SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bassinet C) "

Sökning: WFRF:(Bassinet C)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kulka, U., et al. (författare)
  • Realising the European network of biodosimetry : RENEB-status quo
  • 2015
  • Ingår i: Radiation Protection Dosimetry. - : Oxford University Press (OUP). - 0144-8420 .- 1742-3406. ; 164:1-2, s. 42-45
  • Tidskriftsartikel (refereegranskat)abstract
    • Creating a sustainable network in biological and retrospective dosimetry that involves a large number of experienced laboratories throughout the European Union (EU) will significantly improve the accident and emergency response capabilities in case of a large-scale radiological emergency. A well-organised cooperative action involving EU laboratories will offer the best chance for fast and trustworthy dose assessments that are urgently needed in an emergency situation. To this end, the EC supports the establishment of a European network in biological dosimetry (RENEB). The RENEB project started in January 2012 involving cooperation of 23 organisations from 16 European countries. The purpose of RENEB is to increase the biodosimetry capacities in case of large-scale radiological emergency scenarios. The progress of the project since its inception is presented, comprising the consolidation process of the network with its operational platform, intercomparison exercises, training activities, proceedings in quality assurance and horizon scanning for new methods and partners. Additionally, the benefit of the network for the radiation research community as a whole is addressed.
  •  
2.
  • Waldner, L., et al. (författare)
  • The 2019-2020 EURADOS WG10 and RENEB Field Test of Retrospective Dosimetry Methods in a Small-Scale Incident Involving Ionizing Radiation
  • 2021
  • Ingår i: Radiation Research. - 0033-7587 .- 1938-5404. ; 195:3, s. 253-264
  • Tidskriftsartikel (refereegranskat)abstract
    • With the use of ionizing radiation comes the risk of accidents and malevolent misuse. When unplanned exposures occur, there are several methods which can be used to retrospectively reconstruct individual radiation exposures; biological methods include analysis of aberrations and damage of chromosomes and DNA, while physical methods rely on luminescence (TL/OSL) or EPR signals. To ensure the quality and dependability of these methods, they should be evaluated under realistic exposure conditions. In 2019, EURADOS Working Group 10 and RENEB organized a field test with the purpose of evaluating retrospective dosimetry methods as carried out in potential real-life exposure scenarios. A 1.36 TBq 192Ir source was used to irradiate anthropomorphic phantoms in different geometries at doses of several Gy in an outdoor open-air geometry. Materials intended for accident dosimetry (including mobile phones and blood) were placed on the phantoms together with reference dosimeters (LiF, NaCl, glass). The objective was to estimate radiation exposures received by individuals as measured using blood and fortuitous materials, and to evaluate these methods by comparing the estimated doses to reference measurements and Monte Carlo simulations. Herein we describe the overall planning, goals, execution and preliminary outcomes of the 2019 field test. Such field tests are essential for the development of new and existing methods. The outputs from this field test include useful experience in terms of planning and execution of future exercises, with respect to time management, radiation protection, and reference dosimetry to be considered to obtain relevant data for analysis.
  •  
3.
  • Bassinet, C., et al. (författare)
  • Retrospective radiation dosimetry using OSL of electronic components: Results of an inter-laboratory comparison
  • 2014
  • Ingår i: Radiation Measurements. - : Elsevier BV. - 1879-0925 .- 1350-4487. ; 71, s. 475-479
  • Tidskriftsartikel (refereegranskat)abstract
    • In the framework of the EU-FP7 MULTIBIODOSE project, two protocols using OSL of resistors removed from the circuit board of mobile phones were developed with the aim to use the resistors as fortuitous dosimeters in the event of a large scale radiological accident. This paper presents the results of an inter-laboratory comparison carried out under the umbrella of EURADOS. The two aims of this exercise were the validation of the MULTIBIODOSE protocols by a large number of laboratories and the dissemination of the method with the objective of preparing the basis for a network that could increase Europe's response capacity in the case of a mass casualty radiological emergency. Twelve institutes from eleven European countries and one institute from the USA, with various degrees of expertise in OSL dosimetry, took part in the OSL inter-laboratory comparison. Generally, a good agreement within uncertainties was observed between estimated and nominal doses. (C) 2014 Elsevier Ltd. All rights reserved.
  •  
4.
  • Abend, M., et al. (författare)
  • Inter-laboratory comparison of gene expression biodosimetry for protracted radiation exposures as part of the RENEB and EURADOS WG10 2019 exercise
  • 2021
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Large-scale radiation emergency scenarios involving protracted low dose rate radiation exposure (e.g. a hidden radioactive source in a train) necessitate the development of high throughput methods for providing rapid individual dose estimates. During the RENEB (Running the European Network of Biodosimetry) 2019 exercise, four EDTA-blood samples were exposed to an Iridium-192 source (1.36 TBq, Tech-Ops 880 Sentinal) at varying distances and geometries. This resulted in protracted doses ranging between 0.2 and 2.4 Gy using dose rates of 1.5-40 mGy/min and exposure times of 1 or 2.5 h. Blood samples were exposed in thermo bottles that maintained temperatures between 39 and 27.7 degrees C. After exposure, EDTA-blood samples were transferred into PAXGene tubes to preserve RNA. RNA was isolated in one laboratory and aliquots of four blinded RNA were sent to another five teams for dose estimation based on gene expression changes. Using an X-ray machine, samples for two calibration curves (first: constant dose rate of 8.3 mGy/min and 0.5-8 h varying exposure times; second: varying dose rates of 0.5-8.3 mGy/min and 4 h exposure time) were generated for distribution. Assays were run in each laboratory according to locally established protocols using either a microarray platform (one team) or quantitative real-time PCR (qRT-PCR, five teams). The qRT-PCR measurements were highly reproducible with coefficient of variation below 15% in >= 75% of measurements resulting in reported dose estimates ranging between 0 and 0.5 Gy in all samples and in all laboratories. Up to twofold reductions in RNA copy numbers per degree Celsius relative to 37 degrees C were observed. However, when irradiating independent samples equivalent to the blinded samples but increasing the combined exposure and incubation time to 4 h at 37 degrees C, expected gene expression changes corresponding to the absorbed doses were observed. Clearly, time and an optimal temperature of 37 degrees C must be allowed for the biological response to manifest as gene expression changes prior to running the gene expression assay. In conclusion, dose reconstructions based on gene expression measurements are highly reproducible across different techniques, protocols and laboratories. Even a radiation dose of 0.25 Gy protracted over 4 h (1 mGy/min) can be identified. These results demonstrate the importance of the incubation conditions and time span between radiation exposure and measurements of gene expression changes when using this method in a field exercise or real emergency situation.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy