SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bechter K) "

Sökning: WFRF:(Bechter K)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adam, A, et al. (författare)
  • Abstracts from Hydrocephalus 2016.
  • 2017
  • Ingår i: Fluids and Barriers of the CNS. - : Springer Science and Business Media LLC. - 2045-8118. ; 14:Suppl 1
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  •  
3.
  • Borroto-Escuela, DO, et al. (författare)
  • The role of transmitter diffusion and flow versus extracellular vesicles in volume transmission in the brain neural-glial networks
  • 2015
  • Ingår i: Philosophical transactions of the Royal Society of London. Series B, Biological sciences. - : The Royal Society. - 1471-2970. ; 370:1672
  • Tidskriftsartikel (refereegranskat)abstract
    • Two major types of intercellular communication are found in the central nervous system (CNS), namely wiring transmission (point-to-point communication, the prototype being synaptic transmission with axons and terminals) and volume transmission (VT; communication in the extracellular fluid and in the cerebrospinal fluid (CSF)) involving large numbers of cells in the CNS. Volume and synaptic transmission become integrated inter alia through the ability of their chemical signals to activate different types of receptor protomers in heteroreceptor complexes located synaptically or extrasynaptically in the plasma membrane. The demonstration of extracellular dopamine (DA) and serotonin (5-HT) fluorescence around the DA and 5-HT nerve cell bodies with the Falck–Hillarp formaldehyde fluorescence method after treatment with amphetamine and chlorimipramine, respectively, gave the first indications of the existence of VT in the brain, at least at the soma level. There exist different forms of VT. Early studies on VT only involved spread including diffusion and flow of soluble biological signals, especially transmitters and modulators, a communication called extrasynaptic (short distance) and long distance (paraaxonal and paravascular and CSF pathways) VT. Also, the extracellular vesicle type of VT was demonstrated. The exosomes (endosome-derived vesicles) appear to be the major vesicular carriers for VT but the larger microvesicles also participate. Both mainly originate at the soma–dendritic level. They can transfer lipids and proteins, including receptors, Rab GTPases, tetraspanins, cholesterol, sphingolipids and ceramide. Within them there are also subsets of mRNAs and non-coding regulatory microRNAs. At the soma–dendritic membrane, sets of dynamic postsynaptic heteroreceptor complexes (built up of different types of physically interacting receptors and proteins) involving inter alia G protein-coupled receptors including autoreceptors, ion channel receptors and receptor tyrosine kinases are hypothesized to be the molecular basis for learning and memory. At nerve terminals, the presynaptic heteroreceptor complexes are postulated to undergo plastic changes to maintain the pattern of multiple transmitter release reflecting the firing pattern to be learned by the heteroreceptor complexes in the postsynaptic membrane.
  •  
4.
  • Espana, A., et al. (författare)
  • Alteration of NMDA receptor trafficking as a cellular hallmark of psychosis
  • 2021
  • Ingår i: Translational Psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A dysfunction of the glutamatergic transmission, especially of the NMDA receptor (NMDAR), constitutes one of the main biological substrate of psychotic disorders, such as schizophrenia. The NMDAR signaling hypofunction, through genetic and/or environmental insults, would cause a neurodevelopmental myriad of molecular, cellular, and network alterations that persist throughout life. Yet, the mechanisms underpinning NMDAR dysfunctions remain elusive. Here, we compared the membrane trafficking of NMDAR in three gold-standard models of schizophrenia, i.e., patient's cerebrospinal fluids, genetic manipulations of susceptibility genes, and prenatal developmental alterations. Using a combination of single nanoparticle tracking, electrophysiological, biochemical, and behavioral approaches in rodents, we identified that the NMDAR trafficking in hippocampal neurons was consistently altered in all these different models. Artificial manipulations of the NMDAR surface dynamics with competing ligands or antibody-induced receptor cross-link in the developing rat brain were sufficient to regulate the adult acoustic startle reflex and compensate for an early pathological challenge. Collectively, we show that the NMDAR trafficking is markedly altered in all clinically relevant models of psychosis, opening new avenues of therapeutical strategies.
  •  
5.
  • Kuehne, Leonie K, et al. (författare)
  • Cerebrospinal fluid neopterin is brain-derived and not associated with blood-CSF barrier dysfunction in non-inflammatory affective and schizophrenic spectrum disorders.
  • 2013
  • Ingår i: Journal of psychiatric research. - : Elsevier BV. - 1879-1379 .- 0022-3956. ; 47:10, s. 1417-1422
  • Tidskriftsartikel (refereegranskat)abstract
    • Many psychiatric patients have a minor blood-CSF barrier dysfunction and increased Cerebrospinal fluid (CSF) neopterin concentrations. The source of normal CSF neopterin, a biomarker in inflammatory and non-inflammatory neurological diseases, has never been shown explicitly, a precondition for sensitive detection of pathologically increased CSF neopterin. Neopterin concentrations (ELISA) in CSF and serum of normal controls (n=26) are evaluated by inter-individual variation propagation. Normal CSF neopterin is brain-derived: The inter-individual variation of CSF neopterin in the control group does not depend on serum neopterin concentration variation (coefficient of variation, CV-CSF=9.7%
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy