SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bauersachs T.) "

Sökning: WFRF:(Bauersachs T.)

  • Resultat 1-24 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Klages, J. P., et al. (författare)
  • Temperate rainforests near the South Pole during peak Cretaceous warmth
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 580:7801, s. 81-86
  • Tidskriftsartikel (refereegranskat)abstract
    • The mid-Cretaceous period was one of the warmest intervals of the past 140millionyears1–5, driven by atmospheric carbon dioxide levels of around 1,000parts per million by volume6. In the near absence of proximal geological records from south of the Antarctic Circle, it is disputed whether polar ice could exist under such environmental conditions. Here we use a sedimentary sequence recovered from the West Antarctic shelf—the southernmost Cretaceous record reported so far—and show that a temperate lowland rainforest environment existed at a palaeolatitude of about 82°S during the Turonian–Santonian age (92 to 83millionyearsago). This record contains an intact 3-metre-long network of in situ fossil roots embedded in a mudstone matrix containing diverse pollen and spores. A climate model simulation shows that the reconstructed temperate climate at this high latitude requires a combination of both atmospheric carbon dioxide concentrations of 1,120–1,680parts per million by volume and a vegetated land surface without major Antarctic glaciation, highlighting the important cooling effect exerted by ice albedo under high levels of atmospheric carbon dioxide. © 2020, The Author(s), under exclusive licence to Springer Nature Limited.
  •  
2.
  • Gohl, K., et al. (författare)
  • Expedition 379 methods
  • 2021
  • Ingår i: Proceedings of the International Ocean Discovery Program. - : International Ocean Discovery Program (IODP). - 2377-3189. ; 379
  • Tidskriftsartikel (refereegranskat)
  •  
3.
  • Gohl, K., et al. (författare)
  • Expedition 379 summary
  • 2021
  • Ingår i: Proceedings of the International Ocean Discovery Program. - : International Ocean Discovery Program (IODP). - 2377-3189. ; 79
  • Tidskriftsartikel (refereegranskat)abstract
    • The Amundsen Sea sector of Antarctica has long been considered the most vulnerable part of the West Antarctic Ice Sheet (WAIS) because of the great water depth at the grounding line, a subglacial bed seafloor deepening toward the interior of the continent, and the absence of substantial ice shelves. Glaciers in this configuration are thought to be susceptible to rapid or runaway retreat. Ice flowing into the Amundsen Sea Embayment is undergoing the most rapid changes of any sector of the Antarctic ice sheets outside the Antarctic Peninsula, including substantial grounding-line retreat over recent decades, as observed from satellite data. Recent models suggest that a threshold leading to the collapse of WAIS in this sector may have been already crossed and that much of the ice sheet could be lost even under relatively moderate greenhouse gas emission scenarios.Drill cores from the Amundsen Sea provide tests of several key questions about controls on ice sheet stability. The cores offer a direct offshore record of glacial history in a sector that is exclusively influenced by ice draining the WAIS, which allows clear comparisons between the WAIS history and low-latitude climate records. Today, relatively warm (modified) Circumpolar Deep Water (CDW) is impinging onto the Amundsen Sea shelf and causing melting under ice shelves and at the grounding line of the WAIS in most places. Reconstructions of past CDW intrusions can assess the ties between warm water upwelling and large-scale changes in past grounding-line positions. Carrying out these reconstructions offshore from the drainage basin that currently has the most substantial negative mass balance of ice anywhere in Antarctica is thus of prime interest to future predictions.The scientific objectives for this expedition are built on hypotheses about WAIS dynamics and related paleoenvironmental and paleoclimatic conditions. The main objectives areTo test the hypothesis that WAIS collapses occurred during the Neogene and Quaternary and, if so, when and under which environmental conditions;To obtain ice-proximal records of ice sheet dynamics in the Amundsen Sea that correlate with global records of ice-volume changes and proxy records for atmospheric and ocean temperatures;To study the stability of a marine-based WAIS margin and how warm deepwater incursions control its position on the shelf;To find evidence for the earliest major grounded WAIS advances onto the middle and outer shelf;To test the hypothesis that the first major WAIS growth was related to the uplift of the Marie Byrd Land dome.International Ocean Discovery Program (IODP) Expedition 379 completed two very successful drill sites on the continental rise of the Amundsen Sea. Site U1532 is located on a large sediment drift, now called the Resolution Drift, and it penetrated to 794 m with 90% recovery. We collected almost-continuous cores from recent age through the Pleistocene and Pliocene and into the upper Miocene. At Site U1533, we drilled 383 m (70% recovery) into the more condensed sequence at the lower flank of the same sediment drift. The cores of both sites contain unique records that will enable study of the cyclicity of ice sheet advance and retreat processes as well as ocean-bottom water circulation and water mass changes. In particular, Site U1532 revealed a sequence of Pliocene sediments with an excellent paleomagnetic record for high-resolution climate change studies of the previously sparsely sampled Pacific sector of the West Antarctic margin.Despite the drilling success at these sites, the overall expedition experienced three unexpected difficulties that affected many of the scientific objectives:The extensive sea ice on the continental shelf prevented us from drilling any of the proposed shelf sites.The drill sites on the continental rise were in the path of numerous icebergs of various sizes that frequently forced us to pause drilling or leave the hole entirely as they approached the ship. The overall downtime caused by approaching icebergs was 50% of our time spent on site.A medical evacuation cut the expedition short by 1 week.Recovery of core on the continental rise at Sites U1532 and U1533 cannot be used to indicate the extent of grounded ice on the shelf or, thus, of its retreat directly. However, the sediments contained in these cores offer a range of clues about past WAIS extent and retreat. At Sites U1532 and U1533, coarse-grained sediments interpreted to be ice-rafted debris (IRD) were identified throughout all recovered time periods. A dominant feature of the cores is recorded by lithofacies cyclicity, which is interpreted to represent relatively warmer periods variably characterized by sediments with higher microfossil abundance, greater bioturbation, and higher IRD concentrations alternating with colder periods characterized by dominantly gray laminated terrigenous muds. Initial comparison of these cycles to published late Quaternary records from the region suggests that the units interpreted to be records of warmer time intervals in the core tie to global interglacial periods and the units interpreted to be deposits of colder periods tie to global glacial periods.Cores from the two drill sites recovered sediments of dominantly terrigenous origin intercalated or mixed with pelagic or hemipelagic deposits. In particular, Site U1533, which is located near a deep-sea channel originating from the continental slope, contains graded silts, sands, and gravels transported downslope from the shelf to the rise. The channel is likely the pathway of these sediments transported by turbidity currents and other gravitational downslope processes. The association of lithologic facies at both sites predominantly reflects the interplay of downslope and contouritic sediment supply with occasional input of more pelagic sediment. Despite the lack of cores from the shelf, our records from the continental rise reveal the timing of glacial advances across the shelf and thus the existence of a continent-wide ice sheet in West Antarctica during longer time periods since at least the late Miocene.Cores from both sites contain abundant coarse-grained sediments and clasts of plutonic origin transported either by downslope processes or by ice rafting. If detailed provenance studies confirm our preliminary assessment that the origin of these samples is from the plutonic bedrock of Marie Byrd Land, their thermochronological record will potentially reveal timing and rates of denudation and erosion linked to crustal uplift. The chronostratigraphy of both sites enables the generation of a seismic sequence stratigraphy for the entire Amundsen Sea continental rise, spanning the area offshore from the Amundsen Sea Embayment westward along the Marie Byrd Land margin to the easternmost Ross Sea through a connecting network of seismic lines.
  •  
4.
  • Wellner, J.S., et al. (författare)
  • Site U1532
  • 2021
  • Ingår i: Proceedings of the International Ocean Discovery Program. - : International Ocean Discovery Program (IODP). - 2377-3189. ; 379
  • Tidskriftsartikel (refereegranskat)
  •  
5.
  • Wellner, J.S., et al. (författare)
  • Site U1533
  • 2021
  • Ingår i: Proceedings of the International Ocean Discovery Program. - : International Ocean Discovery Program (IODP). - 2377-3189. ; 379
  • Tidskriftsartikel (refereegranskat)
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Warnock, J.P., et al. (författare)
  • Holocene environmental history of the Ångermanälven Estuary, northern Baltic Sea
  • 2018
  • Ingår i: Boreas. - : John Wiley & Sons. - 0300-9483 .- 1502-3885. ; 47:2, s. 593-608
  • Tidskriftsartikel (refereegranskat)abstract
    • The Baltic Sea has experienced a complex geological history, with notable swings in salinity driven by changes to its connection with the Atlantic and glacio-isostatic rebound. Sediments obtained during International Ocean Drilling Program Expedition 347 allow the study of the effects of these changes on the ecology of the Baltic in high resolution through the Holocene in areas where continuous records had not always been available. Sites M0061 and M0062, drilled in the Ångermanälven Estuary (northern Baltic Sea), contain records of Holocene-aged sediments and microfossils. Here we present detailed records of palaeoecological and palaeoenvironmental changes to the Ångermanälven Estuary inferred from diatom, palynomorph and organic-geochemical data. Based on diatom assemblages, the record is divided into four zones that comprise the Ancylus Lake, Littorina Sea, Post-Littorina Sea and Recent Baltic Sea stages. The Ancylus Lake phase is initially characterized as oligotrophic, with the majority of primary productivity in the upper water column. This transition to a eutrophic state continues into the Initial Littorina Sea stage. The Initial Littorina Sea stage contains the most marine phase recorded here, as well as low surface water temperatures. These conditions end before the Littorina Sea stage, which is marked by a return to oligotrophic conditions and warmer waters of the Holocene Thermal Maximum. Glacio-isostatic rebound leads to a shallowing of the water column, allowing for increased benthic primary productivity and stratification of the water column. The Medieval Climate Anomaly is also identified within Post-Littorina Sea sediments. Modern Baltic sediments and evidence of human-induced eutrophication are seen. Human influence upon the Baltic Sea begins c. 1700 cal. a BP and becomes more intense c. 215 cal. a BP. 
  •  
11.
  •  
12.
  • Beal, Jacob, et al. (författare)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  • Kotthoff, U., et al. (författare)
  • Reconstructing Holocene temperature and salinity variations in the western Baltic Sea region: a multi-proxy comparison from the Little Belt (IODP Expedition 347, Site M0059)
  • 2017
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 14, s. 5607-5632
  • Tidskriftsartikel (refereegranskat)abstract
    • Sediment records recovered from the Baltic Sea during Integrated Ocean Drilling Program Expedition 347 provide a unique opportunity to study paleoenvironmental and climate change in central and northern Europe. Such studies contribute to a better understanding of how environmental parameters change in continental shelf seas and enclosed basins. Here we present a multi-proxy-based reconstruction of paleotemperature (both marine and terrestrial), paleosalinity, and paleoecosystem changes from the Little Belt (Site M0059) over the past  ∼  8000 years and evaluate the applicability of inorganic- and organic-based proxies in this particular setting. All salinity proxies (diatoms, aquatic palynomorphs, ostracods, diol index) show that lacustrine conditions occurred in the Little Belt until  ∼  7400 cal yr BP. A connection to the Kattegat at this time can thus be excluded, but a direct connection to the Baltic Proper may have existed. The transition to the brackish–marine conditions of the Littorina Sea stage (more saline and warmer) occurred within  ∼  200 years when the connection to the Kattegat became established after  ∼  7400 cal yr BP. The different salinity proxies used here generally show similar trends in relative changes in salinity, but often do not allow quantitative estimates of salinity. The reconstruction of water temperatures is associated with particularly large uncertainties and variations in absolute values by up to 8 °C for bottom waters and up to 16 °C for surface waters. Concerning the reconstruction of temperature using foraminiferal Mg  /  Ca ratios, contamination by authigenic coatings in the deeper intervals may have led to an overestimation of temperatures. Differences in results based on the lipid paleothermometers (long chain diol index and TEXL86) can partly be explained by the application of modern-day proxy calibrations to intervals that experienced significant changes in depositional settings: in the case of our study, the change from freshwater to marine conditions. Our study shows that particular caution has to be taken when applying and interpreting proxies in coastal environments and marginal seas, where water mass conditions can experience more rapid and larger changes than in open ocean settings. Approaches using a multitude of independent proxies may thus allow a more robust paleoenvironmental assessment.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  • Werdan, K., et al. (författare)
  • Curriculum Kardiologie 2., aktualisierte Auflage
  • 2020
  • Ingår i: KARDIOLOGE. - : SPRINGER HEIDELBERG. - 1864-9718 .- 1864-9726. ; 14:6, s. 505-536
  • Tidskriftsartikel (refereegranskat)abstract
    • The updated second edition of the "Curriculum cardiology", first edition 2013, aims to show which competences a cardiologist should nowadays master. It is very pleasing that in this second edition representatives of the Young German Cardiac Society (Young DGK) have contributed as authors. The increasing specialization within cardiology should, however, only represent one side of the coin: there must also still be a common foundation of cardiology, embedded in the discipline "internal medicine". This foundation includes the basis of theoretical knowledge, practical skills (competence levels I-III) and an occupational and professional attitude of the (prospective) cardiologist. New additions to the advanced training since the first edition of the curriculum in 2013 are, for example a chapter on digital cardiology, the further training in psychocardiology, which was newly introduced into the model further training regulations and finally also the explicit formulation of shared decision making in the interests of cardiac patients. The curriculum should give the prospective cardiologist the possibility to structure the further training as efficiently as possible and ultimately to retain and expand that which has been learned in the sense of a "professional lifelong" qualification. The curriculum also aims to reach the trainers and the Medical Councils and demonstrate which contents and skills should be mediated in the further training to become a cardiologist from the perspective of the German Cardiac Society (DGK).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-24 av 24

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy