SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Battiato Marco) "

Sökning: WFRF:(Battiato Marco)

  • Resultat 1-19 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Locht, Inka L. M., 1986-, et al. (författare)
  • Magnetic asymmetry around the 3p absorption edge in Fe and Ni
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • This work is a joint theoretical and experimental study of the relation between the magneto- optical response of a material in the sub-picosecond timescale and its instantaneous magnetisation. We perform pump-probe experiments in the transverse magneto-optical Kerr effect (T-MOKE) geometry. We measure the magnetic asymmetry of elemental Fe and Ni before and after the laser pulse. The observed differences between the magnetic asymmetry curves for various photon energies suggest that the relation between asymmetry and sample magnetization is more complex than a simple proportionality. Further insight is obtained by means of theoretical simulations based on density-functional theory. Our calculations show that non-linear effects in the asymmetry are most prominent at energies corresponding to the absorption edge and that the proportionality is recovered outside of this region. In conclusion, our experimental and theoretical results emphasize the need of including the complex relation between asymmetry and magnetization in the interpretation of ultrafast magnetization experiments in terms of microscopic properties. 
  •  
2.
  • Battiato, Marco, et al. (författare)
  • Beyond linear response theory for intensive light-matter interactions : Order formalism and ultrafast transient dynamics
  • 2012
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 85:4, s. 045117-
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently constructed radiation sources deliver brilliant, ultrashort coherent radiation fields with which the material's response can be investigated on the femtosecond to attosecond time scale. Here, we develop a theoretical framework for the interaction of the material's electrons with such intensive, short radiation pulses. Our theory is based on the time evolution of the electron density matrix, as defined through the Liouville-von Neumann equation. The latter equation is solved here within the framework of the response theory, incorporating the perturbing field in higher orders. An analytical tool, called the order notation, is developed, which permits the explicit calculation of the arising nth-order operatorial convolutions. As examples of the formalism, explicit expressions for several optical phenomena are worked out. Through the developed theory presented here, two fundamental results are achieved: first, the perturbing field to higher than linear orders is included in an elegant and compact way, allowing to treat highly brilliant light, and, second, the complete transient time response on the subfemtosecond scale is analytically provided, thus dropping the adiabatic approximation commonly made in standard linear response theory.
  •  
3.
  • Battiato, Marco, et al. (författare)
  • Quantum theory of the inverse Faraday effect
  • 2014
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 89:1, s. 014413-
  • Tidskriftsartikel (refereegranskat)abstract
    • We provide a quantum theoretical description of the magnetic polarization induced by intense circularly polarized light in a material. Such effect-commonly referred to as the inverse Faraday effect-is treated using beyond-linear response theory, considering the applied electromagnetic field as external perturbation. An analytical time-dependent solution of the Liouville-von Neumann equation to second order is obtained for the density matrix and used to derive expressions for the optomagnetic polarization. Two distinct cases are treated, the long-time adiabatic limit of polarization imparted by continuous wave irradiation, and the full temporal shape of the transient magnetic polarization induced by a short laser pulse. We further derive expressions for the Verdet constants for the inverse, optomagnetic Faraday effect and for the conventional, magneto-optical Faraday effect and show that they are in general different. Additionally, we derive expressions for the Faraday and inverse Faraday effects within the Drude-Lorentz theory and demonstrate that their equality does not hold in general, but only for dissipationless media. As an example, we perform initial quantum mechanical calculations of the two Verdet constants for a hydrogenlike atom and we extract the trends. We observe that one reason for a large inverse Faraday effect in heavy atoms is the spatial extension of the wave functions rather than the spin-orbit interaction, which nonetheless contributes positively.
  •  
4.
  • Battiato, Marco, 1979- (författare)
  • Superdiffusive Spin Transport and Ultrafast Magnetization Dynamics : Femtosecond spin transport as the route to ultrafast spintronics
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The debate over the origin of the ultrafast demagnetization has been intensively active for the past 16 years. Several microscopic mechanisms have been proposed but none has managed so far to provide direct and incontrovertible evidences of their validity. In this context I have proposed an approach based on spin dependent electron superdiffusion as the driver of the ultrafast demagnetization.Excited electrons and holes in the ferromagnetic metal start diffusing after the absorption of the laser photons. Being the material ferromagnetic, the majority and minority spin channels occupy very different bands. It is then not surprising that transport properties are strongly spin dependent. In most of the ferromagnetic metals, majority spin excited electrons have better transport properties than minority ones. The effect is that majority carriers are more efficient in leaving the area irradiated by the laser, triggering a net spin transport.Recent experimental findings are revolutionising the field by being incompatible with previously proposed models and showing uncontrovertibly the sign of spin superdiffusion.We have shown that spin diffusing away from a layer undergoing ultrafast demagnetization can be used to create an ultrafast increase of magnetization in a neighboring magnetic layer. We have also shown that optical excitation is not a prerequisite for the ultrafast demagnetization and that excited electrons superdiffusing from a non-magnetic substrate can trigger the demagnetization. Finally we have shown that it is possible to control the time shape of the spin currents created and developed a technique to detect directly spin currents in a contact-less way. The impact of these new discoveries goes beyond the solution of the mystery of ultrafast demagnetization. It shows how spin information can be, not only manipulated, as shown 16 years ago, but most importantly transferred at unprecedented speeds. This new discovery lays the basis for a full femtosecond spintronics.
  •  
5.
  • Battiato, Marco, et al. (författare)
  • Superdiffusive Spin Transport as a Mechanism of Ultrafast Demagnetization
  • 2010
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 105:2, s. 027203-
  • Tidskriftsartikel (refereegranskat)abstract
    • We propose a semiclassical model for femtosecond laser-induced demagnetization due to spin-polarized excited electron diffusion in the superdiffusive regime. Our approach treats the finite elapsed time and transport in space between multiple electronic collisions exactly, as well as the presence of several metal films in the sample. Solving the derived transport equation numerically we show that this mechanism accounts for the experimentally observed demagnetization within 200 fs in Ni, without the need to invoke any angular momentum dissipation channel.
  •  
6.
  • Battiato, Marco, et al. (författare)
  • Theory of laser-induced ultrafast superdiffusive spin transport in layered heterostructures
  • 2012
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 86:2, s. 024404-
  • Tidskriftsartikel (refereegranskat)abstract
    • Femtosecond laser excitation of a ferromagnetic material creates energetic spin-polarized electrons that have anomalous transport characteristics. We develop a semiclassical theory that is specifically dedicated to capture the transport of laser-excited nonequilibrium (NEQ) electrons. The randomly occurring multiple electronic collisions, which give rise to electron thermalization, are treated exactly and we include the generation of electron cascades due to inelastic electron-electron scatterings. The developed theory can, moreover, treat the presence of several different layers in the laser-irradiated material. The derived spin-dependent transport equation is solved numerically and it is shown that the hot NEQ electron spin transport occurs neither in the diffusive nor ballistic regime, it is superdiffusive. As the excited spin majority and minority electrons in typical transition-metal ferromagnets (e.g., Fe, Ni) have distinct, energy-dependent lifetimes, fast spin dynamics in the femtosecond (fs) regime is generated, causing effectively a spin current. As examples, we solve the resulting spin dynamics numerically for typical heterostructures, specifically, a ferromagnetic/nonmagnetic metallic layered junction (i.e., Fe/Al and Ni/Al) and a ferromagnetic/nonmagnetic insulator junction (Fe or Ni layer on a large band-gap insulator as, e.g., MgO). For the ferromagnetic/nonmagnetic metallic junction where the ferromagnetic layer is laser-excited, the computed spin dynamics shows that injection of a superdiffusive spin current in the nonmagnetic layer (Al) is achieved. The injected spin current consists of screened NEQ, mobile majority-spin electrons and is nearly 90% spin-polarized for Ni and about 65% for Fe. Concomitantly, a fast demagnetization of the ferromagnetic polarization in the femtosecond regime is driven. The analogy of the generated spin current to a superdiffusive spin Seebeck effect is surveyed.
  •  
7.
  • Battiato, Marco, et al. (författare)
  • Treating the effect of interface reflections on superdiffusive spin transport in multilayer samples (invited)
  • 2014
  • Ingår i: Journal of Applied Physics. - : AIP Publishing. - 0021-8979 .- 1089-7550. ; 115:17, s. 172611-
  • Tidskriftsartikel (refereegranskat)abstract
    • Femtosecond laser-induced magnetization dynamics has recently been related to superdiffusive spin transport. With the aim to accurately compute spin superdiffusion in the complex geometries of layered heterostructures and free standing layers, we develop here a dedicated numerical scheme. We introduce a discretization technique to solve the superdiffusive equation numerically on a time and space grid. The discretization scheme facilitates an explicit treatment of the total reflection at the vacuum-material surfaces as well as of partial reflections at the interfaces between two different materials. The advantages of the numerical technique are discussed. (C) 2014 AIP Publishing LLC.
  •  
8.
  • Carva, Karel, et al. (författare)
  • Ab Initio Investigation of the Elliott-Yafet Electron-Phonon Mechanism in Laser-Induced Ultrafast Demagnetization
  • 2011
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 107:20, s. 207201-
  • Tidskriftsartikel (refereegranskat)abstract
    • The spin-flip (SF) Eliashberg function is calculated from first principles for ferromagnetic Ni to accurately establish the contribution of Elliott-Yafet electron-phonon SF scattering to Ni's femtosecond laser-driven demagnetization. This is used to compute the SF probability and demagnetization rate for laser-created thermalized as well as nonequilibrium electron distributions. Increased SF probabilities are found for thermalized electrons, but the induced demagnetization rate is extremely small. A larger demagnetization rate is obtained for nonequilibrium electron distributions, but its contribution is too small to account for femtosecond demagnetization.
  •  
9.
  • Carva, Karel, et al. (författare)
  • Ab initio theory of electron-phonon mediated ultrafast spin relaxation of laser-excited hot electrons in transition-metal ferromagnets
  • 2013
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 87:18, s. 184425-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a computational theoretical investigation of electron spin-flip scattering induced by the electron-phonon interaction in the transition-metal ferromagnets bcc Fe, fcc Co, and fcc Ni. The Elliott-Yafet electron-phonon spin-flip scattering is computed from first principles, employing a generalized spin-flip Eliashberg function as well as ab initio computed phonon dispersions. Aiming at investigating the amount of electron-phonon mediated demagnetization in femtosecond laser-excited ferromagnets, the formalism is extended to treat laser-created thermalized as well as nonequilibrium, nonthermal hot electron distributions. Using the developed formalism we compute the phonon-induced spin lifetimes of hot electrons in Fe, Co, and Ni. The electron-phonon mediated demagnetization rate is evaluated for laser-created thermalized and nonequilibrium electron distributions. Nonthermal distributions are found to lead to a stronger demagnetization rate than hot, thermalized distributions, yet their demagnetizing effect is not enough to explain the experimentally observed demagnetization occurring in the subpicosecond regime.
  •  
10.
  •  
11.
  • Carva, Karel, et al. (författare)
  • Theory of femtosecond laser-induced demagnetization
  • 2015
  • Ingår i: ULTRAFAST MAGNETISM I. - Cham : Springer International Publishing. - 9783319077437 - 9783319077420 ; , s. 111-115
  • Konferensbidrag (refereegranskat)abstract
    • Using ab initio calculations we computed the ultrafast demagnetization that can be achieved by Elliott-Yafet electron-phonon spin-flip scatterings in laser-excited ferromagnets. Our calculations show that nonequilibrium laser-created distributions contribute mostly to the ultrafast demagnetization. Nonetheless, the total Elliott-Yafet contribution is too small to account for the fs-demagnetization.
  •  
12.
  •  
13.
  • Eschenlohr, A., et al. (författare)
  • Ultrafast spin transport as key to femtosecond demagnetization
  • 2013
  • Ingår i: Nature Materials. - 1476-1122 .- 1476-4660. ; 12:4, s. 332-336
  • Tidskriftsartikel (refereegranskat)abstract
    • Irradiating a ferromagnet with a femtosecond laser pulse is known to induce an ultrafast demagnetization within a few hundred femtoseconds. Here we demonstrate that direct laser irradiation is in fact not essential for ultrafast demagnetization, and that electron cascades caused by hot electron currents accomplish it very efficiently. We optically excite a Au/Ni layered structure in which the 30 nm Au capping layer absorbs the incident laser pump pulse and subsequently use the X-ray magnetic circular dichroism technique to probe the femtosecond demagnetization of the adjacent 15 nm Ni layer. A demagnetization effect corresponding to the scenario in which the laser directly excites the Ni film is observed, but with a slight temporal delay. We explain this unexpected observation by means of the demagnetizing effect of a superdiffusive current of non-equilibrium, non-spin-polarized electrons generated in the Au layer.
  •  
14.
  • Jana, Somnath, et al. (författare)
  • Analysis of the linear relationship between asymmetry and magnetic moment at the M edge of 3d transition metals
  • 2020
  • Ingår i: Physical Review Research. - : American Physical Society. - 2643-1564. ; 2:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The magneto-optical response of Fe and Ni during ultrafast demagnetization is studied experimentally and theoretically. We have performed pump-probe experiments in the transverse magneto-optical Kerr effect (T-MOKE) geometry using photon energies that cover the M absorption edges of Fe and Ni between 40 and 72 eV. The magnetic asymmetry was obtained by forming the difference of reflected intensities obtained for two opposite orientations of the sample magnetization. Density functional theory (DFT) was used to calculate the magneto-optical response of different magnetic configurations, representing different types of excitations: long wavelength magnons, short wavelength magnons, and Stoner excitations. In the case of Fe, we find that the calculated asymmetry is strongly dependent on the specific type of magnetic excitation. Our modeling also reveals that during remagnetization Fe is, to a reasonable approximation, described by magnons, even though small nonlinear contributions could indicate some degree of Stoner excitations as well. In contrast, we find that the calculated asymmetry in Ni is rather insensitive to the type of magnetic excitations. However, there is a weak nonlinearity in the relation between asymmetry and the off-diagonal component of the dielectric tensor, which does not originate from the modifications of the electronic structure. Our experimental and theoretical results thus emphasize the need to consider a coupling between asymmetry and magnetization that may be more complex than a simple linear relationship. This insight is crucial for the microscopic interpretation of ultrafast magnetization experiments.
  •  
15.
  • Kampfrath, T., et al. (författare)
  • Terahertz spin current pulses controlled by magnetic heterostructures
  • 2013
  • Ingår i: Nature Nanotechnology. - 1748-3387 .- 1748-3395. ; 8:4, s. 256-260
  • Tidskriftsartikel (refereegranskat)abstract
    • In spin-based electronics, information is encoded by the spin state of electron bunches(1-4). Processing this information requires the controlled transport of spin angular momentum through a solid(5,6), preferably at frequencies reaching the so far unexplored terahertz regime(7-9). Here, we demonstrate, by experiment and theory, that the temporal shape of femtosecond spin current bursts can be manipulated by using specifically designed magnetic heterostructures. A laser pulse is used to drive spins(10-12) from a ferromagnetic iron thin film into a non-magnetic cap layer that has either low (ruthenium) or high (gold) electron mobility. The resulting transient spin current is detected by means of an ultrafast, contactless amperemeter(13) based on the inverse spin Hall effect(14,15), which converts the spin flow into a terahertz electromagnetic pulse. We find that the ruthenium cap layer yields a considerably longer spin current pulse because electrons are injected into ruthenium d states, which have a much lower mobility than gold sp states(16). Thus, spin current pulses and the resulting terahertz transients can be shaped by tailoring magnetic heterostructures, which opens the door to engineering high-speed spintronic devices and, potentially, broadband terahertz emitters(7-9).
  •  
16.
  • Kampfrath, T., et al. (författare)
  • Ultrafast spin precession and transport controlled and probed with terahertz radiation
  • 2015
  • Ingår i: Ultrafast Magnetism I. - Cham : Springer International Publishing. - 9783319077437 - 9783319077420 ; , s. 324-326
  • Konferensbidrag (refereegranskat)abstract
    • We present examples of how terahertz (THz) electromagnetic transients can be used to control spin precession in antiferromagnets (through the THz Zeeman torque) and to probe spin transport in magnetic heterostructures (through the THz inverse spin Hall effect), on femtosecond time scales.
  •  
17.
  • Locht, Inka L. M., et al. (författare)
  • Ultrafast magnetization dynamics : Microscopic electronic configurations and ultrafast spectroscopy
  • 2015
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 92:6
  • Tidskriftsartikel (refereegranskat)abstract
    • We provide an approach for the identification of the electronic and magnetic configurations of ferromagnetic Fe after an ultrafast decrease or increase of the magnetization. The model is based on the well-grounded assumption that, after an ultrafast variation of the magnetization, the system achieves a partial thermal equilibrium. With statistical arguments we show that the magnetic configurations are qualitatively different in the case of reduced or increased magnetization. The predicted magnetic configurations are then used to compute the dielectric response at the 3p (M) absorption edge, which is directly related to the changes observed in the experimental T-MOKE data. The good qualitative agreement between theory and experiment offers a substantial support for the validity of the model, and to the very existence of an ultrafast increase of the magnetization.
  •  
18.
  • Rudolf, Dennis, et al. (författare)
  • Element Selective Investigation of Spin Dynamics in Magnetic Multilayers
  • 2015
  • Ingår i: Ultrafast Magnetism I. - Cham : Springer International Publishing. - 9783319077437 - 9783319077420 ; , s. 307-309
  • Konferensbidrag (refereegranskat)abstract
    • Our understanding of ultrafast switching processes in novel spin-based electronics depends on our detailed knowledge of interactions between spin, charge and phonons in magnetic structures. We present element-selective studies, using extreme ultraviolet (XUV) light, to gain insight into spin dynamics in exchange coupled magnetic multilayers on the femtosecond time scale.
  •  
19.
  • Rudolf, Dennis, et al. (författare)
  • Ultrafast magnetization enhancement in metallic multilayers driven by superdiffusive spin current
  • 2012
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 3, s. 1037-
  • Tidskriftsartikel (refereegranskat)abstract
    • Uncovering the physical mechanisms that govern ultrafast charge and spin dynamics is crucial for understanding correlated matter as well as the fundamental limits of ultrafast spin-based electronics. Spin dynamics in magnetic materials can be driven by ultrashort light pulses, resulting in a transient drop in magnetization within a few hundred femtoseconds. However, a full understanding of femtosecond spin dynamics remains elusive. Here we spatially separate the spin dynamics using Ni/Ru/Fe magnetic trilayers, where the Ni and Fe layers can be ferroor antiferromagnetically coupled. By exciting the layers with a laser pulse and probing the magnetization response simultaneously but separately in Ni and Fe, we surprisingly find that optically induced demagnetization of the Ni layer transiently enhances the magnetization of the Fe layer when the two layer magnetizations are initially aligned parallel. Our observations are explained by a laser-generated superdiffusive spin current between the layers.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-19 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy