SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Barros Nathan) "

Sökning: WFRF:(Barros Nathan)

  • Resultat 1-24 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aben, Ralf C. H., et al. (författare)
  • Cross continental increase in methane ebullition under climate change
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Methane (CH4) strongly contributes to observed global warming. As natural CH4 emissions mainly originate from wet ecosystems, it is important to unravel how climate change may affect these emissions. This is especially true for ebullition (bubble flux from sediments), a pathway that has long been underestimated but generally dominates emissions. Here we show a remarkably strong relationship between CH4 ebullition and temperature across a wide range of freshwater ecosystems on different continents using multi-seasonal CH4 ebullition data from the literature. As these temperature-ebullition relationships may have been affected by seasonal variation in organic matter availability, we also conducted a controlled year-round mesocosm experiment. Here 4 degrees C warming led to 51% higher total annual CH4 ebullition, while diffusion was not affected. Our combined findings suggest that global warming will strongly enhance freshwater CH4 emissions through a disproportional increase in ebullition (6-20% per 1 degrees C increase), contributing to global warming.
  •  
2.
  • Almeida, Rafael M., et al. (författare)
  • Carbon dioxide emission from drawdown areas of a Brazilian reservoir is linked to surrounding land cover
  • 2019
  • Ingår i: Aquatic Sciences. - : Springer Science and Business Media LLC. - 1015-1621 .- 1420-9055. ; 81
  • Tidskriftsartikel (refereegranskat)abstract
    • Reservoir sediments exposed to air due to water level fluctuations are strong sources of atmospheric carbon dioxide (CO2). The spatial variability of CO2 fluxes from these drawdown areas are still poorly understood. In a reservoir in southeastern Brazil, we investigated whether CO2 emissions from drawdown areas vary as a function of neighboring land cover types and assessed the magnitude of CO2 fluxes from drawdown areas in relation to nearby water surface. Exposed sediments near forestland (average = 2733 mg C m−2 day−1) emitted more CO2 than exposed sediments near grassland (average = 1261 mg C m−2 day−1), congruent with a difference in organic matter content between areas adjacent to forestland (average = 12.2%) and grassland (average = 10.9%). Moisture also had a significant effect on CO2 emission, with dry exposed sediments (average water content: 13.7%) emitting on average 2.5 times more CO2 than wet exposed sediments (average water content: 23.5%). We carried out a systematic comparison with data from the literature, which indicates that CO2 efflux from drawdown areas globally is about an order of magnitude higher than CO2 efflux from adjacent water surfaces, and within the range of CO2 efflux from terrestrial soils. Our findings suggest that emissions from exposed sediments may vary substantially in space, possibly related to organic matter supply from uphill vegetation, and that drawdown areas play a disproportionately important role in total reservoir CO2 emissions with respect to the area they cover.
  •  
3.
  • Almeida, Rafael M., et al. (författare)
  • Correspondence : Emissions from Amazonian dams
  • 2013
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 3:12, s. 1005-1005
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
4.
  • Almeida, Rafael M., et al. (författare)
  • High Primary Production Contrasts with Intense Carbon Emission in a Eutrophic Tropical Reservoir
  • 2016
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media SA. - 1664-302X. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent studies from temperate lakes indicate that eutrophic systems tend to emit less carbon dioxide (Co-2) and bury more organic carbon (OC) than oligotrophic ones, rendering them CO2 sinks in some cases. However, the scarcity of data from tropical systems is critical for a complete understanding of the interplay between eutrophication and aquatic carbon (C) fluxes in warm waters. We test the hypothesis that a warm eutrophic system is a source of both CO2 and CH4 to the atmosphere, and that atmospheric emissions are larger than the burial of OC in sediments. This hypothesis was based on the following assumptions: (i) OC mineralization rates are high in warm water systems, so that water column CO2 production overrides the high C uptake by primary producers, and (ii) increasing trophic status creates favorable conditions for CH4 production. We measured water-air and sediment-water CO2 fluxes, CH4 diffusion, ebullition and oxidation, net ecosystem production (NEP) and sediment OC burial during the dry season in a eutrophic reservoir in the semiarid northeastern Brazil. The reservoir was stratified during daytime and mixed during nighttime. In spite of the high rates of primary production (4858 +/- 934 mg C m(-2) d(-1)), net heterotrophy was prevalent due to high ecosystem respiration (5209 +/- 992 mg C m(-2) d(-1)). Consequently, the reservoir was a source of atmospheric CO2 (518 +/- 182 mg C m(-2) d(-1)). In addition, the reservoir was a source of ebullitive (17 +/- 10 mg C m(-2) d(-1)) and diffusive CH4 (11 +/- 6 mg C m(-2) d(-1)). OC sedimentation was high (1162 mg C m(-2) d(-1)), but our results suggest that the majority of it is mineralized to CO2 (722 +/- 182 mg C m(-2) d(-1)) rather than buried as OC (440 mg C m(-2) d(-1)). Although temporally resolved data would render our findings more conclusive, our results suggest that despite being a primary production and OC burial hotspot, the tropical eutrophic system studied here was a stronger CO2 and CH4 source than a C sink, mainly because of high rates of OC mineralization in the water column and sediments.
  •  
5.
  • Almeida, Rafael M., et al. (författare)
  • Phosphorus transport by the largest Amazon tributary (Madeira River, Brazil) and its sensitivity to precipitation and damming
  • 2015
  • Ingår i: Inland Waters. - 2044-2041 .- 2044-205X. ; 5:3, s. 275-282
  • Tidskriftsartikel (refereegranskat)abstract
    • Originating in the Bolivian and Peruvian Andes, the Madeira River is the largest tributary of the Amazon River in terms of discharge. Andean rivers transport large quantities of nutrient-rich suspended sediments and are the main source of phosphorus (P) to the Amazon basin. Here, we show the seasonal variability in concentrations and loads of different P forms (total, particulate, dissolved, and soluble reactive P) in the Madeira River through 8 field campaigns between 2009 and 2011. At our sampling reach in Porto Velho, Brazil, the Madeira River transports similar to 177-247 Gg yr(-1) of P, mostly linked to particles (similar to 85%). Concentrations and loads of all P forms have a maximum at rising waters and a minimum at low waters. Total P concentrations were substantially higher at a given discharge at rising water than at a similar discharge at falling water. The peak of P concentrations matched the peak of rainfall in the upper basin, suggesting an influence of precipitation-driven erosion. Projected precipitation increase in the eastern slopes of the Andes could enhance sediment yield and hence the P transport in the Madeira River. Because most of the P is particulate, however, we hypothesize that the planned proliferation of hydropower dams in the Madeira basin has the potential to reduce P loads substantially, possibly counteracting any precipitation-related increases. In the long term, this could be detrimental to highly productive downstream floodplain forests that are seasonally fertilized with P-rich deposits.
  •  
6.
  • Barbosa, Icaro, et al. (författare)
  • Year-round CO2 emissions from the drawdown area of a tropical reservoir : Strong seasonal and spatial variation
  • 2024
  • Ingår i: Geoderma. - : Elsevier. - 0016-7061 .- 1872-6259. ; 445
  • Tidskriftsartikel (refereegranskat)abstract
    • A growing body of literature points to drawdown areas as important sources of atmospheric CO2 2 within reservoirs. Yet seasonal and temporal patterns of CO2 2 flux from periodically exposed sediments in drawdown areas remain poorly understood. Here we evaluate the annual and diel (24-hour cycle) variations in CO2 2 emissions from sediments periodically exposed to the atmosphere. We sampled sediments in the drawdown area of a tropical reservoir, which encompassed two primary adjacent land covers-grassland and forestland-in the watershed of a reservoir located in southeastern Brazil. We also experimentally assessed the effect of rewetting on CO2 2 emissions from exposed sediments. We found large variations in emissions during all hydrological periods (from 10 to 10116 mg C/m-- 2 (- |-) d-1),-1 ), except for the late rainy period. Land use and how distant dry sediments were from the open water significantly affected drawdown CO2 2 emissions, with higher emissions occurring in areas surrounded by forest than those adjacent to grassland. Our diel-cycle analysis did not show significant variation of emissions over daily cycles. Furthermore, a rewetting experiment indicated a significant increase in emissions 30 min after the onset of the rewetting event. Although drawdown areas only cover 20 % of the reservoir's area, they account for 80 % of the reservoir's total CO2 2 emissions. Ultimately, single-time measurements can lead to considerable underestimation (up to 52 %) or overestimation (up to 190 %) of whole- reservoir CO2 2 emissions.
  •  
7.
  • Barros, Nathan, et al. (författare)
  • Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude
  • 2011
  • Ingår i: Nature Geoscience. - : Nature Publishing Group. - 1752-0894 .- 1752-0908. ; 4:9, s. 593-596
  • Tidskriftsartikel (refereegranskat)abstract
    • Hydroelectric reservoirs cover an area of 3.4 x 10(5) km(2) and comprise about 20% of all reservoirs. In addition, they contain large stores of formerly terrestrial organic carbon. Significant amounts of greenhouse gases are emitted(2), especially in the early years following reservoir creation, but the global extent of these emissions is poorly known. Previous estimates of emissions from all types of reservoir indicate that these human-made systems emit 321 Tg of carbon per year (ref. 4). Here we assess the emissions of carbon dioxide and methane from hydroelectric reservoirs, on the basis of data from 85 globally distributed hydroelectric reservoirs that account for 20% of the global area of these systems. We relate the emissions to reservoir age, location biome, morphometric features and chemical status. We estimate that hydroelectric reservoirs emit about 48 Tg C as CO(2) and 3 Tg C as CH(4), corresponding to 4% of global carbon emissions from inland waters. Our estimates are smaller than previous estimates on the basis of more limited data. Carbon emissions are correlated to reservoir age and latitude, with the highest emission rates from the tropical Amazon region. We conclude that future emissions will be highly dependent on the geographic location of new hydroelectric reservoirs.
  •  
8.
  • Delrez, Laetitia, et al. (författare)
  • Transit detection of the long-period volatile-rich super-Earth nu(2) Lupi d with CHEOPS
  • 2021
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; :5, s. 775-787
  • Tidskriftsartikel (refereegranskat)abstract
    • Exoplanets transiting bright nearby stars are key objects for advancing our knowledge of planetary formation and evolution. The wealth of photons from the host star gives detailed access to the atmospheric, interior and orbital properties of the planetary companions. nu(2) Lupi (HD 136352) is a naked-eye (V = 5.78) Sun-like star that was discovered to host three low-mass planets with orbital periods of 11.6, 27.6 and 107.6 d via radial-velocity monitoring(1). The two inner planets (b and c) were recently found to transit(2), prompting a photometric follow-up by the brand new Characterising Exoplanets Satellite (CHEOPS). Here, we report that the outer planet d is also transiting, and measure its radius and mass to be 2.56 +/- 0.09 R-circle plus and 8.82 +/- 0.94 M-circle plus, respectively. With its bright Sun-like star, long period and mild irradiation (similar to 5.7 times the irradiation of Earth), nu(2) Lupi d unlocks a completely new region in the parameter space of exoplanets amenable to detailed characterization. We refine the properties of all three planets: planet b probably has a rocky mostly dry composition, while planets c and d seem to have retained small hydrogen-helium envelopes and a possibly large water fraction. This diversity of planetary compositions makes the nu(2) Lupi system an excellent laboratory for testing formation and evolution models of low-mass planets.
  •  
9.
  • Hansen, Hans, et al. (författare)
  • Resisting the Objectification of Qualitative Research : The Unsilencing of Context, Researchers, and Noninterview Data
  • 2023
  • Ingår i: Organizational Research Methods. - 1094-4281.
  • Tidskriftsartikel (refereegranskat)abstract
    • Based on an analysis of qualitative research papers published between 2019 and 2021 in four top-tier management journals, we outline three interrelated silences that play a role in the objectification of qualitative research: silencing of noninterview data, silencing the researcher, and silencing context. Our analysis unpacks six silencing moves: creating a hierarchy of data, marginalizing noninterview data, downplaying researcher subjectivity, weakening the value of researcher interpretation, thin description, and backgrounding context. We suggest how researchers might resist the objectification of qualitative research and regain its original promise in developing more impactful and interesting theories: noninterview data can be unsilenced by democratizing data sources and utilizing nonverbal data, the researcher can be unsilenced by leveraging engagement and crafting interpretations, and finally, context can be unsilenced by foregrounding context as an interpretative lens and contextualizing the researcher, the researched, and the research project. Overall, we contribute to current understandings of the objectification of qualitative research by both unpacking particular moves that play a role in it and delineating specific practices that help researchers embrace subjectivity and engage in inspired theorizing.
  •  
10.
  • Harrison, John A., et al. (författare)
  • Dams : weigh pros and cons case by case
  • 2019
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 568:7751, s. 171-171
  • Tidskriftsartikel (populärvet., debatt m.m.)
  •  
11.
  • Kosten, Sarian, et al. (författare)
  • Extreme drought boosts CO2 and CH4 emissions from reservoir drawdown areas
  • 2018
  • Ingår i: Inland Waters. - : Informa UK Limited. - 2044-2041 .- 2044-205X. ; 8:3, s. 329-340
  • Tidskriftsartikel (refereegranskat)abstract
    • Although previous studies suggest that greenhouse gas (GHG) emissions from reservoir sediment exposed to the atmosphere during drought may be substantial, this process has not been rigorously quantified. Here we determined carbon dioxide (CO 2) and methane (CH 4) emissions from sediment cores exposed to a drying and rewetting cycle. We found a strong temporal variation in GHG emissions with peaks when the sediment was drained (C emissions from permanently wet sediment and drained sediments were, respectively, 251 and 1646 mg m −2 d −1 for CO 2 and 0.8 and 547.4 mg m −2 d −1 for CH 4) and then again during rewetting (C emissions from permanently wet sediment and rewetted sediments were, respectively, 456 and 1725mg m −2 d −1 for CO 2 and 1.3 and 3.1 mg m −2 d −1 for CH 4). To gain insight into the importance of these emissions at a regional scale, we used Landsat satellite imagery to upscale our results to all Brazilian reservoirs. We found that during the extreme drought of 2014-2015, an additional 1299 km 2 of sediment was exposed, resulting in an estimated emission of 8.5 × 10 11 g of CO 2-eq during the first 15 d after the overlying water disappeared and in the first 33 d after rewetting, the same order of magnitude as the year-round GHG emissions of large (∼mean surface water area 454 km 2) Brazilian reservoirs, excluding the emissions from the draw-down zone. Our estimate, however, has high uncertainty, with actual emissions likely higher. We therefore argue that the effects of drought on reservoir GHG emissions merits further study, especially because climate models indicate an increase in the frequency of severe droughts in the future. We recommend incorporation of emissions during drying and rewetting into GHG budgets of reservoirs to improve regional GHG emission estimates and to enable comparison between GHG emissions from hydroelectric and other electricity sources. We also emphasize that peak emissions at the onset of drought and the later rewetting should be quantified to obtain reliable emission estimates. ARTICLE HISTORY
  •  
12.
  • Linkhorst, Annika, et al. (författare)
  • Comparing methane ebullition variability across space and time in a Brazilian reservoir
  • 2020
  • Ingår i: Limnology and Oceanography. - : Wiley. - 0024-3590 .- 1939-5590. ; 65:7, s. 1623-1634
  • Tidskriftsartikel (refereegranskat)abstract
    • The potent greenhouse gas methane (CH4) is readily emitted from tropical reservoirs, often via ebullition (bubbles). This highly stochastic emission pathway varies in space and time, however, hampering efforts to accurately assess total CH4 emissions from water bodies. We systematically studied both the spatial and temporal scales of ebullition variability in a river inflow bay of a tropical Brazilian reservoir. We conducted multiple highly resolved spatial surveys of CH4 ebullition using a hydroacoustic approach supplemented with bubble traps over a 12‐month and a 2‐week timescale to evaluate which scale of variation was more important. To quantify the spatial and temporal variability of CH4 ebullition, we used the quartile coefficients of dispersion at each point in space and time and compared their frequency distributions across the various temporal and spatial scales. We found that CH4 ebullition varied more temporally than spatially and that the intra‐annual variability was stronger than daily variability within 2 weeks. We also found that CH4 ebullition was positively related to water temperature increase and pressure decrease, but no consistent relationship with water column depth or sediment characteristics was found, further highlighting that temporal drivers of emissions were stronger than spatial drivers. Annual estimates of CH4 ebullition from our study area may vary by 75–174% if ebullition is not resolved in time and space, but at a minimum we recommend conducting spatially resolved measurements at least once during each major hydrologic season in tropical regions (i.e., in dry and rainy season when water levels are falling and rising, respectively).
  •  
13.
  •  
14.
  • Linkhorst, Annika, et al. (författare)
  • Spatially Resolved Measurements in Tropical Reservoirs Reveal Elevated Methane Ebullition at River Inflows and at High Productivity
  • 2021
  • Ingår i: Global Biogeochemical Cycles. - : American Geophysical Union (AGU). - 0886-6236 .- 1944-9224. ; 35:5
  • Tidskriftsartikel (refereegranskat)abstract
    • An increasing number of rivers are being dammed, particularly in the tropics, and reservoir water surfaces can be a substantial anthropogenic source of greenhouse gases. On average, 80% of the CO2-equivalent emission of reservoirs globally has been attributed to CH4, which is predominantly emitted via ebullition. Since ebullition is highly variable across space and time, both measuring and upscaling to an entire reservoir is challenging, and estimates of reservoir CH4 emission are therefore not well constrained. We measured CH4 ebullition at high spatial resolution with an echosounder and bubble traps in two reservoirs of different use (water storage and hydropower), size and productivity in the tropical Brazilian Atlantic Rainforest biome. Based on the spatially most well-resolved whole-reservoir ebullition measurements in the tropics so far, we found that mean CH4 ebullition was twice as high in river inflow areas than in other parts of the reservoirs, and more than four times higher in the eutrophic reservoir compared to the oligotrophic one. Using different upscaling approaches rendered similar whole-reservoir CH4 ebullition estimates, suggesting that highly spatially resolved measurements may be more important for constraining reservoir-wide CH4 estimates than choice of upscaling approach. The minimum sampling effort was high (>250 and >1700 30-m segments of hydroacoustic survey to reach within 50% or 80% accuracy, respectively). This suggests that traditional manual bubble trap measurements should be abandoned in favour of highly resolved measurements in order to get spatially representative estimates of CH4 ebullition, which accounted for 60 and 99% of total C emission in the two studied reservoirs.
  •  
15.
  •  
16.
  • Mendonca, Raquel, 1983-, et al. (författare)
  • Hydroelectric carbon sequestration
  • 2012
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 5, s. 838-840
  • Tidskriftsartikel (refereegranskat)
  •  
17.
  • Paranaiba, Jose R., et al. (författare)
  • Cross-continental importance of CH4 emissions from dry inland-waters
  • 2022
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 814
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite substantial advances in quantifying greenhouse gas (GHG) emissions from dry inland waters, existing estimates mainly consist of carbon dioxide (CO2) emissions. However, methane (CH4) may also be relevant due to its higher Global Warming Potential (GWP). We report CH4 emissions from dry inland water sediments to i) provide a cross-continental estimate of such emissions for different types of aquatic systems (i.e., lakes, ponds, reservoirs, and streams) and climate zones (i.e., tropical, continental, and temperate); and ii) determine the environmental factors that control these emissions. CH4 emissions from dry inland waters were consistently higher than emissions observed in adjacent uphill soils, across climate zones and in all aquatic systems except for streams. However, the CH4 contribution (normalized to CO2 equivalents; CO2-eq) to the total GHG emissions of dry inland waters was similar for all types of aquatic systems and varied from 10 to 21%. Although we discuss multiple controlling factors, dry inland water CH4 emissions were most strongly related to sediment organic matter content and moisture. Summing CO2 and CH4 emissions revealed a cross-continental average emission of 9.6 +/- 17.4 g CO2-eqm(-2) d(-1) from dry inland waters. We argue that increasing droughts likely expand the worldwide surface area of atmosphere-exposed aquatic sediments, thereby increasing global dry inland water CH4 emissions. Hence, CH4 cannot be ignored if we want to fully understand the carbon (C) cycle of dry sediments.
  •  
18.
  • Paranaíba, José Reinaldo, et al. (författare)
  • Hotspots of diffusive CO2 and CH4 emission from tropical reservoirs shift through time
  • 2021
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - : American Geophysical Union (AGU). - 2169-8953 .- 2169-8961. ; 126:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The patterns of spatial and temporal variability in CO2 and CH4 emission from reservoirs are still poorly studied, especially in tropical regions where hydropower is growing. We performed spatially resolved measurements of dissolved CO2 and CH4 surface water concentrations and their gas-exchange coefficients (k) to compute diffusive carbon flux from four contrasting tropical reservoirs across Brazil during different hydrological seasons. We used an online equilibration system to measure dissolved CO2 and CH4 concentrations; we estimated k from floating chamber deployments in conjunction with discrete CO2 and CH4 water concentration measurements. Diffusive CO2 emissions were higher during dry season than during rainy season, whereas there were no consistent seasonal patterns for diffusive CH4 emissions. Our results reveal that the magnitude and the spatial within-reservoir patterns of diffusive CO2 and CH4 flux varied strongly among hydrological seasons. River inflow areas were often characterized by high seasonality in diffusive flux. Areas close to the dam generally showed low seasonal variability in diffusive CH4 flux but high variability in CO2 flux. Overall, we found that reservoir areas exhibiting highest emission rates (‘hotspots’) shifted substantially across hydrological seasons. Estimates of total diffusive carbon emission from the reservoir surfaces differed between hydrological seasons by a factor up to 7 in Chapéu D’Úvas, up to 13 in Curuá-Una, up to 4 in Furnas, and up to 1.8 in Funil, indicating that spatially-resolved measurements of CO2 and CH4 concentrations and k need to be performed at different hydrological seasons in order to constrain annual diffusive carbon emission.
  •  
19.
  • Paranaíba, José Reinaldo, et al. (författare)
  • Spatially Resolved Measurements of CO2 and CH4 Concentration and Gas-Exchange Velocity Highly Influence Carbon-Emission Estimates of Reservoirs
  • 2018
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 52:2, s. 607-615
  • Tidskriftsartikel (refereegranskat)abstract
    • The magnitude of diffusive carbon dioxide (CO2) and methane (CH4) emission from man-made reservoirs is uncertain because the spatial variability generally is not well-represented. Here, we examine the spatial variability and its drivers for partial pressure, gas-exchange velocity (k), and diffusive flux of CO2 and CH4 in three tropical reservoirs using spatially resolved measurements of both gas concentrations and k. We observed high spatial variability in CO2 and CH4 concentrations and flux within all three reservoirs, with river inflow areas generally displaying elevated CH4 concentrations. Conversely, areas close to the dam are generally characterized by low concentrations and are therefore not likely to be representative for the whole system. A large share (44–83%) of the within-reservoir variability of gas concentration was explained by dissolved oxygen, pH, chlorophyll, water depth, and within-reservoir location. High spatial variability in k was observed, and kCH4 was persistently higher (on average, 2.5 times more) than kCO2. Not accounting for the within-reservoir variability in concentrations and k may lead to up to 80% underestimation of whole-system diffusive emission of CO2 and CH4. Our findings provide valuable information on how to develop field-sampling strategies to reliably capture the spatial heterogeneity of diffusive carbon fluxes from reservoirs.
  •  
20.
  •  
21.
  • Prairie, Yves T., et al. (författare)
  • Greenhouse Gas Emissions from Freshwater Reservoirs : What Does the Atmosphere See?
  • 2018
  • Ingår i: Ecosystems (New York. Print). - : Springer Science and Business Media LLC. - 1432-9840 .- 1435-0629. ; 21:5, s. 1058-1071
  • Tidskriftsartikel (refereegranskat)abstract
    • Freshwater reservoirs are a known source of greenhouse gas (GHG) to the atmosphere, but their quantitative significance is still only loosely constrained. Although part of this uncertainty can be attributed to the difficulties in measuring highly variable fluxes, it is also the result of a lack of a clear accounting methodology, particularly about what constitutes new emissions and potential new sinks. In this paper, we review the main processes involved in the generation of GHG in reservoir systems and propose a simple approach to quantify the reservoir GHG footprint in terms of the net changes in GHG fluxes to the atmosphere induced by damming, that is, ´€˜what the atmosphere sees’. The approach takes into account the pre-impoundment GHG balance of the landscape, the temporal evolution of reservoir GHG emission profile as well as the natural emissions that are displaced to or away from the reservoir site resulting from hydrological and other changes. It also clarifies the portion of the reservoir carbon burial that can potentially be considered an offset to GHG emissions.
  •  
22.
  • Quadra, Gabrielle R., et al. (författare)
  • Environmental Risk of Metal Contamination in Sediments of Tropical Reservoirs
  • 2019
  • Ingår i: Bulletin of Environmental Contamination and Toxicology. - : Springer Science and Business Media LLC. - 0007-4861 .- 1432-0800. ; 103:2, s. 292-301
  • Tidskriftsartikel (refereegranskat)abstract
    • Reservoir sediment can work as both sink and source for contaminants. Once released into the water column, contaminants can be toxic to biota and humans. We investigate potential ecological risk to benthic organisms by metals contamination in six reservoirs in Southeast Brazil. Results of the bioavailable fraction of copper (Cu), chromium (Cr), cadmium (Cd), lead (Pb), zinc (Zn), and iron (Fe) in sediment samples are presented. Considering Cu, Cd, and Zn concentrations, about 6% of the samples exceeded the threshold effect levels of sediment quality guidelines. The comparison to sediment quality guidelines is conservative because we used a moderate metal extraction. Control of contaminant sources in these reservoirs is key because they are sources of water and food. The mixture toxicity assessment showed an increased incidence of toxicity to aquatic organisms showing that mixture toxicity should be taken into account in sediment assessment criteria.
  •  
23.
  • Quadra, Gabrielle Rabelo, et al. (författare)
  • Micropollutants in four Brazilian water reservoirs
  • 2021
  • Ingår i: Limnologica. - : Elsevier BV. - 0075-9511 .- 1873-5851. ; 90
  • Tidskriftsartikel (refereegranskat)abstract
    • The concern about emerging contaminants such as pharmaceuticals is growing, mainly due to the increased global consumption of synthetic chemicals and the potential risk to environmental and human health. Although developing countries may be hotspots of pharmaceutical pollution, the knowledge about the occurrence of pharmaceuticals is still limited and patchy. Brazil holds one of the largest freshwater volumes globally, yet, little is known about the occurrence of pharmaceuticals in reservoirs although they make up key water sources. The aim of this study was, therefore, to investigate micropollutant occurrence, mainly pharmaceuticals, in four freshwater reservoirs distributed in Brazil. Water samples were collected in the Curuá-Una (CUN, Amazon region), Chapéu D’Uvas (CDU, Atlantic Forest region), Funil (FUN, Atlantic Forest region), and Simplício (SIM, Atlantic Forest region) reservoirs. The occurrence of 28 different micropollutants, including 26 pharmaceuticals, was investigated with target analysis on a UHPLC-Orbitrap-MS/MS, and a non-target screening approach was performed on all water samples to identify the presence of additional contaminants. The highest micropollutant concentrations were observed in FUN and SIM, which are the reservoirs with the largest population size in the catchment. Only caffeine was detected in CDU and CUN, which are reservoirs less influenced by urbanization. Metformin was the pharmaceutical with the highest concentrations, reaching 2 191 ng L−1 in FUN. The non-target screening identified 125 chemicals, of which most were pharmaceuticals. The numbers of compounds identified and which were above the LOQ were higher in FUN and SIM, in agreement with results from the target analysis. Metformin is the compound with the highest risk to affect FUN reservoir negatively, based on calculated risk quotients. Considering that the reservoirs are used for multiple purposes, including water supply, irrigation, and aquaculture, it is important to continue investigating micropollutant occurrence to guarantee environmental and human health.
  •  
24.
  • Rabelo Quadra, Gabrielle, et al. (författare)
  • Temporal and Spatial Variability of Micropollutants in a Brazilian Urban River
  • 2021
  • Ingår i: Archives of Environmental Contamination and Toxicology. - : Springer Science and Business Media LLC. - 0090-4341 .- 1432-0703. ; 81:1, s. 142-154
  • Tidskriftsartikel (refereegranskat)abstract
    • In Brazil, environmental occurrence of micropollutants, such as pharmaceuticals, is rarely studied, and these compounds are not part of national water quality guidelines. In this study, we evaluated the occurrence of micropollutants in the Paraibuna River, located in the southeast region of Brazil, which is the most populated region of the country. Surface water samples were taken every 3 months for 1.5 years at four different sites downstream the city of Juiz de Fora. A total of 28 compounds were analyzed on an UHPLC-Orbitrap-MS/MS using a direct injection method. Nine substances were found in at least one water sample, with concentrations ranging from 11 to 4471 ng L-1. The micropollutants found in the river were not detected at the reference site upstream of the city, except for caffeine, which was present at low concentrations in the reference site. Additionally, a nontarget screening of the river samples was applied, which resulted in the identification of 116 chemicals, most of which were pharmaceuticals. Concentrations of most of the micropollutants varied with season and correlated significantly with rainfall events, which caused dilution in the river. The highest observed concentrations were for pharmaceuticals used for treating chronic diseases, such as metformin, which is used to treat diabetes, and were among the most consumed in Juiz de Fora during the study period. Moderate ecotoxicological risks were found for metformin, oxazepam, triclosan, and tramadol. Considering the complex mixture of micropollutants in the environment, more knowledge is needed to elucidate their ecological risk in aquatic ecosystems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-24 av 24
Typ av publikation
tidskriftsartikel (22)
annan publikation (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (20)
övrigt vetenskapligt/konstnärligt (2)
populärvet., debatt m.m. (1)
Författare/redaktör
Barros, Nathan (21)
Roland, Fábio (15)
Sobek, Sebastian (14)
Mendonça, Raquel (11)
Kosten, Sarian (8)
Almeida, Rafael M. (8)
visa fler...
Linkhorst, Annika (8)
DelSontro, Tonya (5)
Paranaíba, José R. (5)
Tranvik, Lars (4)
Sobek, Anna (3)
Davies, Melvyn B (2)
Bastviken, David (2)
Barbosa, Ícaro (2)
Quadra, Gabrielle (2)
Tranvik, Lars J. (1)
Aben, Ralf C. H. (1)
van Donk, Ellen (1)
Frenken, Thijs (1)
Hilt, Sabine (1)
Kazanjian, Garabet (1)
Lamers, Leon P. M. (1)
Peeters, Edwin T. H. ... (1)
Roelofs, Jan G. M. (1)
de Senerpont Domis, ... (1)
Stephan, Susanne (1)
Velthuis, Mandy (1)
Van de Waal, Dedmer ... (1)
Wik, Martin (1)
Thornton, Brett F. (1)
Wilkinson, Jeremy (1)
Ribas, Ignasi (1)
Brandeker, Alexis (1)
Erikson, Anders (1)
Guedel, Manuel (1)
Scandariato, Gaetano (1)
Fridlund, Malcolm, 1 ... (1)
Gillon, Michaël (1)
Nascimbeni, Valerio (1)
Palle, Enric (1)
Ragazzoni, Roberto (1)
Thomas, Nicolas (1)
Walton, Nicholas A. (1)
Cole, Jonathan J. (1)
Nobrega, Gabriel N. (1)
Junger, Pedro C. (1)
Figueiredo, Aline V. (1)
Andrade, Anizio S. (1)
de Moura, Caroline G ... (1)
Tonetta, Denise (1)
visa färre...
Lärosäte
Uppsala universitet (18)
Stockholms universitet (5)
Linköpings universitet (2)
Lunds universitet (2)
Chalmers tekniska högskola (1)
Språk
Engelska (24)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (22)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy