SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Baumann Britta) "

Sökning: WFRF:(Baumann Britta)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chang, Bo, et al. (författare)
  • A homologous genetic basis of the murine cpfl1 mutant and human achromatopsia linked to mutations in the PDE6C gene
  • 2009
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 106:46, s. 19581-19586
  • Tidskriftsartikel (refereegranskat)abstract
    • Retinal cone photoreceptors mediate fine visual acuity, daylight vision, and color vision. Congenital hereditary conditions in which there is a lack of cone function in humans cause achromatopsia, an autosomal recessive trait, characterized by low vision, photophobia, and lack of color discrimination. Herein we report the identification of mutations in the PDE6C gene encoding the catalytic subunit of the cone photoreceptor phosphodiesterase as a cause of autosomal recessive achromatopsia. Moreover, we show that the spontaneous mouse mutant cpfl1 that features a lack of cone function and rapid degeneration of the cone photoreceptors represents a homologous mouse model for PDE6C associated achromatopsia.
  •  
2.
  • Lind, Anna-Britta, et al. (författare)
  • Steady-state concentrations of mirtazapine, N-desmethylmirtazapine, 8-hydroxymirtazapine and their enantiomers in relation to cytochrome P450 2D6 genotype, age and smoking behaviour
  • 2009
  • Ingår i: Clinical Pharmacokinetics. - : Springer Science and Business Media LLC. - 0312-5963 .- 1179-1926. ; 48:1, s. 63-70
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and objective: Mirtazapine is a tetracyclic antidepressant drug available as a racemic mixture of S(+)- and R(-)-mirtazapine. These enantiomers have different pharmacological properties, and both contribute to the clinical and adverse effects of the drug. Cytochrome P450 (CYP) 2D6 has been implicated in the metabolism of S(+)-mirtazapine. However, the effect of CYP2D6 on serum concentrations of the enantiomers of mirtazapine and its metabolites has not been assessed in patients on long-term treatment. The main objective of the study was to evaluate the effect of the CYP2D6 genotype on enantiomeric steady-state trough serum concentrations of mirtazapine and its metabolites N-desmethylmirtazapine and 8-hydroxymirtazapine. The effects of sex, age and smoking behaviour were also assessed. Subjects and methods: The study included 95 patients who had depression according to the Diagnostic and Statistical Manual of Mental Disorders - 4th Edition and were treated for 4 weeks with a daily dose of mirtazapine 30 mg. The serum concentrations of the enantiomers of mirtazapine and its metabolites were analysed by liquid chromatography-mass spectrometry, and the subjects were genotyped for CYP2D6 alleles*3, *4,*5 and*6 and gene duplication. Results: Three subjects (3%) were classified as ultrarapid metabolizers (UMs), 56 (59%) as homozygous extensive metabolizers (EMs), 30 (32%) as heterozygous EMs and 6 (6%) as poor metabolizers (PMs) of CYP2D6. The median trough serum concentrations of S(+)-mirtazapine were higher in PMs (59 nmol/L, p = 0.016) and in heterozygous EMs (39 nmol/L, p = 0.013) than in homozygous EMs (28 nmol/L). PMs and heterozygous EMs also had higher mirtazapine S(+)/R(-) ratios (0.4) than homozygous EMs (0.3, p = 0.015 and 0.004, respectively). The S(+)-N-desmethylmirtazapine concentration was higher in PMs (16 nmol/L) than in homozygous EMs (7 nmol/L, p = 0.043). There was an association between the CYP2D6 genotype and the ratio between S(+)-8-hydroxymirtazapine and S(+)-mirtazapine, with a significantly higher ratio in homozygous EMs than in heterozygous EMs (0.11 vs 0.05, p = 0.007). The influence of the CYP2D6 genotype on S(+)-mirtazapine, the mirtazapine S(+)/R(-) ratio and S(+)-N- desmethylmirtazapine remained significant after correction for the influence of sex, age and smoking. Smokers had significantly lower concentrations of S(+)-mirtazapine (23 vs 39 nmol/L, p = 0.026) and R(-)-N-desmethylmirtazapine (39 vs 51 nmol/L, p = 0.036) and a significantly lower mirtazapine S(+)/R(-) ratio (0.28 vs 0.37, p = 0.014) than nonsmokers, and the effect of smoking remained significant after multivariate analysis. Conclusions: This study is the first to show the impact of the CYP2D6 genotype on steady-state serum concentrations of the enantiomers of mirtazapine and its metabolites. Our results also support the role of CYP1A2 in the metabolism of mirtazapine, with lower serum concentrations in smokers than in nonsmokers.
  •  
3.
  • Solaki, Maria, et al. (författare)
  • Comprehensive variant spectrum of the CNGA3 gene in patients affected by achromatopsia
  • 2022
  • Ingår i: Human Mutation. - : John Wiley & Sons. - 1059-7794 .- 1098-1004. ; 43:7, s. 832-858
  • Tidskriftsartikel (refereegranskat)abstract
    • Achromatopsia (ACHM) is a congenital cone photoreceptor disorder characterized by impaired color discrimination, low visual acuity, photosensitivity, and nystagmus. To date, six genes have been associated with ACHM (CNGA3, CNGB3, GNAT2, PDE6C, PDE6H, and ATF6), the majority of these being implicated in the cone phototransduction cascade. CNGA3 encodes the CNGA3 subunit of the cyclic nucleotide-gated ion channel in cone photoreceptors and is one of the major disease-associated genes for ACHM. Herein, we provide a comprehensive overview of the CNGA3 variant spectrum in a cohort of 1060 genetically confirmed ACHM patients, 385 (36.3%) of these carrying “likely disease-causing” variants in CNGA3. Compiling our own genetic data with those reported in the literature and in public databases, we further extend the CNGA3 variant spectrum to a total of 316 variants, 244 of which we interpreted as “likely disease-causing” according to ACMG/AMP criteria. We report 48 novel “likely disease-causing” variants, 24 of which are missense substitutions underlining the predominant role of this mutation class in the CNGA3 variant spectrum. In addition, we provide extensive in silico analyses and summarize reported functional data of previously analyzed missense, nonsense and splicing variants to further advance the pathogenicity assessment of the identified variants.
  •  
4.
  • Wissinger, Bernd, et al. (författare)
  • The landscape of submicroscopic structural variants at the OPN1LW/OPN1MW gene cluster on Xq28 underlying blue cone monochromacy
  • 2022
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 119:27
  • Tidskriftsartikel (refereegranskat)abstract
    • Blue cone monochromacy (BCM) is an X-linked retinal disorder characterized by low vision, photoaversion, and poor color discrimination. BCM is due to the lack of long-wavelength-sensitive and middle-wavelength-sensitive cone photoreceptor function and caused by mutations in the OPN1LW/OPN1MW gene cluster on Xq28. Here, we investigated the prevalence and the landscape of submicroscopic structural variants (SVs) at single-base resolution in BCM patients. We found that about one-third (n = 73) of the 213 molecularly confirmed BCM families carry an SV, most commonly deletions restricted to the OPN1LW/OPN1MW gene cluster. The structure and precise breakpoints of the SVs were resolved in all but one of the 73 families. Twenty-two families—all from the United States—showed the same SV, and we confirmed a common ancestry of this mutation. In total, 42 distinct SVs were identified, including 40 previously unreported SVs, thereby quadrupling the number of precisely mapped SVs underlying BCM. Notably, there was no “region of overlap” among these SVs. However, 90% of SVs encompass the upstream locus control region, an essential enhancer element. Its minimal functional extent based on deletion mapping in patients was refined to 358 bp. Breakpoint analyses suggest diverse mechanisms underlying SV formation as well as in one case the gene conversion-based exchange of a 142-bp deletion between opsin genes. Using parsimonious assumptions, we reconstructed the composition and copy number of the OPN1LW/OPN1MW gene cluster prior to the mutation event and found evidence that large gene arrays may be predisposed to the occurrence of SVs at this locus.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy