SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bauerfeind A) "

Sökning: WFRF:(Bauerfeind A)

  • Resultat 1-16 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Marenholz, I, et al. (författare)
  • Meta-analysis identifies seven susceptibility loci involved in the atopic march
  • 2015
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 6, s. 8804-
  • Tidskriftsartikel (refereegranskat)abstract
    • Eczema often precedes the development of asthma in a disease course called the ‘atopic march’. To unravel the genes underlying this characteristic pattern of allergic disease, we conduct a multi-stage genome-wide association study on infantile eczema followed by childhood asthma in 12 populations including 2,428 cases and 17,034 controls. Here we report two novel loci specific for the combined eczema plus asthma phenotype, which are associated with allergic disease for the first time; rs9357733 located in EFHC1 on chromosome 6p12.3 (OR 1.27; P=2.1 × 10−8) and rs993226 between TMTC2 and SLC6A15 on chromosome 12q21.3 (OR 1.58; P=5.3 × 10−9). Additional susceptibility loci identified at genome-wide significance are FLG (1q21.3), IL4/KIF3A (5q31.1), AP5B1/OVOL1 (11q13.1), C11orf30/LRRC32 (11q13.5) and IKZF3 (17q21). We show that predominantly eczema loci increase the risk for the atopic march. Our findings suggest that eczema may play an important role in the development of asthma after eczema.
  •  
4.
  •  
5.
  •  
6.
  • Soltwedel, T., et al. (författare)
  • Natural variability or anthropogenically-induced variation? Insights from 15 years of multidisciplinary observations at the arctic marine LTER site HAUSGARTEN
  • 2016
  • Ingår i: Ecological Indicators. - : Elsevier BV. - 1470-160X. ; 65, s. 89-102
  • Tidskriftsartikel (refereegranskat)abstract
    • Time-series studies of arctic marine ecosystems are rare. This is not surprising since polar regions are largely only accessible by means of expensive modern infrastructure and instrumentation. In 1999, the Alfred Wegener Institute, Helmholtz-Centre for Polar and Marine Research (AWI) established the LTER (Long-Term Ecological Research) observatory HAUSGARTEN crossing the Fram Strait at about 79°N. Multidisciplinary investigations covering all parts of the open-ocean ecosystem are carried out at a total of 21 permanent sampling sites in water depths ranging between 250 and 5500 m. From the outset, repeated sampling in the water column and at the deep seafloor during regular expeditions in summer months was complemented by continuous year-round sampling and sensing using autonomous instruments in anchored devices (i.e., moorings and free-falling systems). The central HAUSGARTEN station at 2500 m water depth in the eastern Fram Strait serves as an experimental area for unique biological in situ experiments at the seafloor, simulating various scenarios in changing environmental settings. Long-term ecological research at the HAUSGARTEN observatory revealed a number of interesting temporal trends in numerous biological variables from the pelagic system to the deep seafloor. Contrary to common intuition, the entire ecosystem responded exceptionally fast to environmental changes in the upper water column. Major variations were associated with a Warm-Water-Anomaly evident in surface waters in eastern parts of the Fram Strait between 2005 and 2008. However, even after 15 years of intense time-series work at HAUSGARTEN, we cannot yet predict with complete certainty whether these trends indicate lasting alterations due to anthropologically-induced global environmental changes of the system, or whether they reflect natural variability on multiyear time-scales, for example, in relation to decadal oscillatory atmospheric processes. © 2015 The Authors. Published by Elsevier Ltd.
  •  
7.
  •  
8.
  •  
9.
  • Bauerfeind, Stephanie S., et al. (författare)
  • Replicated latitudinal clines in reproductive traits of European and North American yellow dung flies
  • 2018
  • Ingår i: Oikos. - : Wiley. - 0030-1299 .- 1600-0706. ; 127:11, s. 1619-1632
  • Tidskriftsartikel (refereegranskat)abstract
    • Geographic variation in phenotypic traits is commonly correlated with spatial variation in the environment, e.g. seasonality and mean temperature, providing evidence that natural selection generates such patterns. In particular, both body size and egg size of ectothermic animals are commonly larger in northern climates, and temperature induces plastic responses in both traits. Size-independent egg quality can also vary with latitude, though this is rarely investigated. For the widespread yellow dung fly Scathophaga stercoraria (Diptera: Scathophagidae) we investigated whether there are latitudinal clines in reproductive traits (clutch size, egg size and egg composition), whether these clines are due to variation in body and/or egg size, and whether such clines replicate across independent experiments performed on different continents (North America and Europe). Egg size generally increased with latitude (especially in Europe), an effect largely explained by body size of the mother, while clutch size did not; overall reproductive effort thus increased with latitude. Both the absolute and relative (correcting for egg size) amount of egg protein increased with latitude, egg glycogen decreased with latitude, while latitudinal trends for egg lipids and total egg energy content were complex and non-linear. Altitude sometimes showed relationships analogous to those of latitude (egg proteins and glycogen) but occasionally opposite (egg size), possibly because latitude and altitude are negatively related among populations of this cold-adapted species. There was no evidence of a tradeoff between egg size and number across latitudinal populations; if anything, the relationship was positive. All traits, including body and egg size, varied with rearing temperature (12 degrees C, 18 degrees C, 24 degrees C), generally following the temperature-size rule. Clines based on common garden rearing, thus reflecting genetic differentiation, were qualitatively but not always quantitatively consistent between continents, and were similar across rearing temperatures, suggesting they evolved due to natural selection, although the concrete selective mechanisms involved require further study.
  •  
10.
  • Blanckenhorn, Wolf U., et al. (författare)
  • Life history traits, but not body size, vary systematically along latitudinal gradients on three continents in the widespread yellow dung fly
  • 2018
  • Ingår i: Ecography. - : Wiley. - 0906-7590 .- 1600-0587. ; 41:12, s. 2080-2091
  • Tidskriftsartikel (refereegranskat)abstract
    • Large-scale clinal variation in body size and other life-history traits is common enough to have stimulated the postulation of several eco-geographical rules. Whereas some clinal patterns are clearly adaptive, the causes of others remain unclear. We present a comprehensive intraspecific population comparison for the cosmopolitan yellow dung fly Scathophaga stercoraria (Diptera: Scathophagidae) to check for consistent world-wide patterns. Common garden assessment of various life history traits permitted continental comparison of (clinal) quantitative genetic differentiation (Qst) with putatively neutral genetic differentiation (Fst) derived from field-caught flies. Latitudinal clines in fly development time, growth rate, and overwintering propensity were consistent among North American, European and Japanese populations. Increased winter dormancy incidence and duration at higher latitude, combined with a faster growth rate and shorter development time, suggest that flies are adaptated to season length more than to temperature. The resulting body size clines, in contrast, were not very consistent; importantly, they were not negative, as expected under seasonal constraints, but flat or even positive clines. Quantitative genetic differentiation Q(ST) exceeded neutral molecular variation F-ST for most traits, suggesting that natural selection plays a consistent role in mediating global dung fly life histories. We conclude that faster growth and development in response to shorter growing seasons at higher latitudes may indirectly counteract expected direct effects of temperature on body-size, potentially resulting in flat or inconsistent body size clines in nature.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  • González-Tokman, Daniel, et al. (författare)
  • Heritable responses to combined effects of heat stress and ivermectin in the yellow dung fly
  • 2022
  • Ingår i: Chemosphere. - : Elsevier. - 0045-6535 .- 1879-1298. ; 286
  • Tidskriftsartikel (refereegranskat)abstract
    • In current times of global change, several sources of stress such as contaminants and high temperatures may act synergistically. The extent to which organisms persist in stressful conditions will depend on the fitness consequences of multiple simultaneously acting stressors and the genetic basis of compensatory genetic responses. Ivermectin is an antiparasitic drug used in livestock that is excreted in dung of treated cattle, causing severe negative consequences on non-target fauna. We evaluated the effect of a combination of heat stress and exposure to ivermectin in the yellow dung fly, Scathophaga stercoraria (Diptera: Scathophagidae). In a first experiment we investigated the effects of high rearing temperature on susceptibility to ivermectin, and in a second experiment we assayed flies from a latitudinal gradient to assess potential effects of local thermal adaptation on ivermectin sensitivity. The combination of heat and ivermectin synergistically reduced offspring survival, revealing severe effects of the two stressors when combined. However, latitudinal populations did not systematically vary in how ivermectin affected offspring survival, body size, development time, cold and heat tolerance. We also found very low narrow-sense heritability of ivermectin sensitivity, suggesting evolutionary constraints for responses to the combination of these stressors beyond immediate maternal or plastic effects. If the revealed patterns hold also for other invertebrates, the combination of increasing climate warming and ivermectin stress may thus have severe consequences for biodiversity. More generally, our study underlines the need for quantitative genetic analyses in understanding wildlife responses to interacting stressors that act synergistically and threat biodiversity.
  •  
15.
  • Schäfer, Martin A., et al. (författare)
  • Geographic clines in wing morphology relate to colonization history in New World but not Old World populations of yellow dung flies
  • 2018
  • Ingår i: Evolution. - : WILEY. - 0014-3820 .- 1558-5646. ; 72:8, s. 1629-1644
  • Tidskriftsartikel (refereegranskat)abstract
    • Geographic dines offer insights about putative targets and agents of natural selection as well as tempo and mode of adaptation. However, demographic processes can lead to dines that are indistinguishable from adaptive divergence. Using the widespread yellow dung fly Scathophaga stercoraria (Diptera: Scathophagidae), we examine quantitative genetic differentiation (Q(ST)) of wing shape across North America, Europe, and Japan, and compare this differentiation with that of ten microsatellites (F-ST). Morphometric analyses of 28 populations reared at three temperatures revealed significant thermal plasticity, sexual dimorphism, and geographic differentiation in wing shape. In North America morphological differentiation followed the decline in microsatellite variability along the presumed route of recent colonization from the southeast to the northwest. Across Europe, where S. stercoraria presumably existed for much longer time and where no molecular pattern of isolation by distance was evident, clinal variation was less pronounced despite significant morphological differentiation (Q(ST) >F-ST). Shape vector comparisons further indicate that thermal plasticity (hot-to-cold) does not mirror patterns of latitudinal divergence (south-to-north), as might have been expected under a scenario with temperature as the major agent of selection. Our findings illustrate the importance of detailed phylogeographic information when interpreting geographic dines of dispersal traits in an adaptive evolutionary framework.
  •  
16.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-16 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy