SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Barth Johannes V.) "

Sökning: WFRF:(Barth Johannes V.)

  • Resultat 1-31 av 31
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hohn, Nuri, et al. (författare)
  • Amphiphilic diblock copolymer-mediated structure control in nanoporous germanium-based thin films
  • 2019
  • Ingår i: Nanoscale. - : ROYAL SOC CHEMISTRY. - 2040-3364 .- 2040-3372. ; 11:4, s. 2048-2055
  • Tidskriftsartikel (refereegranskat)abstract
    • Fabrication of porous, foam-like germanium-based (Ge-based) nanostructures is achieved with the use of the amphiphilic diblock copolymer polystyrene-b-polyethylene oxide as structure directing agent. Basic concepts of block copolymer assisted sol-gel synthesis are successfully realized based on the [Ge-9](4-) Zintl clusters as a precursor for Ge-based thin films. Material/elemental composition and crystalline Ge-based phases are investigated via X-ray photoelectron spectroscopy and X-ray diffraction measurements, respectively. Poor-good solvent pair induced phase separation leads to pore sizes in the Ge-based films up to 40 nm, which can be tuned through a change of the molar mixing ratio between polymer template and precursor as proven by grazing incidence small angle X-ray scattering and scanning electron microscopy.
  •  
2.
  • Jiang, Xinyu, et al. (författare)
  • Internal nanoscale architecture and charge carrier dynamics of wide bandgap non-fullerene bulk heterojunction active layers in organic solar cells
  • 2020
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 8:44, s. 23628-23636
  • Tidskriftsartikel (refereegranskat)abstract
    • Bulk heterojunction (BHJ) organic solar cells have gained increasing attention in the past few years. In this work, active layers of a wide-bandgap polymer donor with benzodithiophene units PBDB-T-2F and a non-fullerene small molecule acceptor IT-M are assembled into photovoltaic devices with different amounts of solvent additive 1,8-diiodooctane (DIO). The influence of DIO on the nanoscale film morphology and crystalline structure as well as the charge carrier dynamics of the active layers are investigated by combining grazing-incidence small-angle X-ray scattering (GISAXS), grazing-incidence wide-angle X-ray scattering (GIWAXS), X-ray reflectivity (XRR), UV-visible (UV-vis) absorption spectroscopy, X-ray photoelectron spectroscopy (XPS), time-resolved photoluminescence (TRPL) and space charge limited current measurements, which are correlated with the corresponding performance of the solar cells. At 0.5 vol% DIO addition, the wide-bandgap non-fullerene organic solar cells show the best performance due to high open-circuit voltage and short-circuit current resulting from an improved charge carrier management due to the optimal inner nanoscale morphology of the active layers in terms of surface enrichment, crystallinity and crystalline orientation.
  •  
3.
  • Björk, Jonas, et al. (författare)
  • Unraveling the Mechanism of the Covalent Coupling Between Terminal Alkynes on a Noble Metal
  • 2014
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 118:6, s. 3181-3187
  • Tidskriftsartikel (refereegranskat)abstract
    • The mechanism of the newly reported route for surface-assisted covalent coupling of terminal alkynes on Ag(111) is unraveled by density functional theory based transition state calculations. We illustrate that the reaction path is fundamentally different from the classical coupling schemes in wet chemistry. It is initiated by the covalent coupling between two molecules instead of single-molecule dehydrogenation. The silver substrate is found to play an important role stabilizing the intermediate species by chemical bonds, although it is hardly active electronically in the actual coupling step. The dimer intermediate is concluded to undergo two subsequent dehydrogenation processes expected to be rate-limiting according to the comparatively large barriers, which origin is discussed.
  •  
4.
  • Cao, Nan, et al. (författare)
  • On-surface synthesis of enetriynes
  • 2023
  • Ingår i: Nature Communications. - : NATURE PORTFOLIO. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Belonging to the enyne family, enetriynes comprise a distinct electron-rich all-carbon bonding scheme. However, the lack of convenient synthesis protocols limits the associated application potential within, e.g., biochemistry and materials science. Herein we introduce a pathway for highly selective enetriyne formation via tetramerization of terminal alkynes on a Ag(100) surface. Taking advantage of a directing hydroxyl group, we steer molecular assembly and reaction processes on square lattices. Induced by O-2 exposure the terminal alkyne moieties deprotonate and organometallic bis-acetylide dimer arrays evolve. Upon subsequent thermal annealing tetrameric enetriyne-bridged compounds are generated in high yield, readily self-assembling into regular networks. We combine high-resolution scanning probe microscopy, X-ray photoelectron spectroscopy and density functional theory calculations to examine the structural features, bonding characteristics and the underlying reaction mechanism. Our study introduces an integrated strategy for the precise fabrication of functional enetriyne species, thus providing access to a distinct class of highly conjugated pi-system compounds. Enetriynes, which belong to the enyne family, are characterized by a distinct electron-rich carbon-bonding scheme. Here, the authors report the formation of enetriynes with high selectivity by tetramerization of terminal alkynes on Ag(100).
  •  
5.
  • Cao, Nan, et al. (författare)
  • The role of aromaticity in the cyclization and polymerization of alkyne-substituted porphyrins on Au(111)
  • 2023
  • Ingår i: Nature Chemistry. - : NATURE PORTFOLIO. - 1755-4330 .- 1755-4349.
  • Tidskriftsartikel (refereegranskat)abstract
    • Aromaticity is an established and widely used concept for the prediction of the reactivity of organic molecules. However, its role remains largely unexplored in on-surface chemistry, where the interaction with the substrate can alter the electronic and geometric structure of the adsorbates. Here we investigate how aromaticity affects the reactivity of alkyne-substituted porphyrin molecules in cyclization and coupling reactions on a Au(111) surface. We examine and quantify the regioselectivity in the reactions by scanning tunnelling microscopy and bond-resolved atomic force microscopy at the single-molecule level. Our experiments show a substantially lower reactivity of carbon atoms that are stabilized by the aromatic diaza[18]annulene pathway of free-base porphyrins. The results are corroborated by density functional theory calculations, which show a direct correlation between aromaticity and thermodynamic stability of the reaction products. These insights are helpful to understand, and in turn design, reactions with aromatic species in on-surface chemistry and heterogeneous catalysis. While aromaticity is a useful concept for assessing the reactivity of organic compounds, the connection between aromaticity and on-surface chemistry remains largely unexplored. Now, scanning probe experiments on cyclization reactions of porphyrins on Au(111) show that the peripheral carbon atoms outside of the aromatic 18-& pi; electron pathway exhibit a higher reactivity.
  •  
6.
  • Diller, Katharina, et al. (författare)
  • Polyphenylsilole multilayers - an insight from X-ray electron spectroscopy and density functional theory
  • 2015
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 17:46, s. 31117-31124
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a combined investigation by means of X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine-structure (NEXAFS) spectroscopy of condensed multilayers of two polyphenylsiloles, namely hexaphenylsilole (HPS) and tetraphenylsilole (TPS). Both compounds exhibit very similar spectroscopic signatures, whose interpretation is aided by density functional theory (DFT) calculations. High-resolution XPS spectra of the Si 2p and C 1s core levels of these multilayers indicate a positively charged silicon ion flanked by two negatively charged adjacent carbon atoms in the silole core of both molecules. This result is corroborated quantitatively by DFT calculations on isolated HPS (TPS) molecules, which show a natural bond orbital partial charge of + 1.67 e (+1.58 e) on the silicon and -0.34 e (-0.58 e) on the two neighbouring carbon atoms in the silole ring. These charges are conserved in direct contact with a Cu(111) substrate for films of submonolayer coverage, as evidenced by the Si 2p XPS data. The C K-edge NEXAFS spectra of HPS and TPS multilayers exhibit distinct and differing features. Their main characteristics reappear in the simulated spectra and are assigned to the different inequivalent carbon species in the molecule. The angle-dependent measurements hardly reveal any dichroism, i.e., the molecular p-systems are not uniformly oriented parallel or perpendicular with respect to the surface. Changes in the growth conditions of TPS, i.e., a reduction of the substrate temperature from 240 K to 80 K during deposition, lead to a broadening of both XPS and NEXAFS signatures, as well as an upward shift of the Si 2p and C 1s binding energies, indicative of a less ordered growth mode at low temperature.
  •  
7.
  •  
8.
  • Fritton, Massimo, et al. (författare)
  • The Role of Kinetics versus Thermodynamics in Surface-Assisted Ullmann Coupling on Gold and Silver Surfaces
  • 2019
  • Ingår i: Journal of the American Chemical Society. - : AMER CHEMICAL SOC. - 0002-7863 .- 1520-5126. ; 141:12, s. 4824-4832
  • Tidskriftsartikel (refereegranskat)abstract
    • Surface-assisted Ullmann coupling is the workhorse of on-surface synthesis. Despite its obvious relevance, many fundamental and mechanistic aspects remain elusive. To shed light on individual reaction steps and their progression with temperature, temperature-programmed X-ray photoelectron spectroscopy (TP-XPS) experiments are performed for a prototypical model system. The activation of the coupling by initial dehalogenation is tracked by monitoring Br 3d core levels, whereas the C 1s signature is used to follow the emergence of metastable organometallic intermediates and their conversion to the final covalent products upon heating in real time. The employed 1,3,5-tris(4-bromophenyl)benzene precursor is comparatively studied on Ag(111) versus Au(111), whereby intermolecular bonds and network topologies are additionally characterized by scanning tunneling microscopy (STM). Besides the well-comprehended differences in activation temperatures for debromination, the thermal progression shows marked differences between the two surfaces. Debromination proceeds rapidly on Ag(111), but is relatively gradual on Au(111). While on Ag(111) debromination is well explained by first-order reaction kinetics, thermodynamics prevail on Au(111), underpinned by a close agreement between experimentally deduced and density functional theory (DFT) calculated reaction enthalpies. Thermodynamically controlled debromination on Au(111) over a large temperature range implies an unexpectedly long lifetime of surface-stabilized radicals prior to covalent coupling, as corroborated by TP-XPS of C is core levels. These insights are anticipated to play an important role regarding our ability to rationally synthesize atomically precise low-dimensional covalent nanostructures on surfaces.
  •  
9.
  • Gambardella, P., et al. (författare)
  • Supramolecular control of the magnetic anisotropy in two-dimensional high-spin Fe arrays at a metal interface
  • 2009
  • Ingår i: Nature Materials. - 1476-4660 .- 1476-1122. ; 8:3, s. 189-193
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetic atoms at surfaces may provide the ultimate paradigm of a solid-state magnetic memory exhibiting either classical , or quantum , behaviour. Individual atoms, however, are difficult to arrange in regular patterns1,2,3,4, . Moreover, their magnetic properties are dominated by interaction with the substrate, which, as in the case of Kondo systems, often leads to a decrease or quench of their local magnetic moment , . Here we show that the supramolecular assembly of Fe and 1,4-benzenedicarboxylic acid molecules on a Cu surface results in ordered arrays of high-spin mononuclear Fe centres on a 1.5 nm square grid. Lateral coordination with the molecular ligands yields unsaturated yet stable coordination bonds, which allow for the chemical modification of the electronic and magnetic properties of the Fe atoms independently from the substrate. The easy magnetization direction of the Fe centres can be switched by oxygen adsorption, thus opening a way to control the magnetic anisotropy in supramolecular layers akin to that employed in metallic thin films , , , .
  •  
10.
  • Hellwig, Raphael, et al. (författare)
  • Ho-Mediated Alkyne Reactions at Low Temperatures on Ag(111)
  • 2018
  • Ingår i: Chemistry - A European Journal. - : WILEY-V C H VERLAG GMBH. - 0947-6539 .- 1521-3765. ; 24:60, s. 16126-16135
  • Tidskriftsartikel (refereegranskat)abstract
    • Low-temperature approaches to catalytic conversions promise efficiency, selectivity, and sustainable processes. Control over certain coupling reactions can be obtained via the pre-positioning of reactive moieties by self-assembly. However, in the striving field of on-surface synthesis atomistic precision and control remains largely elusive, because the employed coupling reactions proceed at temperatures beyond the thermal stability of the supramolecular templates. Here, utilizing scanning tunneling microscopy, we demonstrate terminal alkyne on-surface reactions mediated by Ho atoms at a weakly reactive Ag(111) substrate at lowtemperatures. Density functional theory calculations confirm the catalytic activity of the involved adatoms. Pre-deposited Ho induces alkyne dehydrogenation starting at substrate temperatures as low as 100 K. Ho arriving at molecularly pre-covered surfaces held at 130 and 200 K produces covalent enyne-linked dimers and initiates cyclotrimerization, respectively. Statistical product analysis indicates a two-step pathway for the latter, whereby the enyne intermediates influence the distribution of the products. High chemoselectivity results from the absence of cyclotetramerization and diyne-forming homocoupling. Our analysis indicates that mainly the arriving Ho adatoms enable the coupling. These findings support the concept of dynamic heterogeneity by single-atom catalysts and pave the way for alternative means to control on-surface reactions.
  •  
11.
  • Kepčija, Nenad, et al. (författare)
  • Steering On-Surface Self-Assembly of High-Quality Hydrocarbon Networks with Terminal Alkynes
  • 2013
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 117:8, s. 3987-3995
  • Tidskriftsartikel (refereegranskat)abstract
    • The two-dimensional (2D) self-assembly of 1,3,5-triethynyl-benzene (TEB) and de novo synthesized 1,3,5-tris-(4-ethynylphenyl)benzene (Ext-TEB) on Ag(111) was investigated by means of scanning tunneling microscopy (STM) under ultrahigh vacuum (UHV) conditions. Both 3-fold symmetric molecules form long-range ordered nanoporous networks featuring organizational chirality, mediated by novel, planar 6-fold cyclic binding motifs. The key interaction for the expression of the motifs is identified as C–H···π bonding. For Ext-TEB, an additional open-porous phase exists with the 3-fold motif. The nature of the underlying noncovalent bonding schemes is thoroughly analyzed by density functional theory (DFT) calculations including van der Waals corrections. The comparison of calculations focusing on isolated 2D molecular sheets and those including the substrate reveals the delicate balance between the attractive molecule–molecule interaction, mediated by both the terminal alkyne and the phenyl groups, and the molecule–substrate interaction responsible for the commensurability and the regularity of the networks. Comparison with bulk structures of similar molecules suggests that these strictly planar cyclic binding motifs appear only in 2D environments.
  •  
12.
  • Klappenberger, Florian, et al. (författare)
  • On-Surface Synthesis of Carbon-Based Scaffolds and Nanomaterials Using Terminal Alkynes
  • 2015
  • Ingår i: Accounts of Chemical Research. - : American Chemical Society. - 0001-4842 .- 1520-4898. ; 48:7, s. 2140-2150
  • Forskningsöversikt (refereegranskat)abstract
    • CONSPECTUS: The covalent linking of acetylene compounds is an important synthetic tool to control carbon carbon bond formation and has been extensively studied for more than a century. Notably, Glaser coupling and subsequently developed refined procedures present an important route for the fabrication of distinct carbon-based scaffolds incorporating units with both sp(2)- and sp-hybridizations, such as carbyne chains, or two-dimensional (2D) graphyne or graphdiyne networks. However, the realization of the envisioned regular low-dimensional compounds and nanoarchitectures poses formidable challenges when following conventional synthesis protocols in solution, which we briefly overview. Now, recent developments in on-surface synthesis establish novel means for the construction of tailored covalent nanostructures under ultrahigh vacuum conditions. Here we focus on the exploration of pathways utilizing interfacial synthesis with terminal alkynes toward the atomically precise fabrication of low-dimensional carbon-rich scaffolds and nanomaterials. We review direct, molecular-level investigations, mainly relying on scanning probe microscopy, providing atomistic insights into thermally activated reaction schemes, their special pathways and products. Using custom-made molecular units, the employed homocoupling, cyclotrimerization, cycloaddition, and radical cyclization processes indeed yield distinct compounds, extended oligomers or 2D networks. Detailed insights into surface interactions such as bonding sites or conformational adaptation, and specific reaction mechanisms, including hierarchic pathways, were gained by sophisticated density functional theory calculations, complemented by X-ray spectroscopy measurements. For the fabrication of regular nanostructures and architectures, it is moreover imperative to cope with spurious side reactions, frequently resulting in chemical diversity. Accordingly, we highlight measures for increasing chemo- and regioselectivity by smart precursor design, substrate templating, and external stimuli. The ensuing preorganization of functional groups and control of side reactions increases product yields markedly. Finally, the electronic band structures of selected cases of novel low-dimensional hydrocarbon materials accessible with the monomers employed to date are discussed with a specific focus on their differences to theoretically established graphyne- and graphdiyne-related scaffolds. The presented methodology and gained insights herald further advancements in the field, heading toward novel molecular compounds, low-dimensional nanostructures, and coherently reticulated polymeric layers, eventually presenting well-defined arrangements with specific carbon carbon bond sequencing and electronic characteristics. The functional properties of these or other foreseeable scaffolds and architectures bear significant prospects for a wide range of applications, for example, in nanoelectronics, photonics, or carbon-based technologies.
  •  
13.
  •  
14.
  • Lin, Tao, et al. (författare)
  • Terminal Alkyne Coupling on a Corrugated Noble Metal Surface: From Controlled Precursor Alignment to Selective Reactions
  • 2017
  • Ingår i: Chemistry - A European Journal. - : WILEY-V C H VERLAG GMBH. - 0947-6539 .- 1521-3765. ; 23:62, s. 15588-15593
  • Tidskriftsartikel (refereegranskat)abstract
    • Surface-templated covalent coupling of organic precursors currently emerges as a promising route to the atom-precise fabrication of low-dimensional carbon materials. Here, we investigate the adsorption and the coupling reactions of 4,4-diethynyl-1,1:4,1-terphenyl on Au(110) under ultra-high vacuum conditions by using scanning tunneling microscopy combined with density functional theory and kinetic Monte Carlo calculations. Temperature treatment induces both 1,2,4-asymmetric cyclotrimerization and homocoupling, resulting in various reaction products, including a previously unreported, surface-templated H-shaped pentamer. Our analysis of the temperature-dependent relative product abundances unravels that 1,2,4-trimerization and homocoupling proceed via identical intermediate species with the final products depending on the competition of coupling to a third monomer versus dehydrogenation. Our study sheds light on the control of coupling reactions by corrugated surfaces and annealing protocols.
  •  
15.
  • Lyu, Yuanhao, et al. (författare)
  • Unraveling Enyne Bonding via Dehydrogenation-Hydrogenation Processes in On-Surface Synthesis with Terminal Alkynes
  • 2024
  • Ingår i: Advanced Materials Interfaces. - : WILEY. - 2196-7350.
  • Tidskriftsartikel (refereegranskat)abstract
    • On-surface reactions of terminal alkynes in ultrahigh vacuum have attracted widespread attention due to their high technological promise. However, employing different precursors and substrate materials often intricate reaction schemes appear far from being well-understood. Thus, recent investigations of alkyne coupling on noble metal surfaces suggest non-dehydrogenative scenarios, contradicting earlier reports. Herein, the study employs noncontact atomic force microscopy (nc-AFM) with high spatial resolution to conclusively characterize exemplary alkyne coupling products. Contrary to initial interpretations proposing dehydrogenative homocoupling on Ag(111), bond-resolved AFM imaging reveals the expression of enyne motifs. Based on complementary, extensive density functional theory calculations, the pertaining reaction mechanisms are explored. It is proposed that enyne formation initiates with a direct carbon-carbon coupling between two alkyne groups, followed by surface-assisted dehydrogenation-hydrogenation processes. Thereby consecutive steps of atomic hydrogen cleavage, surface migration and recombination to a different carbon atom enable bridging via carbon-carbon double bonding. The new results shed light on subtle, but crucial surface-mediated hydrogen transfer processes involved in the chemical bond formation, which are suggested to be of general relevance in on-surface synthesis. Terminal alkyne coupling on Ag(111) in ultrahigh vacuum is conclusively examined by bond-resolved atomic force microscopy and density functional theory modeling. The prevailing bonding motif is the enyne moiety, originating from a distinct surface-mediated dehydrogenation-hydrogenation reaction pathway. The findings highlight the important role of hydrogen transfer in the course of on-surface synthesis procedures. image
  •  
16.
  • Paintner, Tobias, et al. (författare)
  • Quantum Tunneling Mediated Interfacial Synthesis of a Benzofuran Derivative
  • 2019
  • Ingår i: Angewandte Chemie International Edition. - : WILEY-V C H VERLAG GMBH. - 1433-7851 .- 1521-3773. ; 58:33, s. 11285-11290
  • Tidskriftsartikel (refereegranskat)abstract
    • Reaction pathways involving quantum tunneling of protons are fundamental to chemistry and biology. They are responsible for essential aspects of interstellar synthesis, the degradation and isomerization of compounds, enzymatic activity, and protein dynamics. On-surface conditions have been demonstrated to open alternative routes for organic synthesis, often with intricate transformations not accessible in solution. Here, we investigate a hydroalkoxylation reaction of a molecular species adsorbed on a Ag(111) surface by scanning tunneling microscopy complemented by X-ray electron spectroscopy and density functional theory. The closure of the furan ring proceeds at low temperature (down to 150 K) and without detectable side reactions. We unravel a proton-tunneling-mediated pathway theoretically and confirm experimentally its dominant contribution through the kinetic isotope effect with the deuterated derivative.
  •  
17.
  • Palma, Carlos-Andres, et al. (författare)
  • Photo-induced C-C reactions on insulators towards photolithography of graphene nanoarchitectures
  • 2014
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 136, s. 4651-4658
  • Tidskriftsartikel (refereegranskat)abstract
    • On-surface chemistry for atomically precise sp2 macromolecules requires top-down lithographic methods on insulating surfaces in order to pattern the long-range complex architectures needed by the semiconductor industry. Here, we fabricate sp2-carbon nm-thin films on insulators and under ultra-high vacuum (UHV) conditions from photo-coupled brominated precursors. We reveal that covalent coupling is initiated by C-Br bond cleavage through photon energies exceeding 4.4 eV, as monitored by laser desorption ionization (LDI) mass spectrometry (MS) and X-ray photoelectron spectroscopy (XPS). Density functional theory (DFT) gives insight into the mechanisms of C-Br scission and C-C coupling processes. Further, unreacted material can be sublimed and the coupled sp2-carbon precursors can be graphitized by e-beam treatment at 500°C, demonstrating promising applications in photolithography of graphene nanoarchitectures. Our results present UV-induced reactions on insulators for the formation of all sp2-carbon architectures, thereby converging top-down lithography and bottom-up on-surface chemistry into technology.
  •  
18.
  • Palma, Carlos-Andres, et al. (författare)
  • Topological Dynamics in Supramolecular Rotors
  • 2014
  • Ingår i: Nano letters (Print). - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 14:8, s. 4461-4468
  • Tidskriftsartikel (refereegranskat)abstract
    • Artificial molecular switches, rotors, and machines are set to establish design rules and applications beyond their biological counterparts. Herein we exemplify the role of noncovalent interactions and transient rearrangements in the complex behavior of supramolecular rotors caged in a 2D metal–organic coordination network. Combined scanning tunneling microscopy experiments and molecular dynamics modeling of a supramolecular rotor with respective rotation rates matching with 0.2 kcal mol–1 (9 meV) precision, identify key steps in collective rotation events and reconfigurations. We notably reveal that stereoisomerization of the chiral trimeric units entails topological isomerization whereas rotation occurs in a topology conserving, two-step asynchronous process. In supramolecular constructs, distinct displacements of subunits occur inducing a markedly lower rotation barrier as compared to synchronous mechanisms of rigid rotors. Moreover, the chemical environment can be instructed to control the system dynamics. Our observations allow for a definition of mechanical cooperativity based on a significant reduction of free energy barriers in supramolecules compared to rigid molecules.
  •  
19.
  • Palma, Carlos-Andres, et al. (författare)
  • Visualization and thermodynamic encoding of single-molecule partition function projections
  • 2015
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 6:6210
  • Tidskriftsartikel (refereegranskat)abstract
    • Ensemble averaging of molecular states is fundamental for the experimental determination of thermodynamic quantities. A special case occurs for single-molecule investigations under equilibrium conditions, for which free energy, entropy and enthalpy at finite temperatures are challenging to determine with ensemble averaging alone. Here we report a method to directly record time-averaged equilibrium probability distributions by confining an individual molecule to a nanoscopic pore of a two-dimensional metal-organic nanomesh, using temperature-controlled scanning tunnelling microscopy. We associate these distributions with partition function projections to assess real-space-projected thermodynamic quantities, aided by computational modelling. The presented molecular dynamics-based analysis is able to reproduce experimentally observed projected microstates with high accuracy. By an in silico customized energy landscape, we demonstrate that distinct probability distributions can be encrypted at different temperatures. Such modulation provides means to encode and decode information into position–temperature space.
  •  
20.
  •  
21.
  •  
22.
  • Salinas, Borja Cirera, et al. (författare)
  • Synthesis of Extended Graphdiyne Wires by Vicinal Surface Templating
  • 2014
  • Ingår i: Nano letters (Print). - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 14:4, s. 1891-1897
  • Tidskriftsartikel (refereegranskat)abstract
    • Surface-assisted covalent synthesis currently evolves into an important approach for the fabrication of functional nanostructures at interfaces. Here, we employ scanning tunneling microscopy to investigate the homo-coupling reaction of linear, terminal alkyne-functionalized polyphenylene building-blocks on noble metal surfaces under ultra-high vacuum. On the flat Ag(111) surface thermal activation triggers a variety of side-reactions resulting in irregularly-branched polymeric networks. Upon alignment along the step-edges of the Ag(877) vicinal surface drastically improves the chemoselectivity of the linking process permitting the controlled synthesis of extended-graphdiyne wires with lengths reaching 30 nm. The ideal hydrocarbon scaffold is characterized by density functional theory as a 1D, direct band gap semiconductor material with both HOMO and LUMO-derived bands promisingly isolated within the electronic structure. The templating approach should be applicable to related organic precursors and different reaction schemes thus bears general promise for the engineering of novel low-dimensional carbon-based materials.
  •  
23.
  •  
24.
  • Snezhkova, Olesia, et al. (författare)
  • Iron phthalocyanine on Cu(111): Coverage-dependent assembly and symmetry breaking, temperature-induced homocoupling, and modification of the adsorbate-surface interaction by annealing.
  • 2016
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 144:9
  • Tidskriftsartikel (refereegranskat)abstract
    • We have examined the geometric and electronic structures of iron phthalocyanine assemblies on a Cu(111) surface at different sub- to mono-layer coverages and the changes induced by thermal annealing at temperatures between 250 and 320 °C by scanning tunneling microscopy, x-ray photoelectron spectroscopy, and x-ray absorption spectroscopy. The symmetry breaking observed in scanning tunneling microscopy images is found to be coverage dependent and to persist upon annealing. Further, we find that annealing to temperatures between 300 and 320 °C leads to both desorption of iron phthalocyanine molecules from the surface and their agglomeration. We see clear evidence of temperature-induced homocoupling reactions of the iron phthalocyanine molecules following dehydrogenation of their isoindole rings, similar to what has been observed for related tetrapyrroles on transition metal surfaces. Finally, spectroscopy indicates a modified substrate-adsorbate interaction upon annealing with a shortened bond distance. This finding could potentially explain a changed reactivity of Cu-supported iron phthalocyanine in comparison to that of the pristine compound.
  •  
25.
  • Snezhkova, Olesia, et al. (författare)
  • Nature of the bias-dependent symmetry reduction of iron phthalocyanine on Cu(111)
  • 2015
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 92:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Subtle changes in the geometric and electronic properties of supported molecules, with a potential impact on the functioning of molecular devices, can typically be imaged by scanning probe microscopy, but their exact origin and nature often remain unclear. Here we show explicitly that the symmetry reduction of iron phthalocyanine upon adsorption on Cu(111) can be observed not only in scanning tunneling microscopy, but also in core-level spectroscopy, and that it is related to nonisotropic charge transfer into the two principal molecular axes, but in combination with topographic influences.
  •  
26.
  • Wang, Xiao-Ye, et al. (författare)
  • Exploration of pyrazine-embedded antiaromatic polycyclic hydrocarbons generated by solution and on-surface azomethine ylide homocoupling
  • 2017
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanographenes, namely polycyclic aromatic hydrocarbons (PAHs) with nanoscale dimensions (amp;gt;1 nm), are atomically precise cutouts from graphene. They represent prime models to enhance the scope of chemical and physical properties of graphene through structural modulation and functionalization. Defined nitrogen doping in nanographenes is particularly attractive due to its potential for increasing the number of p-electrons, with the possibility of introducing localized antiaromatic ring elements. Herein we present azomethine ylide homocoupling as a strategy to afford internally nitrogen-doped, non-planar PAH in solution and planar nanographene on surfaces, with central pyrazine rings. Localized antiaromaticity of the central ring is indicated by optical absorption spectroscopy in conjunction with theoretical calculations. Our strategy opens up methods for chemically tailoring graphene and nanographenes, modified by antiaromatic dopants.
  •  
27.
  • Yang, Biao, et al. (författare)
  • Abiotic Formation of an Amide Bond via Surface-Supported Direct Carboxyl-Amine Coupling
  • 2022
  • Ingår i: Angewandte Chemie International Edition. - : WILEY-V C H VERLAG GMBH. - 1433-7851 .- 1521-3773. ; 61:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Amide bond formation is one of the most important reactions in biochemistry, notably being of crucial importance for the origin of life. Herein, we combine scanning tunneling microscopy and X-ray photoelectron spectroscopy studies to provide evidence for thermally activated abiotic formation of amide bonds between adsorbed precursors through direct carboxyl-amine coupling under ultrahigh-vacuum conditions by means of on-surface synthesis. Complementary insights from temperature-programmed desorption measurements and density functional theory calculations reveal the competition between cross-coupling amide formation and decarboxylation reactions on the Au(111) surface. Furthermore, we demonstrate the critical influence of the employed metal support: whereas on Au(111) the coupling readily occurs, different reaction scenarios prevail on Ag(111) and Cu(111). The systematic experiments signal that archetypical bio-related molecules can be abiotically synthesized in clean environments without water or oxygen.
  •  
28.
  • Yang, Biao, et al. (författare)
  • On-Surface Synthesis of Polyphenylene Wires Comprising Rigid Aliphatic Bicyclo[1.1.1]Pentane Isolator Units
  • 2023
  • Ingår i: Angewandte Chemie International Edition. - : WILEY-V C H VERLAG GMBH. - 1433-7851 .- 1521-3773. ; 62:19
  • Tidskriftsartikel (refereegranskat)abstract
    • Bicyclo[1.1.1]pentane (BCP) motifs are of growing importance to the pharmaceutical industry as sp(3)-rich bioisosteres of benzene rings and as molecular building blocks in materials science. Herein we explore the behavior of 1,3-disubstituted BCP moieties on metal surfaces by combining low-temperature scanning tunneling microscopy / non-contact atomic force microscopy studies with density functional theory modeling. We examine the configuration of individual BCP-containing precursors on Au(111), their supramolecular assembly and thermally activated dehalogenative coupling reactions, affording polymeric chains with incorporated electronically isolating units. Our studies not only provide the first sub-molecular insights of the BCP scaffold behavior on surfaces, but also extend the potential application of BCP derivatives towards integration in custom-designed surface architectures.
  •  
29.
  • Zhang, Yi-Qi, et al. (författare)
  • Homo-coupling of terminal alkynes on a noble metal surface
  • 2012
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • The covalent linking of acetylenes presents an important route for the fabrication of novel carbon-based scaffolds and two-dimensional materials distinct from graphene. To date few attempts have been reported to implement this strategy at well-defined interfaces or monolayer templates. Here we demonstrate through real space direct visualization and manipulation in combination with X-ray photoelectron spectroscopy and density functional theory calculations the Ag surface-mediated terminal alkyne Csp−H bond activation and concomitant homo-coupling in a process formally reminiscent of the classical Glaser–Hay type reaction. The alkyne homo-coupling takes place on the Ag(111) noble metal surface in ultrahigh vacuum under soft conditions in the absence of conventionally used transition metal catalysts and with volatile H2 as the only by-product. With the employed multitopic ethynyl species, we demonstrate a hierarchic reaction pathway that affords discrete compounds or polymeric networks featuring a conjugated backbone. This presents a new approach towards on-surface covalent chemistry and the realization of two-dimensional carbon-rich or all-carbon polymers.
  •  
30.
  • Zhang, Yi-Qi, et al. (författare)
  • Intermolecular Hybridization Creating Nanopore Orbital in a Supramolecular Hydrocarbon Sheet
  • 2016
  • Ingår i: Nano letters (Print). - : AMER CHEMICAL SOC. - 1530-6984 .- 1530-6992. ; 16:7, s. 4274-4281
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular orbital engineering is a key ingredient for the design of organic devices. Intermolecular hybridization promises efficient charge carrier transport but usually requires dense packing for significant wave function overlap. Here we use scanning tunneling spectroscopy to spatially resolve the electronic structure of a surface-confined nanoporous supramolecular sheet of a prototypical hydrocarbon compound featuring terminal alkyne (CCH) groups. Surprisingly, localized nanopore orbitals are observed, with their electron density centered in the cavities surrounded by the functional moieties. Density functional theory calculations reveal that these new electronic states originate from the intermolecular hybridization of six in-plane x-orbitals of the carbon carbon triple bonds, exhibiting significant electronic splitting and an energy downshift of approximately 1 eV. Importantly, these nanopore states are distinct from previously reported interfacial states. We unravel the underlying connection between the formation of nanopore orbital and geometric arrangements of functional groups, thus demonstrating the generality of applying related orbital engineering concepts in various types of porous organic structures.
  •  
31.
  • Zhang, Yi-Qi, et al. (författare)
  • Unusual Deprotonated Alkynyl Hydrogen Bonding in Metal-Supported Hydrocarbon Assembly
  • 2015
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society. - 1932-7447 .- 1932-7455. ; 119:17, s. 9669-9679
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate that terminal alkynyl moieties represent powerful functional groups for driving thermally stable, on-surface supramolecular structure formation on a reactive substrate. Through a combination of scanning tunneling microscopy, X-ray photoelectron spectroscopy, near-edge X-ray absorption-fine-structure spectroscopy and density functional theory calculations, we investigate the molecule-surface interaction and self-assembly of two prototypical hydrocarbon species on Cu(111). For 1,3,5-tris(4-ethynylphenyl)benzene (Ext-TEB) adsorption at low temperature (200 K) results in nonassembling, conformationally adapted intact species. Deprotonation of the terminal alkyne moieties, taking place at temperatures ranging from 300 to 350 K, triggers the formation of room-temperature stable, close-packed supramolecular islands. Through DFT calculations, the stabilizing interaction is identified as a trifurcated ionic C-H center dot center dot center dot pi(-delta) hydrogen bonding between the g-system of the ionic alkynyl groups and methine moieties of nearby benzene rings, providing an energy gain of 0.26 eV/molecule upon network formation. Robust assemblies result from the combination of this weak directional attraction with the strong surface anchoring also provided by the alkynyl groups. The generality of this novel ionic hydrogen-bonding type is demonstrated by the observation of low-dimensional assemblies of 9,10-diethynyl-anthracene on the same surface, consistently explained with the same type of interaction.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-31 av 31

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy