SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Becherini Y.) "

Sökning: WFRF:(Becherini Y.)

  • Resultat 1-50 av 165
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Acharya, B. S., et al. (författare)
  • Introducing the CTA concept
  • 2013
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 43, s. 3-18
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The Cherenkov Telescope Array (CTA) is a new observatory for very high-energy (VHE) gamma rays. CTA has ambitions science goals, for which it is necessary to achieve full-sky coverage, to improve the sensitivity by about an order of magnitude, to span about four decades of energy, from a few tens of GeV to above 100 TeV with enhanced angular and energy resolutions over existing VHE gamma-ray observatories. An international collaboration has formed with more than 1000 members from 27 countries in Europe, Asia, Africa and North and South America. In 2010 the CTA Consortium completed a Design Study and started a three-year Preparatory Phase which leads to production readiness of CTA in 2014. In this paper we introduce the science goals and the concept of CTA, and provide an overview of the project. (C) 2013 Elsevier B.V. All rights reserved.
  •  
2.
  •  
3.
  • Algaba, Juan-Carlos, et al. (författare)
  • Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign
  • 2021
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 911:1
  • Forskningsöversikt (refereegranskat)abstract
    • In 2017, the Event Horizon Telescope (EHT) Collaboration succeeded in capturing the first direct image of the center of the M87 galaxy. The asymmetric ring morphology and size are consistent with theoretical expectations for a weakly accreting supermassive black hole of mass ∼6.5 × 109 M o˙. The EHTC also partnered with several international facilities in space and on the ground, to arrange an extensive, quasi-simultaneous multi-wavelength campaign. This Letter presents the results and analysis of this campaign, as well as the multi-wavelength data as a legacy data repository. We captured M87 in a historically low state, and the core flux dominates over HST-1 at high energies, making it possible to combine core flux constraints with the more spatially precise very long baseline interferometry data. We present the most complete simultaneous multi-wavelength spectrum of the active nucleus to date, and discuss the complexity and caveats of combining data from different spatial scales into one broadband spectrum. We apply two heuristic, isotropic leptonic single-zone models to provide insight into the basic source properties, but conclude that a structured jet is necessary to explain M87's spectrum. We can exclude that the simultaneous γ-ray emission is produced via inverse Compton emission in the same region producing the EHT mm-band emission, and further conclude that the γ-rays can only be produced in the inner jets (inward of HST-1) if there are strongly particle-dominated regions. Direct synchrotron emission from accelerated protons and secondaries cannot yet be excluded.
  •  
4.
  • Adams, C. B., et al. (författare)
  • Observation of the Gamma-Ray Binary HESS J0632+057 with the HESS, MAGIC, and VERITAS Telescopes
  • 2021
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 923:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The results of gamma-ray observations of the binary system HESS J0632 + 057 collected during 450 hr over 15 yr, between 2004 and 2019, are presented. Data taken with the atmospheric Cherenkov telescopes H.E.S.S., MAGIC, and VERITAS at energies above 350 GeV were used together with observations at X-ray energies obtained with Swift-XRT, Chandra, XMM-Newton, NuSTAR, and Suzaku. Some of these observations were accompanied by measurements of the H alpha emission line. A significant detection of the modulation of the very high-energy gamma-ray fluxes with a period of 316.7 +/- 4.4 days is reported, consistent with the period of 317.3 +/- 0.7 days obtained with a refined analysis of X-ray data. The analysis of data from four orbital cycles with dense observational coverage reveals short-timescale variability, with flux-decay timescales of less than 20 days at very high energies. Flux variations observed over a timescale of several years indicate orbit-to-orbit variability. The analysis confirms the previously reported correlation of X-ray and gamma-ray emission from the system at very high significance, but cannot find any correlation of optical H alpha parameters with fluxes at X-ray or gamma-ray energies in simultaneous observations. The key finding is that the emission of HESS J0632 + 057 in the X-ray and gamma-ray energy bands is highly variable on different timescales. The ratio of gamma-ray to X-ray flux shows the equality or even dominance of the gamma-ray energy range. This wealth of new data is interpreted taking into account the insufficient knowledge of the ephemeris of the system, and discussed in the context of results reported on other gamma-ray binary systems.
  •  
5.
  • Abdalla, H., et al. (författare)
  • Sensitivity of the Cherenkov Telescope Array for probing cosmology and fundamental physics with gamma-ray propagation
  • 2021
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : Institute of Physics Publishing (IOPP). - 1475-7516. ; :2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Cherenkov Telescope Array (CTA), the new-generation ground-based observatory for gamma-ray astronomy, provides unique capabilities to address significant open questions in astrophysics, cosmology, and fundamental physics. We study some of the salient areas of gamma-ray cosmology that can be explored as part of the Key Science Projects of CTA, through simulated observations of active galactic nuclei (AGN) and of their relativistic jets. Observations of AGN with CTA will enable a measurement of gamma-ray absorption on the extragalactic background light with a statistical uncertainty below 15% up to a redshift z = 2 and to constrain or detect gamma-ray halos up to intergalactic-magnetic-field strengths of at least 0.3 pG. Extragalactic observations with CTA also show promising potential to probe physics beyond the Standard Model. The best limits on Lorentz invariance violation from gamma-ray astronomy will be improved by a factor of at least two to three. CTA will also probe the parameter space in which axion-like particles could constitute a significant fraction, if not all, of dark matter. We conclude on the synergies between CTA and other upcoming facilities that will foster the growth of gamma-ray cosmology.
  •  
6.
  • Abdalla, H., et al. (författare)
  • HESS and MAGIC observations of a sudden cessation of a very-high-energy gamma-ray flare in PKS 1510-089 in May 2016
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 648
  • Tidskriftsartikel (refereegranskat)abstract
    • The flat spectrum radio quasar (FSRQ) PKS 1510-089 is known for its complex multiwavelength behaviour and it is one of only a few FSRQs detected in very-high-energy (VHE, E>100 GeV) gamma rays. The VHE gamma -ray observations with H.E.S.S. and MAGIC in late May and early June 2016 resulted in the detection of an unprecedented flare, which revealed, for the first time, VHE gamma -ray intranight variability for this source. While a common variability timescale of 1.5 h has been found, there is a significant deviation near the end of the flare, with a timescale of similar to 20 min marking the cessation of the event. The peak flux is nearly two orders of magnitude above the low-level emission. For the first time, a curvature was detected in the VHE gamma -ray spectrum of PKS 1510-089, which can be fully explained by the absorption on the part of the extragalactic background light. Optical R-band observations with ATOM revealed a counterpart of the gamma -ray flare, even though the detailed flux evolution differs from the VHE gamma -ray light curve. Interestingly, a steep flux decrease was observed at the same time as the cessation of the VHE gamma -ray flare. In the high-energy (HE, E> 100 MeV) gamma -ray band, only a moderate flux increase was observed with Fermi-LAT, while the HE gamma -ray spectrum significantly hardens up to a photon index of 1.6. A search for broad-line region (BLR) absorption features in the gamma -ray spectrum indicates that the emission region is located outside of the BLR. Radio very-long-baseline interferometry observations reveal a fast-moving knot interacting with a standing jet feature around the time of the flare. As the standing feature is located similar to 50 pc from the black hole, the emission region of the flare may have been located at a significant distance from the black hole. If this is indeed a true correlation, the VHE gamma rays must have been produced far down in the jet, where turbulent plasma crosses a standing shock.
  •  
7.
  • Abe, H., et al. (författare)
  • Gamma-ray observations of MAXI J1820+070 during the 2018 outburst
  • 2022
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 517:4, s. 4736-4751
  • Tidskriftsartikel (refereegranskat)abstract
    • MAXIJ1820+070 is a low-mass X-ray binary with a black hole (BH) as a compact object. This binary underwent an exceptionally bright X-ray outburst from 2018 March to October, showing evidence of a non-thermal particle population through its radio emission during this whole period. The combined results of 59.5 h of observations of the MAXI J1820+070 outburst with the H.E.S.S., MAGIC and VERITAS experiments at energies above 200 GeV are presented, together with Fermi-LAT data between 0.1 and 500 GeV, and multiwavelength observations from radio to X-rays. Gamma-ray emission is not detected from MAXI J1820+070, but the obtained upper limits and the multiwavelength data allow us to put meaningful constraints on the source properties under reasonable assumptions regarding the non-thermal particle population and the jet synchrotron spectrum. In particular, it is possible to show that, if a high-energy (HE) gamma-ray emitting region is present during the hard state of the source, its predicted flux should be at most a factor of 20 below the obtained Fermi-LAT upper limits, and closer to them for magnetic fields significantly below equipartition. During the state transitions, under the plausible assumption that electrons are accelerated up to similar to 500 GeV, the multiwavelength data and the gamma-ray upper limits lead consistently to the conclusion that a potential HE and very-HE gamma-ray emitting region should be located at a distance from the BH ranging between 10(11) and 10(13) cm. Similar outbursts from low-mass X-ray binaries might be detectable in the near future with upcoming instruments such as CTA.
  •  
8.
  • Actis, M., et al. (författare)
  • Design concepts for the Cherenkov Telescope Array CTA : an advanced facility for ground-based high-energy gamma-ray astronomy
  • 2011
  • Ingår i: Experimental astronomy. - : Springer. - 0922-6435 .- 1572-9508. ; 32:3, s. 193-316
  • Tidskriftsartikel (refereegranskat)abstract
    • Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.
  •  
9.
  • Aharonian, F., et al. (författare)
  • SIMULTANEOUS OBSERVATIONS OF PKS 2155-304 WITH HESS, FERMI, RXTE, AND ATOM : SPECTRAL ENERGY DISTRIBUTIONS AND VARIABILITY IN A LOW STATE
  • 2009
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 0004-637X .- 1538-4357. ; 696:2, s. L150-L155
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the first simultaneous observations that cover the optical, X-ray, and high-energy gamma-ray bands of the BL Lac object PKS 2155-304. The gamma-ray bands were observed for 11 days, between 2008 August 25 and 2008 September 6 (MJD 54704-54715), jointly with the Fermi Gamma-ray Space Telescope and the HESS atmospheric Cherenkov array, providing the first simultaneous MeV-TeV spectral energy distribution (SED) with the new generation of gamma-ray telescopes. The ATOM telescope and the RXTE and Swift observatories provided optical and X-ray coverage of the low-energy component over the same time period. The object was close to the lowest archival X-ray and very high energy (VHE; > 100 GeV) state, whereas the optical flux was much higher. The light curves show relatively little (similar to 30%) variability overall when compared to past flaring episodes, but we find a clear optical/VHE correlation and evidence for a correlation of the X-rays with the high-energy spectral index. Contrary to previous observations in the flaring state, we do not find any correlation between the X-ray and VHE components. Although synchrotron self-Compton models are often invoked to explain the SEDs of BL Lac objects, the most common versions of these models are at odds with the correlated variability we find in the various bands for PKS 2155-304.
  •  
10.
  • Petroff, E., et al. (författare)
  • A polarized fast radio burst at low Galactic latitude
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford Academic. - 0035-8711 .- 1365-2966. ; 469:4, s. 4465-4482
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the discovery of a new fast radio burst (FRB), FRB 150215, with the Parkes radio telescope on 2015 February 15. The burst was detected in real time with a dispersion measure (DM) of 1105.6 +/- 0.8 pc cm(-3), a pulse duration of 2.8(-0.5)(+1.2) ms, and a measured peak flux density assuming that the burst was at beam centre of 0.7(-0.1)(+0.2) Jy. The FRB originated at a Galactic longitude and latitude of 24.66 degrees, 5.28 degrees and 25 degrees away from the Galactic Center. The burst was found to be 43 +/- 5 per cent linearly polarized with a rotation measure (RM) in the range -9 < RM < 12 rad m(-2) (95 per cent confidence level), consistent with zero. The burst was followed up with 11 telescopes to search for radio, optical, X-ray, gamma-ray and neutrino emission. Neither transient nor variable emission was found to be associated with the burst and no repeat pulses have been observed in 17.25 h of observing. The sightline to the burst is close to the Galactic plane and the observed physical properties of FRB 150215 demonstrate the existence of sight lines of anomalously low RM for a given electron column density. The Galactic RM foreground may approach a null value due to magnetic field reversals along the line of sight, a decreased total electron column density from the Milky Way, or some combination of these effects. A lower Galactic DM contribution might explain why this burst was detectable whereas previous searches at low latitude have had lower detection rates than those out of the plane.
  •  
11.
  • Abdalla, H., et al. (författare)
  • A search for new supernova remnant shells in the Galactic plane with HESS
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 612
  • Tidskriftsartikel (refereegranskat)abstract
    • A search for new supernova remnants (SNRs) has been conducted using TeV gamma-ray data from the H.E.S.S. Galactic plane survey. As an identification criterion, shell morphologies that are characteristic for known resolved TeV SNRs have been used. Three new SNR candidates were identified in the H.E.S.S. data set with this method. Extensive multiwavelength searches for counterparts were conducted. A radio SNR candidate has been identified to be a counterpart to HESS J1534-571. The TeV source is therefore classified as a SNR. For the other two sources, HESS J1614-518 and HESS J1912 + 101, no identifying counterparts have been found, thus they remain SNR candidates for the time being. TeV-emitting SNRs are key objects in the context of identifying the accelerators of Galactic cosmic rays. The TeV emission of the relativistic particles in the new sources is examined in view of possible leptonic and hadronic emission scenarios, taking the current multiwavelength knowledge into account.
  •  
12.
  • Abdalla, H., et al. (författare)
  • TeV Emission of Galactic Plane Sources with HAWC and HESS
  • 2021
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 917:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The High Altitude Water Cherenkov (HAWC) observatory and the High Energy Stereoscopic System (H.E.S.S.) are two leading instruments in the ground-based very-high-energy gamma-ray domain. HAWC employs the water Cherenkov detection (WCD) technique, while H.E.S.S. is an array of Imaging Atmospheric Cherenkov Telescopes (IACTs). The two facilities therefore differ in multiple aspects, including their observation strategy, the size of their field of view, and their angular resolution, leading to different analysis approaches. Until now, it has been unclear if the results of observations by both types of instruments are consistent: several of the recently discovered HAWC sources have been followed up by IACTs, resulting in a confirmed detection only in a minority of cases. With this paper, we go further and try to resolve the tensions between previous results by performing a new analysis of the H.E.S.S. Galactic plane survey data, applying an analysis technique comparable between H.E.S.S. and HAWC. Events above 1 TeV are selected for both data sets, the point-spread function of H.E.S.S. is broadened to approach that of HAWC, and a similar background estimation method is used. This is the first detailed comparison of the Galactic plane observed by both instruments. H.E.S.S. can confirm the gamma-ray emission of four HAWC sources among seven previously undetected by IACTs, while the three others have measured fluxes below the sensitivity of the H.E.S.S. data set. Remaining differences in the overall gamma-ray flux can be explained by the systematic uncertainties. Therefore, we confirm a consistent view of the gamma-ray sky between WCD and IACT techniques.
  •  
13.
  • Abramowski, A., et al. (författare)
  • DISCOVERY OF THE HARD SPECTRUM VHE gamma-RAY SOURCE HESS J1641-463
  • 2014
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 794:1, s. L1-
  • Tidskriftsartikel (refereegranskat)abstract
    • This Letter reports the discovery of a remarkably hard spectrum source, HESS J1641-463, by the High Energy Stereoscopic System (H.E.S.S.) in the very high energy (VHE) domain. HESS J1641-463 remained unnoticed by the usual analysis techniques due to confusion with the bright nearby source HESS J1640-465. It emerged at a significance level of 8.5 standard deviations after restricting the analysis to events with energies above 4 TeV. It shows a moderate flux level of phi(E > 1TeV) = (3.64 +/- 0.44(stat)+/- 0.73(sys)) x 10(-13) cm(-2) s(-1), corresponding to 1.8% of the Crab Nebula flux above the same energy, and a hard spectrum with a photon index of Gamma = 2.07 +/- 0.11(stat)+/- 0.20(sys). It is a point-like source, although an extension up to a Gaussian width of sigma = 3 arcmin cannot be discounted due to uncertainties in the H.E.S.S. point-spread function. The VHE gamma-ray flux of HESS J1641-463 is found to be constant over the observed period when checking time binnings from the year-by-year to the 28 minute exposure timescales. HESS J1641-463 is positionally coincident with the radio supernova remnant SNR G338.5+0.1. No X-ray candidate stands out as a clear association; however, Chandra and XMM-Newton data reveal some potential weak counterparts. Various VHE gamma-ray production scenarios are discussed. If the emission from HESS J1641-463 is produced by cosmic ray protons colliding with the ambient gas, then their spectrum must extend close to 1 PeV. This object may represent a source population contributing significantly to the galactic cosmic ray flux around the knee.
  •  
14.
  • Acciari, V. A., et al. (författare)
  • Radio Imaging of the Very-High-Energy gamma-Ray Emission Region in the Central Engine of a Radio Galaxy
  • 2009
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 325:5939, s. 444-448
  • Tidskriftsartikel (refereegranskat)abstract
    • The accretion of matter onto a massive black hole is believed to feed the relativistic plasma jets found in many active galactic nuclei (AGN). Although some AGN accelerate particles to energies exceeding 10(12) electron volts and are bright sources of very-high-energy (VHE) gamma-ray emission, it is not yet known where the VHE emission originates. Here we report on radio and VHE observations of the radio galaxy Messier 87, revealing a period of extremely strong VHE gamma-ray flares accompanied by a strong increase of the radio flux from its nucleus. These results imply that charged particles are accelerated to very high energies in the immediate vicinity of the black hole.
  •  
15.
  • Ageron, M., et al. (författare)
  • ANTARES : The first undersea neutrino telescope
  • 2011
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier. - 0168-9002 .- 1872-9576. ; 656:1, s. 11-38
  • Tidskriftsartikel (refereegranskat)abstract
    • The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design, the construction and the installation of the telescope in the deep sea, offshore from Toulon in France. An illustration of the detector performance is given. (C) 2011 Elsevier B.V. All rights reserved.
  •  
16.
  • Abdalla, H., et al. (författare)
  • Characterising the VHE diffuse emission in the central 200 parsecs of our Galaxy with HESS
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 612
  • Tidskriftsartikel (refereegranskat)abstract
    • The diffuse very high-energy (VHE; > 100 GeV) gamma-ray emission observed in the central 200 pc of the Milky Way by H.E.S.S. was found to follow dense matter distribution in the central molecular zone (CMZ) up to a longitudinal distance of about 130 pc to the Galactic centre (GC), where the flux rapidly decreases. This was initially interpreted as the result of a burst-like injection of energetic particles 104 yr ago, but a recent more sensitive H.E.S.S. analysis revealed that the cosmic-ray (CR) density profile drops with the distance to the centre, making data compatible with a steady cosmic PeVatron at the GC. In this paper, we extend this analysis to obtain, for the first time, a detailed characterisation of the correlation with matter and to search for additional features and individual gamma-ray sources in the inner 200 pc. Taking advantage of 250 h of H.E.S.S. data and improved analysis techniques, we perform a detailed morphology study of the diffuse VHE emission observed from the GC ridge and reconstruct its total spectrum. To test the various contributions to the total gamma-ray emission, we used an iterative 2D maximum-likelihood approach that allows us to build a phenomenological model of the emission by summing a number of different spatial components. We show that the emission correlated with dense matter covers the full CMZ and that its flux is about half the total diffuse emission flux. We also detect some emission at higher latitude that is likely produced by hadronic collisions of CRs in less dense regions of the GC interstellar medium. We detect an additional emission component centred on the GC and extending over about 15 pc that is consistent with the existence of a strong CR density gradient and confirms the presence of a CR accelerator at the very centre of our Galaxy. We show that the spectrum of full ridge diffuse emission is compatible with that previously derived from the central regions, suggesting that a single population of particles fills the entire CMZ. Finally, we report the discovery of a VHE gamma-ray source near the GC radio arc and argue that it is produced by the pulsar wind nebula candidate G0.13-0.11.
  •  
17.
  • Abdalla, H., et al. (författare)
  • Characterizing the γ-ray long-term variability of PKS2155 304 with HESS and Fermi-LAT
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : The European Southern Observatory. - 0004-6361 .- 1432-0746. ; 598
  • Tidskriftsartikel (refereegranskat)abstract
    • Studying the temporal variability of BL Lac objects at the highest energies provides unique insights into the extreme physical processes occurring in relativistic jets and in the vicinity of super-massive black holes. To this end, the long-term variability of the BL Lac object PKS 2155-304 is analyzed in the high (HE, 100MeV < E < 300 GeV) and very high energy (VHE, E > 200 GeV) gamma-ray domain. Over the course of similar to 9 yr of H. E. S. S. observations the VHE light curve in the quiescent state is consistent with a log-normal behavior. The VHE variability in this state is well described by flicker noise (power-spectral-density index βVHE = 1 .10+ 0.10-0,13) on timescales larger than one day. An analysis of similar to 5.5 yr of HE Fermi-LAT data gives consistent results (βHE = 1 .20+ 0.21-0.23, on timescales larger than 10 days) compatible with the VHE findings. The HE and VHE power spectral densities show a scale invariance across the probed time ranges. A direct linear correlation between the VHE and HE fluxes could neither be excluded nor firmly established. These long-term-variability properties are discussed and compared to the red noise behavior (beta similar to 2) seen on shorter timescales during VHE-flaring states. The difference in power spectral noise behavior at VHE energies during quiescent and flaring states provides evidence that these states are influenced by different physical processes, while the compatibility of the HE and VHE long-term results is suggestive of a common physical link as it might be introduced by an underlying jet-disk connection.
  •  
18.
  • Abdalla, H., et al. (författare)
  • Deeper HESS observations of Vela Junior (RX J0852.0-4622) : Morphology studies and resolved spectroscopy
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 612
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We study gamma-ray emission from the shell-type supernova remnant (SNR) RXJ0852.0-4622 to better characterize its spectral properties and its distribution over the SNR. Methods. The analysis of an extended High Energy Spectroscopic System (H.E.S.S.) data set at very high energies (E > 100 GeV) permits detailed studies, as well as spatially resolved spectroscopy, of the morphology and spectrum of the whole RXJ0852.0-4622 region. The H.E.S.S. data are combined with archival data from other wavebands and interpreted in the framework of leptonic and hadronic models. The joint Fermi-LAT-H.E.S.S. spectrum allows the direct determination of the spectral characteristics of the parent particle population in leptonic and hadronic scenarios using only GeV-TeV data. Results. An updated analysis of the H.E.S.S. data shows that the spectrum of the entire SNR connects smoothly to the high-energy spectrum measured by Fermi-LAT. The increased data set makes it possible to demonstrate that the H.E.S.S. spectrum deviates significantly from a power law and is well described by both a curved power law and a power law with an exponential cutoff at an energy of E-cut = (6.7 +/- 1.2(stat) +/- 1.2(syst)) TeV. The joint Fermi-LAT-H.E.S.S. spectrum allows the unambiguous identification of the spectral shape as a power law with an exponential cutoff. No significant evidence is found for a variation of the spectral parameters across the SNR, suggesting similar conditions of particle acceleration across the remnant. A simple modeling using one particle population to model the SNR emission demonstrates that both leptonic and hadronic emission scenarios remain plausible. It is also shown that at least a part of the shell emission is likely due to the presence of a pulsar wind nebula around PSR J0855-4644.
  •  
19.
  • Abdalla, H., et al. (författare)
  • First limits on the very-high energy gamma-ray afterglow emission of a fast radio burst HESS observations of FRB 150418
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : The European Southern Observatory (ESO). - 0004-6361 .- 1432-0746. ; 597
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. Following the detection of the fast radio burst FRB150418 by the SUPERB project at the Parkes radio telescope, we aim to search for very-high energy gamma-ray afterglow emission. Methods. Follow-up observations in the very-high energy gamma-ray domain were obtained with the H.E.S.S. imaging atmospheric Cherenkov telescope system within 14.5 h of the radio burst. Results. The obtained 1.4 h of gamma-ray observations are presented and discussed. At the 99% C.L. we obtained an integral upper limit on the gamma-ray flux of Phi(gamma)(E > 350 GeV) < 1.33 x 10(-8) m(-2) s(-1). Differential flux upper limits as function of the photon energy were derived and used to constrain the intrinsic high-energy afterglow emission of FRB 150418. Conclusions. No hints for high-energy afterglow emission of FRB 150418 were found. Taking absorption on the extragalactic background light into account and assuming a distance of z = 0 : 492 based on radio and optical counterpart studies and consistent with the FRB dispersion, we constrain the gamma-ray luminosity at 1 TeV to L < 5 : 1 x 10(47) erg/s at 99% C.L.
  •  
20.
  • Abdalla, H., et al. (författare)
  • Gamma-ray blazar spectra with HESS II mono analysis : The case of PKS2155-304 and PG1553+113
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 600
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The addition of a 28 m Cherenkov telescope (CT5) to the H.E.S.S. array extended the experiment's sensitivity to lower energies. The lowest energy threshold is obtained using monoscopic analysis of data taken with CT5, providing access to gamma-ray energies below 100 GeV for small zenith angle observations. Such an extension of the instrument's energy range is particularly beneficial for studies of active galactic nuclei with soft spectra, as expected for those at a redshift >= 0.5. The high-frequency peaked BL Lac objects PKS 2155-304 (z = 0.116) and PG 1553 + 113 (0.43 < z < 0.58) are among the brightest objects in the gamma-ray sky, both showing clear signatures of gamma-ray absorption at E > 100 GeV interpreted as being due to interactions with the extragalactic background light (EBL). Aims. The aims of this work are twofold: to demonstrate the monoscopic analysis of CT5 data with a low energy threshold, and to obtain accurate measurements of the spectral energy distributions (SED) of PKS 2155-304 and PG 1553 + 113 near their SED peaks at energies approximate to 100 GeV. Methods. Multiple observational campaigns of PKS 2155 304 and PG 1553 + 113 were conducted during 2013 and 2014 using the full H.E.S.S. II instrument (CT1-5). A monoscopic analysis of the data taken with the new CT5 telescope was developed along with an investigation into the systematic uncertainties on the spectral parameters which are derived from this analysis. Results. Using the data from CT5, the energy spectra of PKS 2155 304 and PG 1553 + 113 were reconstructed down to conservative threshold energies of 80 GeV for PKS 2155 304, which transits near zenith, and 110 GeV for the more northern PG 1553 + 113. The measured spectra, well fitted in both cases by a log-parabola spectral model ( with a 5.0 similar to statistical preference for non-zero curvature for PKS 2155 304 and 4.5 sigma for PG 1553+113), were found consistent with spectra derived from contemporaneous Fermi-LAT data, indicating a sharp break in the observed spectra of both sources at E approximate to 100 GeV. When corrected for EBL absorption, the intrinsic H.E.S.S. II mono and Fermi-LAT spectrum of PKS 2155 304 was found to show significant curvature. For PG 1553+113, however, no significant detection of curvature in the intrinsic spectrum could be found within statistical and systematic uncertainties.
  •  
21.
  • Abdalla, H., et al. (författare)
  • H.E.S.S. observations of the flaring gravitationally lensed galaxy PKS 1830–211
  • 2019
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 486:3, s. 3886-3891
  • Tidskriftsartikel (refereegranskat)abstract
    • PKS 1830-211 is a known macrolensed quasar located at a redshift of z = 2.5. Its highenergy gamma-ray emission has been detected with the Fermi-Large Area Telescope (LAT) instrument and evidence for lensing was obtained by several authors from its high-energy data. Observations of PKS 1830-211 were taken with the High Energy Stereoscopic System (H.E.S.S.) array of Imaging Atmospheric Cherenkov Telescopes in 2014 August, following a flare alert by the Fermi-LAT Collaboration. The H.E.S.S observations were aimed at detecting a gamma-ray flare delayed by 20-27 d from the alert flare, as expected from observations at other wavelengths. More than 12 h of good-quality data were taken with an analysis threshold of similar to 67 GeV. The significance of a potential signal is computed as a function of the date and the average significance over the whole period. Data are compared to simultaneous observations by Fermi-LAT. No photon excess or significant signal is detected. An upper limit on PKS 1830-211 flux above 67 GeV is computed and compared to the extrapolation of the Fermi-LAT flare spectrum.
  •  
22.
  • Abdalla, H., et al. (författare)
  • HESS discovery of very high energy gamma-ray emission from PKS 0625-354
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 476:3, s. 4187-4198
  • Tidskriftsartikel (refereegranskat)abstract
    • PKS 0625-354 (z = 0.055) was observed with the four High Energy Stereoscopic System (H.E.S.S.) telescopes in 2012 during 5.5 h. The source was detected above an energy threshold of 200 GeV at a significance level of 6.1 sigma. No significant variability is found in these observations. The source is well described with a power-law spectrum with photon index Gamma = 2.84 +/- 0.50(stat) +/- 0.10(syst) and normalization (at E-0 = 1.0 TeV) N-0(E-0)=(0.58 +/- 0.22(stat) +/- 0.12(syst)) x 10(-12) TeV-1 cm(-2) s(-1). Multiwavelength data collected with Fermi-LAT, Swift-XRT, Swift-UVOT, ATOM and WISE are also analysed. Significant variability is observed only in the Fermi-LAT gamma-ray and Swift-XRT X-ray energy bands. Having a good multiwavelength coverage from radio to very high energy, we performed a broad-band modelling from two types of emission scenarios. The results from a one zone lepto-hadronic and a multizone leptonic models are compared and discussed. On the grounds of energetics, our analysis favours a leptonic multizone model. Models associated to the X-ray variability constraint support previous results, suggesting a BL Lac nature of PKS 0625-354 with, however, a large-scale jet structure typical of a radio galaxy.
  •  
23.
  • Abdalla, H., et al. (författare)
  • HESS J1741-302 : a hidden accelerator in the Galactic plane
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 612
  • Tidskriftsartikel (refereegranskat)abstract
    • The H.E.S.S. Collaboration has discovered a new very high energy (VHE, E > 0.1 TeV) gamma-ray source, HESS J1741-302, located in the Galactic plane. Despite several attempts to constrain its nature, no plausible counterpart has been found so far at X-ray and MeV/GeV gamma-ray energies, and the source remains unidentified. An analysis of 145-h of observations of HESS J1741-302 at VHEs has revealed a steady and relatively weak TeV source (similar to 1% of the Crab Nebula flux), with a spectral index of Gamma = 2.3 +/- 0.2(stat) +/- 0.2(sys), extending to energies up to 10 TeV without any clear signature of a cut-off. In a hadronic scenario, such a spectrum implies an object with particle acceleration up to energies of several hundred TeV. Contrary to most H.E.S.S. unidentified sources, the angular size of HESS J1741-302 is compatible with the H.E.S.S. point spread function at VHEs, with an extension constrained to be below 0.068 degrees at a 99% confidence level. The gamma-ray emission detected by H.E.S.S. can be explained both within a hadronic scenario, due to collisions of protons with energies of hundreds of TeV with dense molecular clouds, and in a leptonic scenario, as a relic pulsar wind nebula, possibly powered by the middle-aged (20 kyr) pulsar PSR B1737-30. A binary scenario, related to the compact radio source 1LC 358.266+0.038 found to be spatially coincident with the best fit position of HESS J1741-302, is also envisaged.
  •  
24.
  • Abdalla, H., et al. (författare)
  • HESS observations of RX J1713.7-3946 with improved angular and spectral resolution : Evidence for gamma-ray emission extending beyond the X-ray emitting shell
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 612
  • Tidskriftsartikel (refereegranskat)abstract
    • Supernova remnants exhibit shock fronts (shells) that can accelerate charged particles up to very high energies. In the past decade, measurements of a handful of shell-type supernova remnants in very high-energy gamma rays have provided unique insights into the acceleration process. Among those objects, RX J1713.7-3946 (also known as G347.3-0.5) has the largest surface brightness, allowing us in the past to perform the most comprehensive study of morphology and spatially resolved spectra of any such very high-energy gamma-ray source. Here we present extensive new H.E.S.S. measurements of RX J1713.7-3946, almost doubling the observation time compared to our previous publication. Combined with new improved analysis tools, the previous sensitivity is more than doubled. The H.E.S.S. angular resolution of 0.048 degrees (0.036 degrees above 2 TeV) is unprecedented in gamma-ray astronomy and probes physical scales of 0.8 (0.6) parsec at the remnant's location. The new H. E. S. S. image of RX J1713.7-3946 allows us to reveal clear morphological di ff erences between X-rays and gamma rays. In particular, for the outer edge of the brightest shell region, we find the first ever indication for particles in the process of leaving the acceleration shock region. By studying the broadband energy spectrum, we furthermore extract properties of the parent particle populations, providing new input to the discussion of the leptonic or hadronic nature of the gamma-ray emission mechanism.
  •  
25.
  • Abdalla, H., et al. (författare)
  • Measurement of the EBL spectral energy distribution using the VHE gamma-ray spectra of HESS blazars
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : The European Southern Observatory (ESO). - 0004-6361 .- 1432-0746. ; 606
  • Tidskriftsartikel (refereegranskat)abstract
    • Very high-energy gamma rays (VHE, E greater than or similar to 100 GeV) propagating over cosmological distances can interact with the low-energy photons of the extragalactic background light (EBL) and produce electron-positron pairs. The transparency of the Universe to VHE gamma rays is then directly related to the spectral energy distribution (SED) of the EBL. The observation of features in the VHE energy spectra of extragalactic sources allows the EBL to be measured, which otherwise is very difficult. An EBL model-independent measurement of the EBL SED with the H.E.S.S. array of Cherenkov telescopes is presented. It was obtained by extracting the EBL absorption signal from the reanalysis of high-quality spectra of blazars. From H.E.S.S. data alone the EBL signature is detected at a significance of 9.5 sigma, and the intensity of the EBL obtained in different spectral bands is presented together with the associated gamma-ray horizon.
  •  
26.
  • Abdalla, H., et al. (författare)
  • Systematic search for very-high-energy gamma-ray emission from bow shocks of runaway stars
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 612
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Runaway stars form bow shocks by ploughing through the interstellar medium at supersonic speeds and are promising sources of non-thermal emission of photons. One of these objects has been found to emit non-thermal radiation in the radio band. This triggered the development of theoretical models predicting non-thermal photons from radio up to very-high-energy (VHE, E >= 0.1 TeV) gamma rays. Subsequently, one bow shock was also detected in X-ray observations. However, the data did not allow discrimination between a hot thermal and a non-thermal origin. Further observations of different candidates at X-ray energies showed no evidence for emission at the position of the bow shocks either. A systematic search in the Fermi-LAT energy regime resulted in flux upper limits for 27 candidates listed in the E-BOSS catalogue. Aims. Here we perform the first systematic search for VHE gamma-ray emission from bow shocks of runaway stars. Methods. Using all available archival H.E.S.S. data we search for very-high-energy gamma-ray emission at the positions of bow shock candidates listed in the second E-BOSS catalogue release. Out of the 73 bow shock candidates in this catalogue, 32 have been observed with H.E.S.S. Results. None of the observed 32 bow shock candidates in this population study show significant emission in the H.E.S.S. energy range. Therefore, flux upper limits are calculated in five energy bins and the fraction of the kinetic wind power that is converted into VHE gamma rays is constrained. Conclusions. Emission from stellar bow shocks is not detected in the energy range between 0.14 and 18 TeV. The resulting upper limits constrain the level of VHE gamma-ray emission from these objects down to 0.1-1% of the kinetic wind energy.
  •  
27.
  • Abdalla, H., et al. (författare)
  • The 2014 TeV γ-Ray Flare of Mrk 501 Seen with H.E.S.S. : Temporal and Spectral Constraints on Lorentz Invariance Violation
  • 2019
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 870:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The blazar Mrk 501 (z = 0.034) was observed at very-high-energy (VHE, E greater than or similar to 100 GeV) gamma-ray wavelengths during a bright flare on the night of 2014 June 23-24 (MJD 56832) with the H.E.S.S. phase-II array of Cherenkov telescopes. Data taken that night by H.E.S.S. at large zenith angle reveal an exceptional number of gamma-ray photons at multi-TeV energies, with rapid flux variability and an energy coverage extending significantly up to 20 TeV. This data set is used to constrain Lorentz invariance violation (LIV) using two independent channels: a temporal approach considers the possibility of an energy dependence in the arrival time of gamma-rays, whereas a spectral approach considers the possibility of modifications to the interaction of VHE gamma-rays with extragalactic background light (EBL) photons. The non-detection of energy-dependent time delays and the non-observation of deviations between the measured spectrum and that of a supposed power-law intrinsic spectrum with standard EBL attenuation are used independently to derive strong constraints on the energy scale of LIV (E-QG) in the subluminal scenario for linear and quadratic perturbations in the dispersion relation of photons. For the case of linear perturbations, the 95% confidence level limits obtained are E-QG,E-1 > 3.6 x 10(17) GeV using the temporal approach and E-QG,E-1 > 2.6 x 10(19) GeV using the spectral approach. For the case of quadratic perturbations, the limits obtained are E-QG,E-2 > 8.5 x 10(10) GeV using the temporal approach and E-QG,E-2 > 7.8 x 10(11) GeV using the spectral approach.
  •  
28.
  • Abdalla, H., et al. (författare)
  • The gamma-ray spectrum of the core of Centaurus A as observed with HESS and Fermi-LAT
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 619
  • Tidskriftsartikel (refereegranskat)abstract
    • Centaurus A (Cen A) is the nearest radio galaxy discovered as a very-high-energy (VHE; 100 GeV-100 TeV) gamma-ray source by the High Energy Stereoscopic System (H.E.S.S.). It is a faint VHE gamma-ray emitter, though its VHE flux exceeds both the extrapolation from early Fermi-LAT observations as well as expectations from a (misaligned) single-zone synchrotron-self Compton (SSC) description. The latter satisfactorily reproduces the emission from Cen A at lower energies up to a few GeV. New observations with H.E.S.S., comparable in exposure time to those previously reported, were performed and eight years of Fermi-LAT data were accumulated to clarify the spectral characteristics of the gamma-ray emission from the core of Cen A. The results allow us for the first time to achieve the goal of constructing a representative, contemporaneous gamma-ray core spectrum of Cen A over almost five orders of magnitude in energy. Advanced analysis methods, including the template fitting method, allow detection in the VHE range of the core with a statistical significance of 12 sigma on the basis of 213 hours of total exposure time. The spectrum in the energy range of 250 GeV-6 TeV is compatible with a power-law function with a photon index Gamma = 2.52 +/- 0.13(stat) +/- 0.20(sys). An updated Fermi-LAT analysis provides evidence for spectral hardening by Delta Gamma similar or equal to 0.4 +/- 0.1 at gamma-ray energies above 2.8(-0.6)(+1.0) GeV at a level of 4.0 sigma. The fact that the spectrum hardens at GeV energies and extends into the VHE regime disfavour a single-zone SSC interpretation for the overall spectral energy distribution (SED) of the core and is suggestive of a new gamma-ray emitting component connecting the high-energy emission above the break energy to the one observed at VHE energies. The absence of significant variability at both GeV and TeV energies does not yet allow disentanglement of the physical nature of this component, though a jet-related origin is possible and a simple two-zone SED model fit is provided to this end.
  •  
29.
  • Abdalla, H., et al. (författare)
  • The population of TeV pulsar wind nebulae in the HESS Galactic Plane Survey
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 612
  • Tidskriftsartikel (refereegranskat)abstract
    • The nine-year H.E.S.S. Galactic Plane Survey (HGPS) has yielded the most uniform observation scan of the inner Milky Way in the TeV gamma-ray band to date. The sky maps and source catalogue of the HGPS allow for a systematic study of the population of TeV pulsar wind nebulae found throughout the last decade. To investigate the nature and evolution of pulsar wind nebulae, for the first time we also present several upper limits for regions around pulsars without a detected TeV wind nebula. Our data exhibit a correlation of TeV surface brightness with pulsar spindown power (E) over dot. This seems to be caused both by an increase of extension with decreasing (E) over dot, and hence with time, compatible with a power law R-PWN((E) over dot) similar to(E) over dot(0.65 +/- 0.20), and by a mild decrease of TeV gamma-ray luminosity with decreasing (E) over dot, compatible with L-1 (10 TeV) similar to (E) over dot(0.59 +/- 0.21). We also find that the off sets of pulsars with respect to the wind nebula centre with ages around 10 kyr are frequently larger than can be plausibly explained by pulsar proper motion and could be due to an asymmetric environment. In the present data, it seems that a large pulsar off set is correlated with a high apparent TeV efficiency L1- 10 TeV / (E) over dot. In addition to 14 HGPS sources considered firmly identified pulsar wind nebulae and 5 additional pulsar wind nebulae taken from literature, we find 10 HGPS sources that are likely TeV pulsar wind nebula candidates. Using a model that subsumes the present common understanding of the very high-energy radiative evolution of pulsar wind nebulae, we find that the trends and variations of the TeV observables and limits can be reproduced to a good level, drawing a consistent picture of present-day TeV data and theory.
  •  
30.
  • Abdalla, H., et al. (författare)
  • The supernova remnant W49B as seen with HESS and Fermi-LAT
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 612
  • Tidskriftsartikel (refereegranskat)abstract
    • The supernova remnant (SNR) W49B originated from a core-collapse supernova that occurred between one and four thousand years ago, and subsequently evolved into a mixed-morphology remnant, which is interacting with molecular clouds (MC). Gamma-ray observations of SNR-MC associations are a powerful tool to constrain the origin of Galactic cosmic rays, as they can probe the acceleration of hadrons through their interaction with the surrounding medium and subsequent emission of non-thermal photons. We report the detection of a gamma-ray source coincident with W49B at very high energies (VHE; E > 100 GeV) with the H.E.S.S. Cherenkov telescopes together with a study of the source with five years of Fermi-LAT high-energy gamma-ray (0.06-300 GeV) data. The smoothly connected, combined source spectrum, measured from 60 MeV to multi-TeV energies, shows two significant spectral breaks at 304 +/- 20 MeV and 8.4(-2.5)(+2.5) GeV; the latter is constrained by the joint fit from the two instruments. The detected spectral features are similar to those observed in several other SNR-MC associations and are found to be indicative of gamma-ray emission produced through neutral-pion decay.
  •  
31.
  • Abdalla, H., et al. (författare)
  • VHE γ-ray discovery and multiwavelength study of the blazar 1ES 2322−409 
  • 2019
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 482:3, s. 3011-3022
  • Tidskriftsartikel (refereegranskat)abstract
    • A hotspot at a position compatible with the BL. Lac object 1ES 2322-409 was serendipitously detected with H.E.S.S. during observations performed in 2004 and 2006 on the blazar PKS 2316-423. Additional data on 1ES 2322-409 were taken in 2011 and 2012, leading to a total live-time of 22.3 h. Point-like very-high-energy (VHE; E > 100 GeV) gamma-ray emission is detected from a source centred on the IFS 2322-409 position, with an excess of 116.7 events at a significance of 6.0 sigma. The average VHE gamma-ray spectrum is well described with a power law with a photon index Gamma = 3.40 +/- 0.66(stat) +/- 0.20(sys) and an integral flux Phi(E > 200 GeV) = (3.11 +/- 0.71(stat) 0.62(sys)) x 10(-2)cm(-2)s(-1), which corresponds to 1.1 per cent of the Crab nebula flux above 200 GeV. Multiwavelength data obtained with Fermi LAT, Swift XRT and UVOT, RXTE PCA, ATOM, and additional data from WISE, GROND, and Catalina are also used to characterize the broad-band non-thermal emission of lES 2322-409. The multiwavelength behaviour indicates day-scale variability. Swift UVOT and XRT data show strong variability at longer scales. A spectral energy distribution (SED) is built from contemporaneous observations obtained around a high state identified in Swift data. A modelling of the SED is performed with a stationary homogeneous one-zone synchrotronself-Compton leptonic model. The redshift of the source being unknown, two plausible values were tested for the modelling. A systematic scan of the model parameters space is performed, resulting in a well-constrained combination of values providing a good description of the broad-band behaviour of 1ES 2322-409.
  •  
32.
  • Abramowski, A., et al. (författare)
  • Diffuse Galactic gamma-ray emission with HESS
  • 2014
  • Ingår i: Physical Review D. - 1550-7998 .- 1550-2368. ; 90:12, s. Article ID: 122007-
  • Tidskriftsartikel (refereegranskat)abstract
    • Diffuse gamma-ray emission is the most prominent observable signature of celestial cosmic-ray interactions at high energies. While already being investigated at GeVenergies over several decades, assessments of diffuse gamma-ray emission at TeVenergies remain sparse. After completion of the systematic survey of the inner Galaxy, the H.E.S.S. experiment is in a prime position to observe large-scale diffuse emission at TeVenergies. Data of the H.E.S.S. Galactic Plane Survey are investigated in regions off known gamma-ray sources. Corresponding gamma-ray flux measurements were made over an extensive grid of celestial locations. Longitudinal and latitudinal profiles of the observed gamma-ray fluxes show characteristic excess emission not attributable to known gamma-ray sources. For the first time large-scale gamma-ray emission along the Galactic plane using imaging atmospheric Cherenkov telescopes has been observed. While the background subtraction technique limits the ability to recover modest variation on the scale of the H.E.S.S. field of view or larger, which is characteristic of the inverse Compton scatter-induced Galactic diffuse emission, contributions of neutral pion decay as well as emission from unresolved gamma-ray sources can be recovered in the observed signal to a large fraction. Calculations show that the minimum gamma-ray emission from pi(0) decay represents a significant contribution to the total signal. This detection is interpreted as a mix of diffuse Galactic gamma-ray emission and unresolved sources.
  •  
33.
  • Abramowski, A., et al. (författare)
  • Discovery of the Hard Spectrum VHE γ-Ray Source HESS J1641–463
  • 2014
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 794:1, s. Article ID: L1-
  • Tidskriftsartikel (refereegranskat)abstract
    • This Letter reports the discovery of a remarkably hard spectrum source, HESS J1641-463, by the High Energy Stereoscopic System (H.E.S.S.) in the very high energy (VHE) domain. HESS J1641-463 remained unnoticed by the usual analysis techniques due to confusion with the bright nearby source HESS J1640-465. It emerged at a significance level of 8.5 standard deviations after restricting the analysis to events with energies above 4 TeV. It shows a moderate flux level of phi(E > 1TeV) = (3.64 +/- 0.44(stat)+/- 0.73(sys)) x 10(-13) cm(-2) s(-1), corresponding to 1.8% of the Crab Nebula flux above the same energy, and a hard spectrum with a photon index of Gamma = 2.07 +/- 0.11(stat)+/- 0.20(sys). It is a point-like source, although an extension up to a Gaussian width of sigma = 3 arcmin cannot be discounted due to uncertainties in the H.E.S.S. point-spread function. The VHE gamma-ray flux of HESS J1641-463 is found to be constant over the observed period when checking time binnings from the year-by-year to the 28 minute exposure timescales. HESS J1641-463 is positionally coincident with the radio supernova remnant SNR G338.5+0.1. No X-ray candidate stands out as a clear association; however, Chandra and XMM-Newton data reveal some potential weak counterparts. Various VHE gamma-ray production scenarios are discussed. If the emission from HESS J1641-463 is produced by cosmic ray protons colliding with the ambient gas, then their spectrum must extend close to 1 PeV. This object may represent a source population contributing significantly to the galactic cosmic ray flux around the knee.
  •  
34.
  • Abramowski, A., et al. (författare)
  • Probing the gamma-ray emission from HESS J1834-087 using HESS and Fermi LAT observations
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 574
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. Previous observations with the High Energy Stereoscopic System (H.E.S.S.) have revealed an extended very-high-energy (VHE; E > 100 GeV) gamma-ray source, HESS J1834-087, coincident with the supernova remnant (SNR) W41. The origin of the gamma-ray emission was investigated in more detail with the H.E.S.S. array and the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope. Methods. The gamma-ray data provided by 61 h of observations with H.E.S.S., and four years with the Fermi LAT were analyzed, covering over five decades in energy from 1.8 GeV up to 30 TeV. The morphology and spectrum of the TeV and GeV sources were studied and multiwavelength data were used to investigate the origin of the gamma-ray emission toward W41. Results. The TeV source can be modeled with a sum of two components: one point-like and one significantly extended (sigma(TeV) = 0.17 degrees +/- 0.01 degrees), both centered on SNR W41 and exhibiting spectra described by a power law with index Gamma(TeV) similar or equal to 2.6. The GeV source detected with Fermi LAT is extended (sigma(GeV) = 0.15 degrees +/- 0.03 degrees) and morphologically matches the VHE emission. Its spectrum can be described by a power-law model with an index Gamma(GeV) = 2.15 +/- 0.12 and smoothly joins the spectrum of the whole TeV source. A break appears in the gamma-ray spectra around 100 GeV. No pulsations were found in the GeV range. Conclusions. Two main scenarios are proposed to explain the observed emission: a pulsar wind nebula (PWN) or the interaction of SNR W41 with an associated molecular cloud. X-ray observations suggest the presence of a point-like source (a pulsar candidate) near the center of the remnant and nonthermal X-ray diffuse emission that could arise from the possibly associated PWN. The PWN scenario is supported by the compatible positions of the TeV and GeV sources with the putative pulsar. However, the spectral energy distribution from radio to gamma-rays is reproduced by a one-zone leptonic model only if an excess of low-energy electrons is injected following a Maxwellian distribution by a pulsar with a high spin-down power (> 10(37) erg s(-1)). This additional low-energy component is not needed if we consider that the point-like TeV source is unrelated to the extended GeV and TeV sources. The interacting SNR scenario is supported by the spatial coincidence between the gamma-ray sources, the detection of OH (1720 MHz) maser lines, and the hadronic modeling.
  •  
35.
  • Abramowski, A., et al. (författare)
  • The 2010 very high energy gamma-RAY flare and 10 years of multi-wavelength observations of M 87
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 746:2, s. 151-
  • Tidskriftsartikel (refereegranskat)abstract
    • The giant radio galaxy M 87 with its proximity (16 Mpc), famous jet, and very massive black hole ((3-6) x 10(9) M-circle dot) provides a unique opportunity to investigate the origin of very high energy (VHE; E > 100 GeV) gamma-ray emission generated in relativistic outflows and the surroundings of supermassive black holes. M 87 has been established as a VHE gamma-ray emitter since 2006. The VHE gamma-ray emission displays strong variability on timescales as short as a day. In this paper, results from a joint VHE monitoring campaign on M 87 by the MAGIC and VERITAS instruments in 2010 are reported. During the campaign, a flare at VHE was detected triggering further observations at VHE (H.E.S.S.), X-rays (Chandra), and radio (43 GHz Very Long Baseline Array, VLBA). The excellent sampling of the VHE gamma-ray light curve enables one to derive a precise temporal characterization of the flare: the single, isolated flare is well described by a two-sided exponential function with significantly different flux rise and decay times of tau(rise)(d) = (1.69 +/- 0.30) days and tau(decay)(d) = (0.611 +/- 0.080) days, respectively. While the overall variability pattern of the 2010 flare appears somewhat different from that of previous VHE flares in 2005 and 2008, they share very similar timescales (similar to day), peak fluxes (Phi(>0.35 TeV) similar or equal to (1-3) x 10(-11) photons cm(-2) s(-1)), and VHE spectra. VLBA radio observations of 43 GHz of the inner jet regions indicate no enhanced flux in 2010 in contrast to observations in 2008, where an increase of the radio flux of the innermost core regions coincided with a VHE flare. On the other hand, Chandra X-ray observations taken similar to 3 days after the peak of the VHE gamma-ray emission reveal an enhanced flux from the core (flux increased by factor similar to 2; variability timescale <2 days). The long-term (2001-2010) multi-wavelength (MWL) light curve of M 87, spanning from radio to VHE and including data from Hubble Space Telescope, Liverpool Telescope, Very Large Array, and European VLBI Network, is used to further investigate the origin of the VHE gamma-ray emission. No unique, common MWL signature of the three VHE flares has been identified. In the outer kiloparsec jet region, in particular in HST-1, no enhanced MWL activity was detected in 2008 and 2010, disfavoring it as the origin of the VHE flares during these years. Shortly after two of the three flares (2008 and 2010), the X-ray core was observed to be at a higher flux level than its characteristic range (determined from more than 60 monitoring observations: 2002-2009). In 2005, the strong flux dominance of HST-1 could have suppressed the detection of such a feature. Published models for VHE gamma-ray emission from M 87 are reviewed in the light of the new data.
  •  
36.
  • Ageron, M., et al. (författare)
  • Studies of a full-scale mechanical prototype line for the ANTARES neutrino telescope and tests of a prototype instrument for deep-sea acoustic measurements
  • 2007
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier. - 0168-9002 .- 1872-9576. ; 581:3, s. 695-708
  • Tidskriftsartikel (refereegranskat)abstract
    • full-scale mechanical prototype line was deployed to a depth of 2500 m to test the leak tightness of the electronics containers and the pressure-resistant properties of an electromechanical cable under evaluation for use in the ANTARES deep-sea neutrino telescope. During a month-long immersion study, line parameter data were taken using miniature autonomous data loggers and shore-based optical time domain reflectometry. Details of the mechanical prototype line, the electromechanical cable and data acquisition are presented. Data taken during the immersion study revealed deficiencies in the pressure resistance of the electromechanical cable terminations at the entry points to the electronics containers. The improvements to the termination, which have been integrated into subsequent detection lines, are discussed. The line also allowed deep-sea acoustic measurements with a prototype hydrophone system. The technical setup of this system is described, and the first results of the data analysis are presented. (c) 2007 Elsevier B.V. All rights reserved.
  •  
37.
  • Aguilar, J A, et al. (författare)
  • Study of large hemispherical photomultiplier tubes for the ANTARES neutrino telescope
  • 2005
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier. - 0168-9002 .- 1872-9576. ; 555:1-2, s. 132-141
  • Tidskriftsartikel (refereegranskat)abstract
    • The ANTARES neutrino telescope, to be immersed depth in the Mediterranean Sea, will consist of a three-dimensional matrix of 900 large area photomultiplier tubes housed in pressure-resistant glass spheres. The selection of the optimal photomultiplier was a critical step for the project and required an intensive phase of tests and developments carried out in close collaboration with the main manufacturers worldwide. This paper provides an overview of the tests performed by the collaboration and describes in detail the features of the photomultiplier tube chosen for ANTARES. (c) 2005 Elsevier B.V. All rights reserved.
  •  
38.
  • Aguilar, J A, et al. (författare)
  • Transmission of light in deep sea water at the site of the ANTARES neutrino telescope
  • 2005
  • Ingår i: Astroparticle physics. - : Elsevier. - 0927-6505 .- 1873-2852. ; 23:1, s. 131-155
  • Tidskriftsartikel (refereegranskat)abstract
    • The ANTARES neutrino telescope is a large photomultiplier array designed to detect neutrino-induced upward-going muons by their Cherenkov radiation. Understanding the absorption and scattering of light in the deep Mediterranean is fundamental to optimising the design and performance of the detector. This paper presents measurements of blue and UV light transmission at the ANTARES site taken between 1997 and 2000. The derived values for the scattering length and the angular distribution of particulate scattering were found to be highly correlated, and results are therefore presented in terms of an absorption length;,ab, and an effective scattering length lambda(sct)(eff). The values for blue (UV) light are found to be lambda(abs) similar or equal to 60(26) m, lambda(sct)(eff similar or equal to) 265(122) m, with significant (similar to15%) time variability. Finally, the results of ANTARES simulations showing the effect of these water properties on the anticipated performance of the detector are presented. (C) 2004 Elsevier B.V. All rights reserved.
  •  
39.
  • Mayer, Manuel, et al. (författare)
  • Constraints on particle acceleration in SS433/W50 from MAGIC and HESS observations
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 612
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The large jet kinetic power and non-thermal processes occurring in the microquasar SS 433 make this source a good candidate for a very high-energy (VHE) gamma-ray emitter. Gamma-ray fluxes above the sensitivity limits of current Cherenkov telescopes have been predicted for both the central X-ray binary system and the interaction regions of SS 433 jets with the surrounding W50 nebula. Non-thermal emission at lower energies has been previously reported, indicating that efficient particle acceleration is taking place in the system. Aims. We explore the capability of SS 433 to emit VHE gamma rays during periods in which the expected flux attenuation due to periodic eclipses (P-orb similar to 13.1 days) and precession of the circumstellar disk (P-pre similar to 162 days) periodically covering the central binary system is expected to be at its minimum. The eastern and western SS 433/W50 interaction regions are also examined using the whole data set available. We aim to constrain some theoretical models previously developed for this system with our observations. Methods. We made use of dedicated observations from the Major Atmospheric Gamma Imaging Cherenkov telescopes (MAGIC) and High Energy Spectroscopic System (H.E.S.S.) of SS 433 taken from 2006 to 2011. These observation were combined for the first time and accounted for a total effective observation time of 16.5 h, which were scheduled considering the expected phases of minimum absorption of the putative VHE emission. Gamma-ray attenuation does not affect the jet/medium interaction regions. In this case, the analysis of a larger data set amounting to similar to 40-80 h, depending on the region, was employed. Results. No evidence of VHE gamma-ray emission either from the central binary system or from the eastern/western interaction regions was found. Upper limits were computed for the combined data set. Differential fluxes from the central system are found to be less than or similar to 10(-12)-10(-13) TeV-1 cm(-2) s(-1) in an energy interval ranging from similar to few x 100 GeV to similar to few TeV. Integral flux limits down to similar to 10(-12)-10(-13) ph cm(-2) s(-1) and similar to 10(-13)-10(-14) ph cm(-2) s(-1) are obtained at 300 and 800 GeV, respectively. Our results are used to place constraints on the particle acceleration fraction at the inner jet regions and on the physics of the jet/medium interactions. Conclusions. Our findings suggest that the fraction of the jet kinetic power that is transferred to relativistic protons must be relatively small in SS 433, q(p) <= 2.5 x 10(-5), to explain the lack of TeV and neutrino emission from the central system. At the SS 433/W50 interface, the presence of magnetic fields greater than or similar to 10 mu G is derived assuming a synchrotron origin for the observed X-ray emission. This also implies the presence of high-energy electrons with E-e up to 50 TeV, preventing an efficient production of gamma-ray fluxes in these interaction regions.
  •  
40.
  • Abdalla, H., et al. (författare)
  • A search for very high-energy flares from the microquasars GRS 1915+105, Circinus X-1, and V4641 Sgr using contemporaneous HESS and RXTE observations
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 612
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Microquasars are potential gamma-ray emitters. Indications of transient episodes of gamma-ray emission were recently reported in at least two systems: Cyg X-1 and Cyg X-3. The identification of additional gamma-ray-emitting microquasars is required to better understand how gamma-ray emission can be produced in these systems. Aims. Theoretical models have predicted very high-energy (VHE) gamma-ray emission from microquasars during periods of transient outburst. Observations reported herein were undertaken with the objective of observing a broadband flaring event in the gamma-ray and X-ray bands. Methods. Contemporaneous observations of three microquasars, GRS 1915+105, Circinus X-1, and V4641 Sgr, were obtained using the High Energy Spectroscopic System (H.E.S.S.) telescope array and the Rossi X-ray Timing Explorer (RXTE) satellite. X-ray analyses for each microquasar were performed and VHE gamma-ray upper limits from contemporaneous H.E.S.S. observations were derived. Results. No significant gamma-ray signal has been detected in any of the three systems. The integral gamma-ray photon flux at the observational epochs is constrained to be I(>560 GeV) < 7.3 x 10(-13) cm(-2) S-1, I(>560 GeV) < 1.2 x 10-(12) cm s(-1), and I(>240 GeV) < 4.5 x 10(-12) cm(-2) s(-1) for GRS 1915+105, Circinus X-1, and V4641 Sgr, respectively. Conclusions. The gamma-ray upper limits obtained using H.E.S.S. are examined in the context of previous Cherenkov telescope observations of microquasars. The effect of intrinsic absorption is modelled for each target and found to have negligible impact on the flux of escaping gamma-rays. When combined with the X-ray behaviour observed using RXTE, the derived results indicate that if detectable VHE gamma-ray emission from microquasars is commonplace, then it is likely to be highly transient.
  •  
41.
  • Abdalla, H., et al. (författare)
  • A very-high-energy component deep in the gamma-ray burst afterglow
  • 2019
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 575:7783, s. 464-467
  • Tidskriftsartikel (refereegranskat)abstract
    • Gamma-ray bursts (GRBs) are brief flashes of gamma-rays and are considered to be the most energetic explosive phenomena in the Universe(1). The emission from GRBs comprises a short (typically tens of seconds) and bright prompt emission, followed by a much longer afterglow phase. During the afterglow phase, the shocked outflow-produced by the interaction between the ejected matter and the circumburst medium-slows down, and a gradual decrease in brightness is observed(2). GRBs typically emit most of their energy via.-rays with energies in the kiloelectronvolt-to-megaelectronvolt range, but a few photons with energies of tens of gigaelectronvolts have been detected by space-based instruments(3). However, the origins of such high-energy (above one gigaelectronvolt) photons and the presence of very-high-energy (more than 100 gigaelectronvolts) emission have remained elusive(4). Here we report observations of very-high-energy emission in the bright GRB 180720B deep in the GRB afterglow-ten hours after the end of the prompt emission phase, when the X-ray flux had already decayed by four orders of magnitude. Two possible explanations exist for the observed radiation: inverse Compton emission and synchrotron emission of ultrarelativistic electrons. Our observations show that the energy fluxes in the X-ray and gamma-ray range and their photon indices remain comparable to each other throughout the afterglow. This discovery places distinct constraints on the GRB environment for both emission mechanisms, with the inverse Compton explanation alleviating the particle energy requirements for the emission observed at late times. The late timing of this detection has consequences for the future observations of GRBs at the highest energies.
  •  
42.
  • Abdalla, H., et al. (författare)
  • An extreme particle accelerator in the Galactic plane : HESS J1826-130
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 644, s. 1-8
  • Tidskriftsartikel (refereegranskat)abstract
    • The unidentified very-high-energy (VHE; E > 0.1 TeV) gamma -ray source, HESS J1826-130, was discovered with the High Energy Stereoscopic System (HESS) in the Galactic plane. The analysis of 215 h of HESS data has revealed a steady gamma -ray flux from HESS J1826-130, which appears extended with a half-width of 0.21 degrees +/- 0.02 (stat)degrees stat degrees +/- 0.05 (sys)degrees sys degrees . The source spectrum is best fit with either a power-law function with a spectral index Gamma = 1.78 +/- 0.10(stat) +/- 0.20(sys) and an exponential cut-off at 15.2 (+5.5)(-3.2) -3.2+5.5 TeV, or a broken power-law with Gamma (1) = 1.96 +/- 0.06(stat) +/- 0.20(sys), Gamma (2) = 3.59 +/- 0.69(stat) +/- 0.20(sys) for energies below and above E-br = 11.2 +/- 2.7 TeV, respectively. The VHE flux from HESS J1826-130 is contaminated by the extended emission of the bright, nearby pulsar wind nebula, HESS J1825-137, particularly at the low end of the energy spectrum. Leptonic scenarios for the origin of HESS J1826-130 VHE emission related to PSR J1826-1256 are confronted by our spectral and morphological analysis. In a hadronic framework, taking into account the properties of dense gas regions surrounding HESS J1826-130, the source spectrum would imply an astrophysical object capable of accelerating the parent particle population up to greater than or similar to 200 TeV. Our results are also discussed in a multiwavelength context, accounting for both the presence of nearby supernova remnants, molecular clouds, and counterparts detected in radio, X-rays, and TeV energies.
  •  
43.
  • Abdalla, H., et al. (författare)
  • Constraints on the emission region of 3C 279 during strong flares in 2014 and 2015 through VHE gamma-ray observations with HESS
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 627, s. 1-19
  • Tidskriftsartikel (refereegranskat)abstract
    • The flat spectrum radio quasar 3C 279 is known to exhibit pronounced variability in the high-energy (100MeV < E < 100 GeV) gamma-ray band, which is continuously monitored with Fermi-LAT. During two periods of high activity in April 2014 and June 2015 target-of-opportunity observations were undertaken with the High Energy Stereoscopic System (H.E.S.S.) in the very-high-energy (VHE, E > 100 GeV) gamma-ray domain. While the observation in 2014 provides an upper limit, the observation in 2015 results in a signal with 8 : 7 sigma significance above an energy threshold of 66 GeV. No VHE variability was detected during the 2015 observations. The VHE photon spectrum is soft and described by a power-law index of 4.2 +/- 0.3. The H.E.S.S. data along with a detailed and contemporaneous multiwavelength data set provide constraints on the physical parameters of the emission region. The minimum distance of the emission region from the central black hole was estimated using two plausible geometries of the broad-line region and three potential intrinsic spectra. The emission region is confidently placed at r greater than or similar to 1 : 7 X 1017 cm from the black hole, that is beyond the assumed distance of the broad-line region. Time-dependent leptonic and lepto-hadronic one-zone models were used to describe the evolution of the 2015 flare. Neither model can fully reproduce the observations, despite testing various parameter sets. Furthermore, the H.E.S.S. data were used to derive constraints on Lorentz invariance violation given the large redshift of 3C 279.
  •  
44.
  • Abdalla, H., et al. (författare)
  • Detection of variable VHE gamma-ray emission from the extra-galactic gamma-ray binary LMC P3
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 610
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Recently, the high-energy (HE, 0.1-100 GeV) gamma-ray emission from the object LMC P3 in the Large Magellanic Cloud (LMC) has been discovered to be modulated with a 10.3-day period, making it the first extra-galactic gamma-ray binary. Aims. This work aims at the detection of very-high-energy (VHE, >100 GeV) gamma-ray emission and the search for modulation of the VHE signal with the orbital period of the binary system. Methods. LMC P3 has been observed with the High Energy Stereoscopic System (H.E.S.S.); the acceptance-corrected exposure time is 100 h. The data set has been folded with the known orbital period of the system in order to test for variability of the emission. Results. VHE gamma-ray emission is detected with a statistical significance of 6.4 sigma. The data clearly show variability which is phase-locked to the orbital period of the system. Periodicity cannot be deduced from the H.E.S.S. data set alone. The orbit-averaged luminosity in the 1-10 TeV energy range is (1.4 +/- 0.2) x 10(35) erg s(-1). A luminosity of (5 +/- 1) x 10(35) erg s(-1) is reached during 20% of the orbit. HE and VHE gamma-ray emissions are anti-correlated. LMC P3 is the most luminous gamma-ray binary known so far.
  •  
45.
  • Abdalla, H., et al. (författare)
  • Detection of very-high-energy gamma-ray emission from the colliding wind binary eta Car with HESS
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 635, s. 1-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. Colliding wind binary systems have long been suspected to be high-energy (HE; 100 MeV < E < 100 GeV) gamma-ray emitters. eta Car is the most prominent member of this object class and is confirmed to emit phase-locked HE gamma rays from hundreds of MeV to 100 GeV energies. This work aims to search for and characterise the very-high-energy (VHE; E >100 GeV) gamma-ray emission from eta Car around the last periastron passage in 2014 with the ground-based High Energy Stereoscopic System (H.E.S.S.).Methods. The region around eta Car was observed with H.E.S.S. between orbital phase p = 0.78-1.10, with a closer sampling at p approximate to 0.95 and p approximate to 1.10 (assuming a period of 2023 days). Optimised hardware settings as well as adjustments to the data reduction, reconstruction, and signal selection were needed to suppress and take into account the strong, extended, and inhomogeneous night sky background (NSB) in the eta Car field of view. Tailored run-wise Monte-Carlo simulations (RWS) were required to accurately treat the additional noise from NSB photons in the instrument response functions.Results. H.E.S.S. detected VHE gamma-ray emission from the direction of eta Car shortly before and after the minimum in the X-ray light-curve close to periastron. Using the point spread function provided by RWS, the reconstructed signal is point-like and the spectrum is best described by a power law. The overall flux and spectral index in VHE gamma rays agree within statistical and systematic errors before and after periastron. The gamma-ray spectrum extends up to at least 400 GeV. This implies a maximum magnetic field in a leptonic scenario in the emission region of 0.5 Gauss. No indication for phase-locked flux variations is detected in the H.E.S.S. data.
  •  
46.
  • Abdalla, H., et al. (författare)
  • Evidence of 100 TeV gamma-ray emission from HESS J1702-420 : A new PeVatron candidate
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 653
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. The identification of PeVatrons, hadronic particle accelerators reaching the knee of the cosmic ray spectrum (few x 10(15) eV), is crucial to understand the origin of cosmic rays in the Galaxy. We provide an update on the unidentified source HESS J1702-420, a promising PeVatron candidate. Methods. We present new observations of HESS J1702-420 made with the High Energy Stereoscopic System (H.E.S.S.), and processed using improved analysis techniques. The analysis configuration was optimized to enhance the collection area at the highest energies. We applied a threedimensional likelihood analysis to model the source region and adjust non thermal radiative spectral models to the gamma-ray data. We also analyzed archival Fermi Large Area Telescope data to constrain the source spectrum at gamma-ray energies >10 GeV. Results. We report the detection of gamma-rays up to 100 TeV from a specific region of HESS J1702-420, which is well described by a new source component called HESS J1702-420A that was separated from the bulk of TeV emission at a 5:4 sigma confidence level. The power law gamma-ray spectrum of HESS J1702-420A extends with an index of Gamma = 1:53 +/- 0:19(stat) +/- 0:20(sys) and without curvature up to the energy band 64 113 TeV, in which it was detected by H.E.S.S. at a 4:0 sigma confidence level. This makes HESS J1702-420A a compelling candidate site for the presence of extremely high energy cosmic rays. With a flux above 2 TeV of (2:08 +/- 0:49(stat) +/- 0:62(sys)) x 10(-13) cm(-2) s(-1) and a radius of (0:06 +/- 0:02(stat) +/- 0:03(sys))degrees, HESS J1702-420A is outshone - below a few tens of TeV - by the companion HESS J1702-420B. The latter has a steep spectral index of = 2:62 +/- 0:10(stat) +/- 0:20(sys) and an elongated shape, and it accounts for most of the low-energy HESS J1702-420 flux. Simple hadronic and leptonic emission models can be well adjusted to the spectra of both components. Remarkably, in a hadronic scenario, the cut-o ff energy of the particle distribution powering HESS J1702-420A is found to be higher than 0:5 PeV at a 95% confidence level. Conclusions. For the first time, H.E.S.S. resolved two components with significantly di fferent morphologies and spectral indices, both detected at >5 sigma confidence level, whose combined emissions result in the source HESS J1702-420. We detected HESS J1702-420A at a 4:0 sigma confidence level in the energy band 64 113 TeV, which brings evidence for the source emission up to 100 TeV. In a hadronic emission scenario, the hard gamma-ray spectrum of HESS J1702-420A implies that the source likely harbors PeV protons, thus becoming one of the most solid PeVatron candidates detected so far in H.E.S.S. data. However, a leptonic origin of the observed TeV emission cannot be ruled out either.
  •  
47.
  • Abdalla, H., et al. (författare)
  • Extended VHE gamma-ray emission towards SGR1806-20, LBV 1806-20, and stellar cluster Cl*1806-20
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 612
  • Tidskriftsartikel (refereegranskat)abstract
    • Using the High Energy Spectroscopic System (H.E.S.S.) telescopes we have discovered a steady and extended very high-energy (VHE) gamma-ray source towards the luminous blue variable candidate LBV 1806-20, massive stellar cluster Cl* 1806-20, and magnetar SGR 1806-20. The new VHE source, HESS J1808-204, was detected at a statistical significance of >6 sigma (post-trial) with a photon flux normalisation (2.9 +/- 0.4(stat) +/- 0.5(sys)) x 10(-13) ph cm(-2) s(-1) TeV-1 at 1 TeV and a power-law photon index of 2.3 +/- 0.2(stat) +/- 0.3(sys). The luminosity of this source (0.2 to 10 TeV; scaled to distance d = 8 : 7 kpc) is L-VHE similar to 1.6 x 10(34)(d = 8.7 kpc)(2) erg s(-1). The VHE gamma-ray emission is extended and is well fit by a single Gaussian with statistical standard deviation of 0.095 degrees +/- 0.015 degrees. This extension is similar to that of the synchrotron radio nebula G10.0-0.3, which is thought to be powered by LBV 1806-20. The VHE gamma-ray luminosity could be provided by the stellar wind luminosity of LBV 1806-20 by itself and/or the massive star members of Cl* 1806-20. Alternatively, magnetic dissipation (e.g. via reconnection) from SGR 1806-20 can potentially account for the VHE luminosity. The origin and hadronic and/or leptonic nature of the accelerated particles responsible for HESS J1808-204 is not yet clear. If associated with SGR 1806 20, the potentially young age of the magnetar (650 yr) can be used to infer the transport limits of these particles to match the VHE source size. This discovery provides new interest in the potential for high-energy particle acceleration from magnetars, massive stars, and/or stellar clusters.
  •  
48.
  • Abdalla, H., et al. (författare)
  • First ground-based measurement of sub-20 GeV to 100 GeV gamma-Rays from the Vela pulsar with HESS II
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 620
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We report on the measurement and investigation of pulsed high-energy y-ray emission from the Vela pulsar, PSR B0833-45, based on observations with the largest telescope of H.E.S.S., CT5, in monoscopic mode, and on data obtained with the Fermi-LAT. Methods. Data from 40.3 h of observations carried out with the H.E.S.S. II array from 2013 to 2015 have been used. A dedicated very low-threshold event reconstruction and analysis pipeline was developed to achieve the lowest possible energy threshold. Eight years of Fermi-LAT data were analysed and also used as reference to validate the CT5 telescope response model and analysis methods. Results. A pulsed gamma-ray signal at a significance level of more than 15 sigma is detected from the P2 peak of the Vela pulsar light curve. Of a total of 15 835 events, more than 6000 lie at an energy below 20 GeV, implying a significant overlap between H.E.S.S. II-CT5 and the Fermi-LAT. While the investigation of the pulsar light curve with the LAT confirms characteristics previously known up to 20 GeV in the tens of GeV energy range, CT5 data show a change in the pulse morphology of P2, i.e. an extreme sharpening of its trailing edge, together with the possible onset of a new component at 3.4 sigma significance level. Assuming a power-law model for the P2 spectrum, an excellent agreement is found for the photon indices (Gamma similar or equal to 4.1) obtained with the two telescopes above 10 GeV and an upper bound of 8% is derived on the relative offset between their energy scales. Using data from both instruments, it is shown however that the spectrum of P2 in the 10-100 GeV has a pronounced curvature; this is a confirmation of the sub-exponential cut-off form found at lower energies with the LAT. This is further supported by weak evidence of an emission above 100 GeV obtained with CT5. In contrast, converging indications are found from both CT5 and LAT data for the emergence of a hard component above 50 GeV in the leading wing (LW2) of P2, which possibly extends beyond 100 GeV. Conclusions. The detection demonstrates the performance and understanding of CT5 from 100 GeV down to the sub-20 GeV domain, i.e. unprecedented low energy for ground-based gamma-ray astronomy. The extreme sharpening of the trailing edge of the P2 peak found in the H.E.S.S. II light curve of the Vela pulsar and the possible extension beyond 100 GeV of at least one of its features, LW2, provide further constraints to models of gamma-Ray emission from pulsars.
  •  
49.
  • Abdalla, H., et al. (författare)
  • HESS and Fermi-LAT observations of PSR B1259-63/LS 2883 during its 2014 and 2017 periastron passages
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 633, s. 1-14
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. PSR B1259-63/LS 2883 is a gamma-ray binary system consisting of a pulsar in an eccentric orbit around a bright Oe stellar-type companion star that features a dense circumstellar disc. The bright broad-band emission observed at phases close to periastron offers a unique opportunity to study particle acceleration and radiation processes in binary systems. Observations at gamma-ray energies constrain these processes through variability and spectral characterisation studies. Aims. The high- and very-high-energy (HE, VHE) gamma-ray emission from PSR B1259-63/LS 2883 around the times of its periastron passage are characterised, in particular, at the time of the HE gamma-ray flares reported to have occurred in 2011, 2014, and 2017. Short-term and average emission characteristics of PSR B1259-63/LS 2883 are determined. Super-orbital variability is searched for in order to investigate possible cycle-to-cycle VHE flux changes due to different properties of the companion star's circumstellar disc and/or the conditions under which the HE gamma-ray flares develop. Methods. Spectra and light curves were derived from observations conducted with the H.E.S.S-II array in 2014 and 2017. Phase-folded light curves are compared with the results obtained in 2004, 2007, and 2011. Fermi-LAT observations from 2010/11, 2014, and 2017 are analysed. Results. A local double-peak profile with asymmetric peaks in the VHE light curve is measured, with a flux minimum at the time of periastron t(p) and two peaks coinciding with the times at which the neutron star crosses the companion's circumstellar disc (similar to t(p) 16 d). A high VHE gamma-ray flux is also observed at the times of the HE gamma-ray flares (similar to t(p) + 30 d) and at phases before the first disc crossing (similar to t(p) - 35 d). The spectral energy range now extends to below 200 GeV and up to similar to 45 TeV. Conclusions. PSR B1259-63/LS 2883 displays periodic flux variability at VHE gamma-rays without clear signatures of super-orbital modulation in the time span covered by the monitoring of the source with the H.E.S.S. telescopes. This flux variability is most probably caused by the changing environmental conditions, particularly at times close to periastron passage at which the neutron star is thought to cross the circumstellar disc of the companion star twice. In contrast, the photon index remains unchanged within uncertainties for about 200 d around periastron. At HE gamma-rays, PSR B1259-63/LS 2883 has now been detected also before and after periastron, close to the disc crossing times. Repetitive flares with distinct variability patterns are detected in this energy range. Such outbursts are not observed at VHEs, although a relatively high emission level is measured. The spectra obtained in both energy regimes displays a similar slope, although a common physical origin either in terms of a related particle population, emission mechanism, or emitter location is ruled out.
  •  
50.
  • Abdalla, H., et al. (författare)
  • HESS and Suzaku observations of the Vela X pulsar wind nebula
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 627, s. 1-16
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Pulsar wind nebulae (PWNe) represent the most prominent population of Galactic very-high-energy gamma-ray sources and are thought to be an efficient source of leptonic cosmic rays. Vela X is a nearby middle-aged PWN, which shows bright X-ray and TeV gamma-ray emission towards an elongated structure called the cocoon. Aims. Since TeV emission is likely inverse-Compton emission of electrons, predominantly from interactions with the cosmic microwave background, while X-ray emission is synchrotron radiation of the same electrons, we aim to derive the properties of the relativistic particles and of magnetic fields with minimal modelling. Methods. We used data from the Suzaku XIS to derive the spectra from three compact regions in Vela X covering distances from 0.3 to 4 pc from the pulsar along the cocoon. We obtained gamma-ray spectra of the same regions from H.E.S.S. observations and fitted a radiative model to the multi-wavelength spectra. Results. The TeV electron spectra and magnetic field strengths are consistent within the uncertainties for the three regions, with energy densities of the order 10(-12) erg cm(-3). The data indicate the presence of a cutoff in the electron spectrum at energies of similar to 100 TeV and a magnetic field strength of similar to 6 mu G. Constraints on the presence of turbulent magnetic fields are weak. Conclusions. The pressure of TeV electrons and magnetic fields in the cocoon is dynamically negligible, requiring the presence of another dominant pressure component to balance the pulsar wind at the termination shock. Sub-TeV electrons cannot completely account for the missing pressure, which may be provided either by relativistic ions or from mixing of the ejecta with the pulsar wind. The electron spectra are consistent with expectations from transport scenarios dominated either by advection via the reverse shock or by diffusion, but for the latter the role of radiative losses near the termination shock needs to be further investigated in the light of the measured cutoff energies. Constraints on turbulent magnetic fields and the shape of the electron cutoff can be improved by spectral measurements in the energy range greater than or similar to 10 keV.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 165

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy