolation. The bright spots are either clustered, in debris fields close to decameter-high cliffs, or isolated without structural relation to the surrounding terrain. They can be up to ten times brighter than the average surface of the comet at visible wavelengths and display a significantly bluer spectrum. They do not exhibit significant changes over a period of a few weeks. All these observations are consistent with exposure of water ice at the surface of boulders produced by dislocation of the weakly consolidated layers that cover large areas of the nucleus. Laboratory experiments show that under simulated comet surface conditions, analog samples acquire a vertical stratification with an uppermost porous mantle of refractory dust overlaying a layer of hard ice formed by recondensation or sintering under the insulating dust mantle. The evolution of the visible spectrophotometric properties of samples during sublimation is consistent with the contrasts of brightness and color seen at the surface of the nucleus. Clustered bright spots are formed by the collapse of overhangs that is triggered by mass wasting of deeper layers. Isolated spots might be the result of the emission of boulders at low velocity that are redepositioned in other regions.
  •  
39.
  • Tubiana, C., et al. (författare)
  • 67P/Churyumov-Gerasimenko : Activity between March and June 2014 as observed from Rosetta/OSIRIS
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 573
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. 67P/Churyumov-Gerasimenko is the target comet of the ESA's Rosetta mission. After commissioning at the end of March 2014, the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) onboard Rosetta, started imaging the comet and its dust environment to investigate how they change and evolve while approaching the Sun. Methods. We focused our work on Narrow Angle Camera (NAC) orange images and Wide Angle Camera (WAC) red and visible-610 images acquired between 2014 March 23 and June 24 when the nucleus of 67P was unresolved and moving from approximately 4.3 AU to 3.8 AU inbound. During this period the 67P - Rosetta distance decreased from 5 million to 120 thousand km. Results. Through aperture photometry, we investigated how the comet brightness varies with heliocentric distance. 67P was likely already weakly active at the end of March 2014, with excess flux above that expected for the nucleus. The comet's brightness was mostly constant during the three months of approach observations, apart from one outburst that occurred around April 30 and a second increase in flux after June 20. Coma was resolved in the profiles from mid-April. Analysis of the coma morphology suggests that most of the activity comes from a source towards the celestial north pole of the comet, but the outburst that occurred on April 30 released material in a different direction.
  •  
40.
  • Vincent, J. -B, et al. (författare)
  • Constraints on cometary surface evolution derived from a statistical analysis of 67P's topography
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 469, s. S329-S338
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a statistical analysis of the distribution of large-scale topographic features on comet 67P/Churyumov-Gerasimenko. We observe that the cumulative cliff height distribution across the surface follows a power law with a slope equal to -1.69 +/- 0.02. When this distribution is studied independently for each region, we find a good correlation between the slope of the power law and the orbital erosion rate of the surface. For instance, the Northern hemisphere topography is dominated by structures on the 100 m scale, while the Southern hemisphere topography, illuminated at perihelion, is dominated by 10 m scale terrain features. Our study suggests that the current size of a cliff is controlled not only by material cohesion but also by the dominant erosional process in each region. This observation can be generalized to other comets, where we argue that primitive nuclei are characterized by the presence of large cliffs with a cumulative height-power index equal to or above -1.5, while older, eroded cometary surfaces have a power index equal to or below -2.3. In effect, our model shows that a measure of the topography provides a quantitative assessment of a comet's erosional history, that is, its evolutionary age.
  •  
41.
  • Wessel, Jennifer, et al. (författare)
  • Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility
  • 2015
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Fasting glucose and insulin are intermediate traits for type 2 diabetes. Here we explore the role of coding variation on these traits by analysis of variants on the HumanExome BeadChip in 60,564 non-diabetic individuals and in 16,491 T2D cases and 81,877 controls. We identify a novel association of a low-frequency nonsynonymous SNV in GLP1R (A316T; rs10305492; MAF = 1.4%) with lower FG (beta = -0.09 +/- 0.01 mmol l(-1), P = 3.4 x 10(-12)), T2D risk (OR[95% CI] = 0.86[0.76-0.96], P = 0.010), early insulin secretion (beta = -0.07 +/- 0.035 pmol(insulin) mmol(glucose)(-1), P = 0.048), but higher 2-h glucose (beta = 0.16 +/- 0.05 mmol l(-1), P = 4.3 x 10(-4)). We identify a gene-based association with FG at G6PC2 (p(SKAT) = 6.8 x 10(-6)) driven by four rare protein-coding SNVs (H177Y, Y207S, R283X and S324P). We identify rs651007 (MAF = 20%) in the first intron of ABO at the putative promoter of an antisense lncRNA, associating with higher FG (beta = 0.02 +/- 0.004 mmol l(-1), P = 1.3 x 10(-8)). Our approach identifies novel coding variant associations and extends the allelic spectrum of variation underlying diabetes-related quantitative traits and T2D susceptibility.
  •  
42.
  • Agarwal, Jessica, et al. (författare)
  • Acceleration of individual, decimetre-sized aggregates in the lower coma of comet 67P/Churyumov-Gerasimenko
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 462, s. S78-S88
  • Tidskriftsartikel (refereegranskat)abstract
    • We present observations of decimetre-sized, likely ice-containing aggregates ejected from a confined region on the surface of comet 67P/Churyumov-Gerasimenko. The images were obtained with the narrow angle camera of the Optical, Spectroscopic, and Infrared Remote Imaging System on board the Rosetta spacecraft in 2016 January when the comet was at 2 au from the Sun outbound from perihelion. We measure the acceleration of individual aggregates through a 2 h image series. Approximately 50 per cent of the aggregates are accelerated away from the nucleus, and 50 per cent towards it, and likewise towards either horizontal direction. The accelerations are up to one order of magnitude stronger than local gravity, and are most simply explained by the combined effect of gas drag accelerating all aggregates upwards, and the recoil force from asymmetric outgassing, either from rotating aggregates with randomly oriented spin axes and sufficient thermal inertia to shift the temperature maximum away from an aggregate's subsolar region, or from aggregates with variable ice content. At least 10 per cent of the aggregates will escape the gravity field of the nucleus and feed the comet's debris trail, while others may fall back to the surface and contribute to the deposits covering parts of the Northern hemisphere. The rocket force plays a crucial role in pushing these aggregates back towards the surface. Our observations show the future back fall material in the process of ejection, and provide the first direct measurement of the acceleration of aggregates in the innermost coma (<2 km) of a comet, where gas drag is still significant.
  •  
43.
  • Barucci, M. A., et al. (författare)
  • Detection of exposed H2O ice on the nucleus of comet 67P/Churyumov-Gerasimenko as observed by Rosetta OSIRIS and VIRTIS instruments
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 595
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Since the orbital insertion of the Rosetta spacecraft, comet 67P/Churyumov-Gerasimenko (67P) has been mapped by OSIRIS camera and VIRTIS spectro-imager, producing a huge quantity of images and spectra of the comet's nucleus. Aims. The aim of this work is to search for the presence of H2O on the nucleus which, in general, appears very dark and rich in dehydrated organic material. After selecting images of the bright spots which could be good candidates to search for H2O ice, taken at high resolution by OSIRIS, we check for spectral cubes of the selected coordinates to identify these spots observed by VIRTIS. Methods. The selected OSIRIS images were processed with the OSIRIS standard pipeline and corrected for the illumination conditions for each pixel using the Lommel-Seeliger disk law. The spots with higher I/F were selected and then analysed spectrophotometrically and compared with the surrounding area. We selected 13 spots as good targets to be analysed by VIRTIS to search for the 2 mu m absorption band of water ice in the VIRTIS spectral cubes. Results. Out of the 13 selected bright spots, eight of them present positive H2O ice detection on the VIRTIS data. A spectral analysis was performed and the approximate temperature of each spot was computed. The H2O ice content was confirmed by modeling the spectra with mixing (areal and intimate) of H2O ice and dark terrain, using Hapke's radiative transfer modeling. We also present a detailed analysis of the detected spots.
  •  
44.
  • Bertini, I., et al. (författare)
  • Search for satellites near comet 67P/Churyumov-Gerasimenko using Rosetta/OSIRIS images
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 583
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The European Space Agency Rosetta mission reached and started escorting its main target, the Jupiter-family comet 67P/Churyumov-Gerasimenko, at the beginning of August 2014. Within the context of solar system small bodies, satellite searches from approaching spacecraft were extensively used in the past to study the nature of the visited bodies and their collisional environment. Aims. During the approaching phase to the comet in July 2014, the OSIRIS instrument onboard Rosetta performed a campaign aimed at detecting objects in the vicinity of the comet nucleus and at measuring these objects' possible bound orbits. In addition to the scientific purpose, the search also focused on spacecraft security to avoid hazardous material in the comet's environment. Methods. Images in the red spectral domain were acquired with the OSIRIS Narrow Angle Camera, when the spacecraft was at a distance between 5785 km and 5463 km to the comet, following an observational strategy tailored to maximize the scientific outcome. From the acquired images, sources were extracted and displayed to search for plausible displacements of all sources from image to image. After stars were identified, the remaining sources were thoroughly analyzed. To place constraints on the expected displacements of a potential satellite, we performed Monte Carlo simulations on the apparent motion of potential satellites within the Hill sphere. Results. We found no unambiguous detections of objects larger than similar to 6 m within similar to 20 km and larger than similar to 1 m between similar to 20 km and similar to 110 km from the nucleus, using images with an exposure time of 0.14 s and 1.36 s, respectively. Our conclusions are consistent with independent works on dust grains in the comet coma and on boulders counting on the nucleus surface. Moreover, our analysis shows that the comet outburst detected at the end of April 2014 was not strong enough to eject large objects and to place them into a stable orbit around the nucleus. Our findings underline that it is highly unlikely that large objects survive for a long time around cometary nuclei.
  •  
45.
  • Bertini, I., et al. (författare)
  • The scattering phase function of comet 67P/Churyumov-Gerasimenko coma as seen from the Rosetta/OSIRIS instrument
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 469, s. S404-S415
  • Tidskriftsartikel (refereegranskat)abstract
    • The study of dust, the most abundant material in cometary nuclei, is pivotal in understanding the original materials forming the Solar system. Measuring the coma phase function provides a tool to investigate the nature of cometary dust. Rosetta/OSIRIS sampled the coma phase function of comet 67P/Churyumov-Gerasimenko, covering a large phase angle range in a small amount of time. Twelve series were acquired in the period from 2015 March to 2016 February for this scientific purpose. These data allowed, after stray light removal, measuring the phase function shape, its reddening, and phase reddening while varying heliocentric and nucleocentric distances. Despite small dissimilarities within different series, we found a constant overall shape. The reflectance has a u-shape with minimum at intermediate phase angles, reaching similar values at the smallest and largest phase angle sampled. The comparison with cometary phase functions in literature indicates OSIRIS curves being consistent with the ones found in many other single comets. The dust has a negligible phase reddening at alpha < 90 degrees, indicating a coma dominated by single scattering. We measured a reddening of [11-14] %/100 nm between 376 and 744 nm. No trend with heliocentric or nucleocentric distance was found, indicating the coma doesn't change its spectrum with time. These results are consistent with single coma grains and close-nucleus coma photometric results. Comparison with nucleus photometry indicates a different backscattering phase function shape and similar reddening values only at alpha < 30 degrees. At larger phase angles, the nucleus becomes significantly redder than the coma.
  •  
46.
  • Bodewits, D., et al. (författare)
  • Changes in the physical environment of the inner coma of 67p/churyumov-gerasimenko with decreasing heliocentric distance
  • 2016
  • Ingår i: Astronomical Journal. - : IOP PUBLISHING LTD. - 0004-6256 .- 1538-3881. ; 152:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The Wide Angle Camera of the OSIRIS instrument on board the Rosetta spacecraft is equipped with several narrow-band filters that are centered on the emission lines and bands of various fragment species. These are used to determine the evolution of the production and spatial distribution of the gas in the inner coma of comet 67P with time and heliocentric distance, here between 2.6 and 1.3 au pre-perihelion. Our observations indicate that the emission observed in the OH, OI, CN, NH, and NH2 filters is mostly produced by dissociative electron impact excitation of different parent species. We conclude that CO2 rather than H2O is a significant source of the [OI] 630 nm emission. A strong plume-like feature observed in the CN and OI filters is present throughout our observations. This plume is not present in OH emission and indicates a local enhancement of the CO2/H2O ratio by as much as a factor of 3. We observed a sudden decrease in intensity levels after 2015 March, which we attribute to decreased electron temperatures in the first few kilometers above the surface of the nucleus.
  •  
47.
  • Davidsson, Björn, et al. (författare)
  • Orbital elements of the material surrounding comet 67P/Churyumov-Gerasimenko
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 583
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. We investigate the dust coma within the Hill sphere of comet 67P/Churyumov-Gerasimenko. Aims. We aim to determine osculating orbital elements for individual distinguishable but unresolved slow-moving grains in the vicinity of the nucleus. In addition, we perform photometry and constrain grain sizes. Methods. We performed astrometry and photometry using images acquired by the OSIRIS Wide Angle Camera on the European Space Agency spacecraft Rosetta. Based on these measurements, we employed standard orbit determination and orbit improvement techniques. Results. Orbital elements and effective diameters of four grains were constrained, but we were unable to uniquely determine them. Two of the grains have light curves that indicate grain rotation. Conclusions. The four grains have diameters nominally in the range 0.14-0.50 m. For three of the grains, we found elliptic orbits, which is consistent with a cloud of bound particles around the nucleus. However, hyperbolic escape trajectories cannot be excluded for any of the grains, and for one grain this is the only known option. One grain may have originated from the surface shortly before observation. These results have possible implications for the understanding of the dispersal of the cloud of bound debris around comet nuclei, as well as for understanding the ejection of large grains far from the Sun.
  •  
48.
  • Davidsson, Björn, et al. (författare)
  • The primordial nucleus of comet 67P/Churyumov-Gerasimenko
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 592
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. We investigate the formation and evolution of comet nuclei and other trans-Neptunian objects (TNOs) in the solar nebula and primordial disk prior to the giant planet orbit instability foreseen by the Nice model. Aims. Our goal is to determine whether most observed comet nuclei are primordial rubble-pile survivors that formed in the solar nebula and young primordial disk or collisional rubble piles formed later in the aftermath of catastrophic disruptions of larger parent bodies. We also propose a concurrent comet and TNO formation scenario that is consistent with observations. Methods. We used observations of comet 67P/Churyumov-Gerasimenko by the ESA Rosetta spacecraft, particularly by the OSIRIS camera system, combined with data from the NASA Stardust sample-return mission to comet 81P/Wild 2 and from meteoritics; we also used existing observations from ground or from spacecraft of irregular satellites of the giant planets, Centaurs, and TNOs. We performed modeling of thermophysics, hydrostatics, orbit evolution, and collision physics. Results. We find that thermal processing due to short-lived radionuclides, combined with collisional processing during accretion in the primordial disk, creates a population of medium-sized bodies that are comparably dense, compacted, strong, heavily depleted in supervolatiles like CO and CO2; they contain little to no amorphous water ice, and have experienced extensive metasomatism and aqueous alteration due to liquid water. Irregular satellites Phoebe and Himalia are potential representatives of this population. Collisional rubble piles inherit these properties from their parents. Contrarily, comet nuclei have low density, high porosity, weak strength, are rich in supervolatiles, may contain amorphous water ice, and do not display convincing evidence of in situ metasomatism or aqueous alteration. We outline a comet formation scenario that starts in the solar nebula and ends in the primordial disk, that reproduces these observed properties, and additionally explains the presence of extensive layering on 67P/Churyumov-Gerasimenko (and on 9P/Tempel 1 observed by Deep Impact), its bi-lobed shape, the extremely slow growth of comet nuclei as evidenced by recent radiometric dating, and the low collision probability that allows primordial nuclei to survive the age of the solar system. Conclusions. We conclude that observed comet nuclei are primordial rubble piles, and not collisional rubble piles. We argue that TNOs formed as a result of streaming instabilities at sizes below similar to 400 km and that similar to 350 of these grew slowly in a low-mass primordial disk to the size of Triton, Pluto, and Eris, causing little viscous stirring during growth. We thus propose a dynamically cold primordial disk, which prevented medium-sized TNOs from breaking into collisional rubble piles and allowed the survival of primordial rubble-pile comets. We argue that comets formed by hierarchical agglomeration out of material that remained after TNO formation, and that this slow growth was a necessity to avoid thermal processing by short-lived radionuclides that would lead to loss of supervolatiles, and that allowed comet nuclei to incorporate similar to 3 Myr old material from the inner solar system.
  •  
49.
  • Deshapriya, J. D. P., et al. (författare)
  • Exposed bright features on the comet 67P/Churyumov-Gerasimenko : distribution and evolution
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 613
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Since its arrival at the comet 67P/Churyumov-Gerasimenko in August 2014, the Rosetta spacecraft followed the comet as it went past the perihelion and beyond until September 2016. During this time there were many scientific instruments operating on board Rosetta to study the comet and its evolution in unprecedented detail. In this context, our study focusses on the distribution and evolution of exposed bright features that have been observed by OSIRIS, which is the scientific imaging instrument aboard Rosetta. Aims. We envisage investigating various morphologies of exposed bright features and the mechanisms that triggered their appearance. Methods. We co-registered multi-filter observations of OSIRIS images that are available in reflectance. The Lommel-Seeliger disk function was used to correct for the illumination conditions and the resulting colour cubes were used to perform spectrophotometric analyses on regions of interest. Results. We present a catalogue of 57 exposed bright features observed on the nucleus of the comet, all of which are attributed to the presence of H2O ice on the comet. Furthermore, we categorise these patches under four different morphologies and present geometric albedos for each category. Conclusions. Although the nucleus of 67P/Churyumov-Gerasimenko appears to be dark in general, there are localised H2O ice sources on the comet. Cometary activity escalates towards the perihelion passage and reveals such volatile ices. We propose that isolated H2O ice patches found in smooth terrains in regions, such as Imhotep, Bes, and Hapi, result from frost as an aftermath of the cessation of the diurnal water cycle on the comet as it recedes from perihelion. Upon the comet's return to perihelion, such patches are revealed when sublimation-driven erosion removes the thin dust layers that got deposited earlier. More powerful activity sources such as cometary outbursts are capable of revealing much fresher, less contaminated H2O ice that is preserved with consolidated cometary material, as observed on exposed patches resting on boulders. This is corroborated by our albedo calculations that attribute higher albedos for bright features with formations related to outbursts.
  •  
50.
  • Deshapriya, J. D. P., et al. (författare)
  • Spectrophotometry of the Khonsu region on the comet 67P/Churyumov-Gerasimenko using OSIRIS instrument images
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 462, s. S274-S286
  • Tidskriftsartikel (refereegranskat)abstract
    • Our work focuses on the spectrophotometric analysis of selected terrain and bright patches in the Khonsu region on the comet 67P/Churyumov-Gerasimenko. Despite the variety of geological features, their spectrophotometric properties appear to indicate a similar composition. It is noticeable that the smooth areas in Khonsu possess similar spectrophotometric behaviour to some other regions of the comet. We observed bright patches on Khonsu with an estimation of >40 per cent of normal albedo and suggest that they are associated with H2O ice. One of the studied bright patches has been observed to exist on the surface for more than 5 months without a major decay of its size, implying the existence of potential sub-surface icy layers. Its location may be correlated with a cometary outburst during the perihelion passage of the comet in 2015 August, and we interpret it to have triggered the surface modifications necessary to unearth the stratified icy layers beneath the surface. A boulder analysis on Khonsu leads to a power-law index of -3.1 + 0.2/-0.3 suggesting a boulder formation, shaped by varying geological processes for different morphological units.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 154
Typ av publikation
tidskriftsartikel (142)
konferensbidrag (8)
rapport (1)
Typ av innehåll
refereegranskat (144)
övrigt vetenskapligt/konstnärligt (7)
Författare/redaktör
Barbieri, C. (100)
Fornasier, S. (82)
Naletto, G. (82)
Da Deppo, V. (81)
Thomas, N (80)
Sierks, H. (80)
visa fler...
Rodrigo, R. (80)
Cremonese, G. (80)
Groussin, O. (80)
Koschny, D. (79)
Knollenberg, J. (79)
Fulle, M. (78)
Jorda, L. (78)
Keller, H. U. (78)
Lazzarin, M. (78)
Marzari, F. (78)
Bertaux, J. -L (77)
Bertini, I. (77)
De Cecco, M. (77)
Vincent, J. -B (76)
Tubiana, C. (76)
Rickman, Hans (76)
Debei, S. (76)
Barucci, M. A. (75)
Hviid, S. F. (73)
Oklay, N. (73)
Gutierrez, P. J. (71)
Kuehrt, E. (71)
Ip, W. -H (70)
A'Hearn, M. F. (68)
Guettler, C. (67)
Kramm, J. -R (66)
Lopez Moreno, J. J. (62)
Lara, L. M. (61)
Mottola, S. (61)
Pajola, M. (60)
Lamy, P. L. (52)
Agarwal, J. (51)
Davidsson, Björn (45)
Kueppers, M. (42)
Kovacs, G (42)
Scholten, F. (40)
Preusker, F. (39)
Shi, X. (37)
Hofmann, M. (36)
Bodewits, D. (36)
Kuppers, M. (36)
Deller, J. (35)
El-Maarry, M. R. (34)
Massironi, M. (33)
visa färre...
Lärosäte
Uppsala universitet (93)
Karolinska Institutet (44)
Lunds universitet (17)
Göteborgs universitet (7)
Stockholms universitet (7)
Kungliga Tekniska Högskolan (3)
visa fler...
Umeå universitet (2)
Chalmers tekniska högskola (2)
Handelshögskolan i Stockholm (1)
Mittuniversitetet (1)
visa färre...
Språk
Engelska (154)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (100)
Medicin och hälsovetenskap (15)
Samhällsvetenskap (2)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy