SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bartlett Madeleine) "

Search: WFRF:(Bartlett Madeleine)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Bartlett, Madeleine E., et al. (author)
  • Requirements for Robotic Interpretation of Social Signals “in the Wild” : Insights from Diagnostic Criteria of Autism Spectrum Disorder
  • 2020
  • In: Information. - : MDPI. - 2078-2489. ; 11:2
  • Journal article (peer-reviewed)abstract
    • The last few decades have seen widespread advances in technological means to characterise observable aspects of human behaviour such as gaze or posture. Among others, these developments have also led to significant advances in social robotics. At the same time, however, social robots are still largely evaluated in idealised or laboratory conditions, and it remains unclear whether the technological progress is sufficient to let such robots move “into the wild”. In this paper, we characterise the problems that a social robot in the real world may face, and review the technological state of the art in terms of addressing these. We do this by considering what it would entail to automate the diagnosis of Autism Spectrum Disorder (ASD). Just as for social robotics, ASD diagnosis fundamentally requires the ability to characterise human behaviour from observable aspects. However, therapists provide clear criteria regarding what to look for. As such, ASD diagnosis is a situation that is both relevant to real-world social robotics and comes with clear metrics. Overall, we demonstrate that even with relatively clear therapist-provided criteria and current technological progress, the need to interpret covert behaviour cannot yet be fully addressed. Our discussions have clear implications for ASD diagnosis, but also for social robotics more generally. For ASD diagnosis, we provide a classification of criteria based on whether or not they depend on covert information and highlight present-day possibilities for supporting therapists in diagnosis through technological means. For social robotics, we highlight the fundamental role of covert behaviour, show that the current state-of-the-art is unable to charact
  •  
3.
  • Bartlett, Madeleine, et al. (author)
  • What Can You See? : Identifying Cues on Internal States From the Movements of Natural Social Interactions
  • 2019
  • In: Frontiers in Robotics and AI. - : Frontiers Research Foundation. - 2296-9144. ; 6:49
  • Journal article (peer-reviewed)abstract
    • In recent years, the field of Human-Robot Interaction (HRI) has seen an increasingdemand for technologies that can recognize and adapt to human behaviors and internalstates (e.g., emotions and intentions). Psychological research suggests that humanmovements are important for inferring internal states. There is, however, a need to betterunderstand what kind of information can be extracted from movement data, particularlyin unconstrained, natural interactions. The present study examines which internal statesand social constructs humans identify from movement in naturalistic social interactions.Participants either viewed clips of the full scene or processed versions of it displaying2D positional data. Then, they were asked to fill out questionnaires assessing their socialperception of the viewed material. We analyzed whether the full scene clips were moreinformative than the 2D positional data clips. First, we calculated the inter-rater agreementbetween participants in both conditions. Then, we employed machine learning classifiersto predict the internal states of the individuals in the videos based on the ratingsobtained. Although we found a higher inter-rater agreement for full scenes comparedto positional data, the level of agreement in the latter case was still above chance,thus demonstrating that the internal states and social constructs under study wereidentifiable in both conditions. A factor analysis run on participants’ responses showedthat participants identified the constructs interaction imbalance, interaction valence andengagement regardless of video condition. The machine learning classifiers achieveda similar performance in both conditions, again supporting the idea that movementalone carries relevant information. Overall, our results suggest it is reasonable to expecta machine learning algorithm, and consequently a robot, to successfully decode andclassify a range of internal states and social constructs using low-dimensional data (suchas the movements and poses of observed individuals) as input.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view